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Macdonald polynomials

λ: dominant weight for classical subsystem of untwisted affine root
system.

Pλ(x ; q, t): Weyl group invariant polynomials, orthogonal,
generalizing the corresponding irreducible characters = Pλ(x ; 0, 0).

Defined in the DAHA setup, as common eigenfunctions of the
Cherednik operators Yµ.

Recursive construction procedure (for the non-symmetric ones
Eµ(x ; q, t)), based on Cherednik’s intertwiners Ii .
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Braverman-Finkelberg q-Whittaker functions

Ψλ(x ; q): same (a priori different) than those of Ion, Cherednik;

generalize the type A ones of Gerasimov-Lebedev-Oblezin.

Viewed as functions of λ, they are defined as the universal
eigenfunction of the quantum difference Toda integrable system
(Etingof, Sevostyanov).

Let

Ψ̂λ(x ; q) := Ψλ(x ; q)
∏
i∈I

〈λ,α∨
i 〉∏

r=1

(1− qr ) .

Theorem (Braverman-Finkelberg, Ion)

We have
Pλ(x ; q, t = 0) = Ψ̂λ(x ; q) .
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Schubert calculus

Flag variety G/B, Schubert variety Xw = B−wB/B, for w ∈W .

H∗(G/B) and K (G/B) have bases of Schubert classes; for
K -theory, they are the classes [Ow ] = [OXw ] of structure sheaves
of Xw .

The quantum cohomology algebra QH∗(G/B) still has the
Schubert basis, but over C[q1, . . . , qr ].

The structure constants (for multiplying Schubert classes) are the
3-point Gromov-Witten (GW) invariants.

A k-point GW invariant (of degree d) counts curves of degree d
passing through k given Schubert varieties.
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Quantum K -theory

Givental and Lee defined K -theoretic GW invariants by applying
the K -theory Euler characteristic when the space of curves
(through given Schubert varieties) is infinite.

The structure constants for the quantum K -theory QK (G/B) are
defined based on the 2- and 3-point invariants (complex formula).

The K -theoretic J-function is the generating function of 1-point
K -theoretic GW invariants.

Theorem (Braverman-Finkelberg)

In simply-laced types, the q-Whittaker function Ψλ(x ; q) (viewed
as a function of λ) coincides with the K -theoretic J-function.



Quantum K -theory

Givental and Lee defined K -theoretic GW invariants by applying
the K -theory Euler characteristic when the space of curves
(through given Schubert varieties) is infinite.

The structure constants for the quantum K -theory QK (G/B) are
defined based on the 2- and 3-point invariants (complex formula).

The K -theoretic J-function is the generating function of 1-point
K -theoretic GW invariants.

Theorem (Braverman-Finkelberg)

In simply-laced types, the q-Whittaker function Ψλ(x ; q) (viewed
as a function of λ) coincides with the K -theoretic J-function.



Quantum K -theory

Givental and Lee defined K -theoretic GW invariants by applying
the K -theory Euler characteristic when the space of curves
(through given Schubert varieties) is infinite.

The structure constants for the quantum K -theory QK (G/B) are
defined based on the 2- and 3-point invariants (complex formula).

The K -theoretic J-function is the generating function of 1-point
K -theoretic GW invariants.

Theorem (Braverman-Finkelberg)

In simply-laced types, the q-Whittaker function Ψλ(x ; q) (viewed
as a function of λ) coincides with the K -theoretic J-function.



Quantum K -theory

Givental and Lee defined K -theoretic GW invariants by applying
the K -theory Euler characteristic when the space of curves
(through given Schubert varieties) is infinite.

The structure constants for the quantum K -theory QK (G/B) are
defined based on the 2- and 3-point invariants (complex formula).

The K -theoretic J-function is the generating function of 1-point
K -theoretic GW invariants.

Theorem (Braverman-Finkelberg)

In simply-laced types, the q-Whittaker function Ψλ(x ; q) (viewed
as a function of λ) coincides with the K -theoretic J-function.



Kirillov-Reshetikhin (KR) modules

W r ,s : finite dimensional modules for ĝ (r ∈ I , s ≥ 1).

Let p = (p1, p2, . . .) be a composition, and

W⊗p = W p1,1 ⊗W p2,1 ⊗ . . . , λ = ωp1 + ωp2 + . . . .

Xλ(x ; q): the (graded) character of W⊗p.

Main Theorem (L.-Naito-Sagaki-Schilling-Shimozono)

For all untwisted affine root systems A
(1)
n−1 – G

(1)
2 , we have

Pλ(x ; q, 0) = Xλ(x ; q) .

Remarks. (1) The result is believed to extend to the twisted types.

