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Variation 1: Littlewood-Richardson coefficients cνλµ

Indexed by partitions:

Tensor product multiplicities

V (λ)⊗ V (µ) =
⊕
ν

cνλµ V (ν)

Symmetric function coefficients

sλ sµ =
∑
ν

cνλµ sν and sν/λ =
∑
µ

cνλµ sµ

Intersections in the Grassmannian

cνλµ = Xλ ∩ Xµ ∩ Xν̂

Cohomology of the Grassmannian structure constants

σλ ∪ σµ =
∑
ν⊂rect

cνλµ σν

(Banff) October 16, 2013 2 / 28



Combinatorial description

Littlewood–Richardson rule
cνλµ = # skew tableaux t of shape ν/λ and weight µ such that row(t) is a
reverse lattice word.

Example

s s = · · ·+?s + · · ·

2
1

1
211

1
2

1
121

1
1

2
112 ⇒ c321

21,21 = 2

Gordon James (1987) on the Littlewood-Richardson rule:

“Unfortunately the Littlewood-Richardson rule is much harder to
prove than was at first suspected. The author was once told that
the Littlewood-Richardson rule helped to get men on the moon
but was not proved until after they got there.”
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Crystal graph

Action of crystal operators ei , fi , si on tableaux:

1 Consider letters i and i + 1 in row reading word of the tableau

2 Successively “bracket” pairs of the form (i + 1, i)

3 Left with word of the form i r (i + 1)s

ei (i r (i + 1)s) =

{
i r+1(i + 1)s−1 if s > 0

0 else

fi (i r (i + 1)s) =

{
i r−1(i + 1)s+1 if r > 0

else

si (i r (i + 1)s) = i s(i + 1)r

(Banff) October 16, 2013 4 / 28
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Crystal reformulation

3
1 2 2 3

1 1 2 3 3 3

e2: change leftmost unpaired 3 into 2
f2: change rightmost unpaired 2 into 3

Theorem

b where all ei (b) = 0 (highest weight)
↔ connected component
↔ irreducible

Reformulation of LR rule

cνλµ counts tableaux of shape ν/λ and weight µ which are highest weight.
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Decomposition

1 ⊗
2 3
3

2 ⊗
2 3
3

1 ⊗
2 2
3

2 ⊗
1 3
3

2 ⊗
1 3
2

2 ⊗
1 2
22 ⊗

1 2
3

3 ⊗
2 3
3

3 ⊗
1 1
3

3 ⊗
1 1
2

2 ⊗
1 1
3

3 ⊗
2 2
3

1 ⊗
1 1
2

1 ⊗
1 1
3

1 ⊗
1 3
2

1 ⊗
1 3
3

1 ⊗
1 2
3

1 ⊗
1 2
2

2 ⊗
2 2
3

3 ⊗
1 2
3

3 ⊗
1 2
2

2 ⊗
1 1
2

3 ⊗
1 3
2

3 ⊗
1 3
3

2

1

1 1

1

2

2

1

2

2

1

1

1

21

2

1

2

2

2

1

1 1

2

2

2
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Variation 2: cw
uv

The set Fn of complete flags:

0 = W0 ⊂W1 ⊂ · · · ⊂Wn = Cn

subvarieties indexed by permutations of Sn

Intersections in the flag variety

Count points in the intersection cw
uv = Xu ∩ Xv ∩ Xw0w

Structure constants in cohomology of the flag variety

σu ∪ σv =
∑
w∈Sn

cw
uv σw

Schubert polynomial coefficients

Su Sv =
∑
w

cw
uv Sw
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Variations 1 and 2 quantized

Grassmannian Flags

Gromov-Witten invariants
Quantum cohomology

count rational curves of degree d count equivalence classes of rational
that meet Xλ,Xµ,Xν̂ curves of multidegree d in Fn

σλ ∗q σµ =
∑
ν⊂rect

qd Nν
λµ σν σu ∗q σv =

∑
w∈Sn

qd 〈u, v ,w〉d σw0w

Polynomial coefficients modulo an ideal

Ring of symmetric functions Z[x1, . . . , xn; q1, . . . , qn−1]
Schur functions quantum Schubert polynomials
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Modulo an ideal is non-trivial

sλ sµ =
∑
ν⊂rect

cνλµ sν +
∑
ν 6⊂rect

cνλµ sν

Λ⊗ Z[q] � QH∗(Gra,n)

sλ 7→

{
σλ when λ ⊂ rectangle

±q∗σλ̃ when λ 6⊂ rectangle

σλ ∗q σµ =
∑
ν⊂rect

qd Nν
λµ σν

It is not enough to compute in Λ or in Z[x1, . . . , xn; q1, . . . , qn−1]
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k-Schur functions

Originally an empirical study [Lascoux, Lapointe, Morse], for λ1 ≤ k,

Hλ(x ; q, t) =
∑
µ1≤k

Kλµ(q, t) A(k)
µ (x ; t) ,

where Kλµ(q, t) ∈ N[t].

Crazy difficulty led to family of functions {s(k)
µ }µ1≤k defined in terms

of a k-Pieri rule where it was conjectured that A
(k)
µ (x ; 1) = s

(k)
µ

{s(k)
µ }µ1≤k basis for Λ = Z[h1, . . . , hk ]

s
(big)
µ = sµ
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Variation 1q: quantized cνλµ

Wess-Zumino-Witten model of Verlinde algebra

Gromov-Witten invariants of the Grassmannian

σλ ∗q σµ =
∑
ν⊂rect

|ν|=|λ|+|µ|−dn

qd Nν
λµ σν

Symmetric function coefficients

Schur coefficients in product of Schur functions modulo an ideal
k-Schur coefficients in a product of k-Schur functions

s
(k)
λ s(k)

µ =
∑

ν̂=(a∗,ν⊂rect)

Nν
λµ s

(k)
ν̂ +

∑
ν̂ 6=(a∗,ν⊂rect)

c ν̂λµ s
(k)
ν̂

�



�
	Computation in Λ
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Variation 2q: Flag Gromov–Witten invariants

Affine Grassmannian

G̃ r = SL(n,C((t)))/SL(n,C[[t]]) n = k + 1

homology of affine Grassmannian � quantum cohomology of Grassm.

↓

quantum cohomology of flags

Product of k-Schurs Flag Gromov-Wittens

s
(k)
λ s

(k)
µ =

∑
ν Cλµν s

(k)
ν σu ∗q σv =

∑
w

∑
d qd〈u, v ,w〉d σw0w

k-bounded partitions permutations of Sk+1

Theorem (Morse-Lapointe)

Precise relation between Cλµν and 〈u, v ,w〉d (up to relabeling).
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Indexing sets

k-bounded partition k + 1-core (k = 4)

λ = ↔ =

3
4 0 1
0 1 2 3 4 0 1

Action of affine symmetric group on cores:

siτ = τ +


all boxes of residue i added

all boxes of residue i removed

nothing

∅ s0−→ 0
s4s3s2s1−→

4
0 1 2 3 4

s1s0−→
4 0 1
0 1 2 3 4 0 1

s3−→
3
4 0 1
0 1 2 3 4 0 1

Affine Grassmannian element in S̃k+1/Sk+1: w̃λ = s3s1s0s4s3s2s1s0
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Affine symmetric group

Affine symmetric group S̃n

〈s0, s1, . . . , sn−1〉 where si sj = sjsi

si si+1si = si+1si si+1 (all indices mod n)
s2
i = 1

Example

For n = 3, s1s2s1s0 = s2s1s2s0

s2s1s0s2s0 = s2s1s2s0s2 = s1s2s1s0s2

Affine Grassmannian permutations

All reduced words end in s0
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Affine horizontal strips and Pieri rule

Schur function Pieri rule

hr sλ =
∑
ν

ν/λ horizontal r -strip

sν

k-Schur function Pieri rule

hr s
(k)
λ =

∑
ν

ν/λ weak horizontal r -strip

s(k)
ν

ν/λ is weak horizontal r -strip if w̃νw̃−1
λ is cyclically decreasing of length r .
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Cyclically decreasing permutation

Definition

w̃ ∈ S̃n is cyclically decreasing if every reduced word has no j − 1
preceeding j (mod n).