(2) In simply-laced types, certain affine Demazure characters were
identified with Pλ(x ; q, 0) (Ion), and Xλ(x ; q) (Fourier-Littelmann).
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The underlying combinatorics

The quantum alcove model (L. and Lubovsky) describes all the
mentioned structures:

I the specialized Macdonald polynomials Pλ(x ; q, 0) and the
q-Whittaker functions (Ram-Yip formula),

I the quantum K -theory of G/B (conjecture by L.-Postnikov;
evidence by L.-Maeno),

I the tensor products of one-column KR modules (LNSSS).

The model is uniform for all Lie types An−1 – G2.
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Finite root systems Φ ⊂ h∗R

Reflections sα, α ∈ Φ .

The Weyl group W = 〈sα : α ∈ Φ+〉 .

Length function: `(w) .

The quantum Bruhat graph QBG(W ) on W is the directed graph
with labeled edges

w
α−→ wsα ,

where
`(wsα) = `(w) + 1 (covers of the Bruhat order) , or

`(wsα) = `(w)− 2ht(α∨) + 1 (ht(α∨) = 〈ρ, α∨〉) .

Comes from the multiplication of Schubert classes in the quantum
cohomology of flag varieties QH∗(G/B) (Fulton and Woodward).
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The quantum alcove model

Given a dominant weight λ, we associate with it a sequence of
roots, called a λ-chain:

Γ = (β1, . . . , βm) .

Fact. The construction of a λ-chain is based on a reduced
decomposition of the affine Weyl group element corresponding to
A◦ − λ. This gives a sequence of alcoves from A◦ to A◦ − λ.
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The quantum alcove model (cont.)

Given Γ = (β1, . . . , βm), let ri := sβi .

The objects of the model: subsets of positions in Γ

J = (j1 < . . . < js) ⊆ {1, . . . ,m} .

For w ∈W and J, construct the chain π(w , J) of elements in W :

w0 = w , . . . , wi := wrj1 . . . rji , . . . , ws = end(w , J) .

Important structures:

Aq(Γ,w) := {J : π(w , J) path in QBG(W )} ,
Al(Γ,w) := {J : π(w , J) saturated chain in (W , <)} .

Let Aq(Γ) := Aq(Γ, 1W ) and Al(Γ) := Al(Γ, 1W ).
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Macdonald polynomials: the Ram-Yip formula
Given a dominant weight λ, consider a λ-chain Γ := (β1, . . . , βm).

Given J ∈ Aq(Γ), we associate with it

I a weight weight(J),

I a statistic height(J), which “measures” the down steps
wi−1 > wi in the path π(w , J) in QBG(W ).

Theorem (Ram-Yip, L.)

Pλ(X ; q, 0) =
∑

J∈Aq(Γ)

qheight(J) xweight(J) .

Remark. For q = 0, we retrieve the alcove model (L. and
Postnikov, cf. Gaussent and Littelmann, Littelmann):

Pλ(X ; 0, 0) = ch(Vλ) =
∑

J∈Al(Γ)

xweight(J) .
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K (G/B) and QK (G/B): Chevalley formulas
Recall: K (G/B) and QK (G/B) have bases of Schubert classes
[OXw ] = [Ow ], w ∈W .

Let Γrev = reverse of an ωk -chain (ωk a fundamental weight).

Theorem (L.-Postnikov, L.-Shimozono)

In K (G/B) (finite-type or Kac-Moody), we have

[Ow ] · [Osk ]=
∑

J∈Al(Γrev,w)\{∅}

(−1)|J|−1[Oend(w ,J)] .

Conjecture (L.-Postnikov)

In QK (G/B) (finite-type), we have:

[Ow ] ∗ [Osk ]
?
=

∑
J∈Aq(Γrev,w)\{∅}

(−1)|J|−1 q∗1 . . . q
∗
r [Oend(w ,J)] .

Remark. Restricting the RHS, we retrieve the Chevalley formula in
QH∗(G/B) (Fulton-Woodward).
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Evidence for the conjectured formula in QK (G/B)

• Computer experiments (A. Buch).

• The work of Braverman-Finkelberg connecting QK (G/B) to
specialized Macdonald polynomials.

• (L.-Maeno) Based on some relations in QK (SLn/B) discovered
by Kirillov-Maeno, we constructed polynomials Gw (x ; q), called
quantum Grothendieck polynomials.

- They specialize to the usual polynomial representatives in
K (SLn/B) and QH∗(SLn/B).

- They multiply as in the conjectured Chevalley formula.

- They are conjectured to represent Schubert classes [Ow ] in
QK (SLn/B).
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Kirillov-Reshetikhin (KR) modules/crystals

Recall the KR modules, as modules for Uq(ĝ): W r ,s and

W⊗p = W p1,1 ⊗W p2,1 ⊗ . . . .