Remark

In particular, every letter in the reduced word appears at most once.

Example

For n = 4, cyclically decreasing: w̃ = s1s0s3 and w̃ = s3s1

not cyclically decreasing w̃ = s3s1s0

0

1

2

3
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k-tableaux or affine factorizations

Schur case

tableau ↔ sequence of horizontal strips

3
1 2 2 3

1 1 2 3 3 3 ↔ ⊆ ⊆ ⊆

k-Schur case

horizontal strip ↔ cyclically decreasing element

Definition

A k-tableau or affine factorization of shape λ and weight α is a
factorization of w̃λ = v r · · · v 1 such that:

`(w̃λ) = |α|
v i is cyclically decreasing of length αi

(Banff) October 16, 2013 19 / 28



k-tableaux or affine factorizations

Schur case

tableau ↔ sequence of horizontal strips

3
1 2 2 3

1 1 2 3 3 3 ↔ ⊆ ⊆ ⊆

k-Schur case

horizontal strip ↔ cyclically decreasing element

Definition

A k-tableau or affine factorization of shape λ and weight α is a
factorization of w̃λ = v r · · · v 1 such that:

`(w̃λ) = |α|
v i is cyclically decreasing of length αi

(Banff) October 16, 2013 19 / 28



k-tableaux or affine factorizations

Schur case

tableau ↔ sequence of horizontal strips

3
1 2 2 3

1 1 2 3 3 3 ↔ ⊆ ⊆ ⊆

k-Schur case

horizontal strip ↔ cyclically decreasing element

Definition

A k-tableau or affine factorization of shape λ and weight α is a
factorization of w̃λ = v r · · · v 1 such that:

`(w̃λ) = |α|
v i is cyclically decreasing of length αi

(Banff) October 16, 2013 19 / 28



k-tableaux or affine factorizations

Schur case

tableau ↔ sequence of horizontal strips

3
1 2 2 3

1 1 2 3 3 3 ↔ ⊆ ⊆ ⊆

k-Schur case

horizontal strip ↔ cyclically decreasing element

Definition

A k-tableau or affine factorization of shape λ and weight α is a
factorization of w̃λ = v r · · · v 1 such that:

`(w̃λ) = |α|
v i is cyclically decreasing of length αi

(Banff) October 16, 2013 19 / 28



k-tableaux or affine factorizations

Schur case

tableau ↔ sequence of horizontal strips

3
1 2 2 3

1 1 2 3 3 3 ↔ ⊆ ⊆ ⊆

k-Schur case

horizontal strip ↔ cyclically decreasing element

Definition

A k-tableau or affine factorization of shape λ and weight α is a
factorization of w̃λ = v r · · · v 1 such that:

`(w̃λ) = |α|
v i is cyclically decreasing of length αi

(Banff) October 16, 2013 19 / 28



k-tableaux or affine factorizations

Schur case

tableau ↔ sequence of horizontal strips

3
1 2 2 3

1 1 2 3 3 3 ↔ ⊆ ⊆ ⊆

k-Schur case

horizontal strip ↔ cyclically decreasing element

Definition

A k-tableau or affine factorization of shape λ and weight α is a
factorization of w̃λ = v r · · · v 1 such that:

`(w̃λ) = |α|
v i is cyclically decreasing of length αi

(Banff) October 16, 2013 19 / 28



k-tableaux or affine factorizations

Schur case

tableau ↔ sequence of horizontal strips

3
1 2 2 3

1 1 2 3 3 3 ↔ ⊆ ⊆ ⊆

k-Schur case

horizontal strip ↔ cyclically decreasing element

Definition

A k-tableau or affine factorization of shape λ and weight α is a
factorization of w̃λ = v r · · · v 1 such that:

`(w̃λ) = |α|
v i is cyclically decreasing of length αi

(Banff) October 16, 2013 19 / 28



k-tableaux or affine factorizations (continued)

Definition

A k-tableau or affine factorization of shape λ and weight α is a
factorization of w̃λ = v r · · · v 1 such that:

`(w̃λ) = |α|
v i is cyclically decreasing of length αi

Example

Affine factorizations of w̃λ = s3s2s3s1s0 = s2s3s2s1s0 ∈ S̃4

with weight α = (213) {(s3)(s2)(s3)(s1s0), (s2)(s3)(s2)(s1s0)}

with weight α = (122) {(s3s2)(s3s1)(s0)}
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Weak crystal operators and flag Gromov-Witten invariants

Littlewood-Richardson template

Variations

k-Schur functions

Crystal operators on affine factorizations
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Schur times k-Schur

k-Schur coefficients in sµ s
(k)
ṽ include

all fusion coefficients

coefficients in Schur times a Schubert polynomial

Gromov-Witten invariants for flags 〈u, v ,w〉d where u has one descent

Can use Giambelli formula:

sµ s
(k)
ṽ = det (hµi +j−1)ij s

(k)
ṽ

=
∑
σ

sgn(σ) hα1 · · · hα` s
(k)
ṽ︸ ︷︷ ︸P

w̃ s
(k)
w̃ ṽ

where w̃ is an affine factorization of weight α.
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Crystal operators on affine factorizations

Recall ei pairing and action:

3
1 2 2 3

1 1 2 3 3 3

pairing−→
3

1 2 2 3
1 1 2 3 3 3

e2−→
3

1 2 2 3
1 1 2 2 3 3

(9 8 7 5 0)︸ ︷︷ ︸
label of 3’s

(6 4 3)︸ ︷︷ ︸
label of 2’s

pairing−→ (9 8 7 5 0)︸ ︷︷ ︸
label of 3’s

(6 4 3)︸ ︷︷ ︸
label of 2’s

ẽ2−→ (9 8 5 0)︸ ︷︷ ︸
label of 3’s

(7 6 4 3)︸ ︷︷ ︸
label of 2’s

from left to right:
pair x ∈ 3’s with smallest y ∈ 2’s that is bigger than x
delete rightmost unpaired z ∈ 3’s and add z − t to 2’s

Definition

The above defines ẽi and f̃i on factorizations
w̃ = v r · · · v 1 ∈ 〈s0, . . . , sx̂ , . . . , sn−1〉 where v i is cyclically decreasing.
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ẽ2−→
30

12 23 24 35

14 15 26 27 38 39

(9 8 7 5 0)︸ ︷︷ ︸
label of 3’s

(6 4 3)︸ ︷︷ ︸
label of 2’s

pairing−→ (9 8 7 5 0)︸ ︷︷ ︸
label of 3’s

(6 4 3)︸ ︷︷ ︸
label of 2’s

ẽ2−→ (9 8 5 0)︸ ︷︷ ︸
label of 3’s

(7 6 4 3)︸ ︷︷ ︸
label of 2’s

from left to right:
pair x ∈ 3’s with smallest y ∈ 2’s that is bigger than x

delete rightmost unpaired z ∈ 3’s and add z − t to 2’s

Definition
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Main Results (with Morse)

Theorem

For partition µ ⊆ (an−a) and affine Grassmannian ṽ , let

sµ s
(k)
ṽ =

∑
w̃

c w̃
µṽ s

(k)
w̃ .

If w̃ ṽ−1 ∈ 〈s0, . . . , sx̂ , . . . , sn−1〉,
c w̃
µ,ṽ = # of affine factorizations of w̃ ṽ−1 with weight µ killed by all ẽi .

Proof

Via sign-reversing involution using s̃i ẽi following Remmel-Shimozono.
All terms cancel in Giambelli formula except highest weight elements..
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Corollaries

Corollary

Schubert polynomial expansion of sλ Sw for any w ∈ Sn and partition λ
where |λc | < n.

Corollary

Fusion rules Nν
λµ for any λ, µ and ν such that

ν/µ has a cut-point

or λ satisfies |λc | < n.

Corollary

Gromov-Witten invariants for flags 〈u, v ,w〉d when u has one descent and
vr wRr w−1 ∈ Sx̂

(vr is v shifted by r ; wRr element obtained from rth k-rectangle)
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Future Work

Gromov-Witten invariants
Closer study of crystal structure on affine factorizations and crystal
operators on dual k-tableaux

t-analogue of k-Schur functions and relation to energy on KR crystals
(charge plus offset)

Schur expansion for LLT polynomials

Thank you !
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