Kashiwara (crystal) operators are modified versions of the
Chevalley generators (indexed by the simple roots): f̃0 , . . . , f̃r .

Fact. W⊗p has a basis (crystal basis) B = B⊗p such that in the
limit q → 0 we have

f̃i : B → B t {0} , f̃i b = b′ ⇐⇒ b
i−→ b′ .

So B⊗p is a colored directed graph (connected).

Fact. The crystal structure on B⊗p is defined by a tensor product
rule: B⊗p = Bp1,1 ⊗ Bp2,1 ⊗ . . . .
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Models for KR crystals

Fact. In the classical types A− D there are tableau models (the

usual column-strict fillings in type A
(1)
n−1, but more involved in the

other types, particularly for B
(1)
n and D

(1)
n ).

Goal. Uniform model for all types A
(1)
n−1 – G

(1)
2 , based on the

quantum alcove model.
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The quantum alcove model for KR crystals

Given p = (p1, p2, . . .) and an arbitrary Lie type, let

λ = ωp1 + ωp2 + . . . .

Let Γ be a λ-chain, and consider Aq(Γ).

Construction. (L. and Lubovsky, generalization of L.-Postnikov,
Gaussent-Littelmann) Crystal operators f̃1, . . . , f̃r and f̃0 on Aq(Γ).

Main Theorem (L.-Naito-Sagaki-Schilling-Shimozono)

The (combinatorial) crystal Aq(Γ) is isomorphic to the tensor
product of KR crystals B⊗p.
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The energy function

It originates in the theory of exactly solvable lattice models.

The energy function defines a grading on the classical components
(no 0-arrows) of B = B⊗p (Schilling and Tingley).

More precisely, DB : B → Z≥0 satisfies the following conditions:

I it is constant on classical components (0-arrows removed);

I it decreases by 1 along certain 0-arrows.

Goal. A more efficient uniform calculation, based only on the
combinatorial data associated with a crystal vertex (type A:
Lascoux–Schützenberger charge statistic).
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The energy via the quantum alcove model

Consider J = {j1 < j2 < . . . < js} in Aq(Γ) for Γ = (β1, . . . , βm),
i.e., we have a path in the quantum Bruhat graph

1W = w0
βj1−→ w1

βj2−→ . . .
βjs−→ ws .

Recall that height(J) measures the down steps in the above path.

Theorem (L.-Naito-Sagaki-Schilling-Shimozono)

Given J ∈ Aq(Γ), which is identified with B⊗p, we have

DB(J) = −height(J) .
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The combinatorial R-matrix via the quantum alcove model

This is the (unique) affine crystal isomorphism which commutes
factors in the tensor product of KR crystals B⊗p

(the swap
a⊗ b 7→ b ⊗ a is not a crystal isomorphism!).

In type A, it is realized by Schützenberger’s jeu de taquin (sliding
algorithm) on two columns, but already in type C it is hard.

Theorem (L.-Lubovsky)

We give a uniform realization, based on the quantum alcove
model, of the combinatorial R-matrix.

We use combinatorial moves based on certain operators on W
defined by QBG(W ), which satisfy the Yang-Baxter equation
(Brenti-Fomin-Postnikov).
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defined by QBG(W ), which satisfy the Yang-Baxter equation
(Brenti-Fomin-Postnikov).
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Example in type A2.

p = (1, 2, 2, 1) = ; λ = ω1 + ω2 + ω2 + ω1 = (4, 2, 0).

A λ-chain as a concatenation of ω1-, ω2-, ω2-, and ω1-chains:

Γ = ( (1, 2), (1, 3) | (2, 3), (1, 3) | (2, 3), (1, 3) | (1, 2), (1, 3) ) .
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Example. Let J = {1, 2, 3, 6, 7, 8}.

( (1, 2), (1, 3) | (2, 3), (1, 3) | (2, 3), (1, 3) | (1, 2), (1, 3) ) .
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Claim: J is admissible. Indeed, the corresponding path in the
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The corresponding element in B⊗p = B1,1 ⊗ B2,1 ⊗ B2,1 ⊗ B1,1

represented via column-strict fillings:

3 ⊗ 2
3
⊗ 1

2
⊗ 3 .



The energy calculation

Example. Consider the running example: λ = ω1 + ω2 + ω2 + ω1 in
type A2.

We considered the λ-chain Γ and J = {1, 2, 3, 6, 7, 8} ∈ A(Γ):

Γ = ( (1, 2), (1, 3) | (2, 3), (1, 3) | (2, 3), (1, 3) | (1, 2), (1, 3) ) ,

(hi ) = ( 2, 4 | 2, 3 | 1, 2 | 1, 1 ) .

We have
height(J) = 2 .
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