Anne Schilling (UC Davis) joint with Jennifer Morse (Drexel) Banff, October 16, 2013

• *k*-Schur functions

Crystal operators on affine factorizations

Anne Schilling (UC Davis) joint with Jennifer Morse (Drexel) Banff, October 16, 2013

• *k-Schur functions*

Crystal operators on affine factorizations

Anne Schilling (UC Davis) joint with Jennifer Morse (Drexel) Banff, October 16, 2013

Crystal operators on affine factorizations

Variation 1: Littlewood-Richardson coefficients $c_{\lambda\mu}^{\nu}$

Indexed by partitions:

• Tensor product multiplicities

$$V(\lambda)\otimes V(\mu)=\bigoplus_{
u} c^{
u}_{\lambda\mu} V(
u)$$

• Symmetric function coefficients

$$s_{\lambda} \, s_{\mu} \; = \; \sum_{
u} c^{
u}_{\lambda\mu} \, s_{
u} \qquad ext{and} \qquad s_{
u/\lambda} = \sum_{\mu} c^{
u}_{\lambda\mu} \, s_{\mu}$$

• Intersections in the Grassmannian

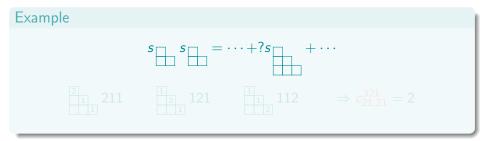
$$c_{\lambda\mu}^
u = X_\lambda \cap X_\mu \cap X_{\hat
u}$$

• Cohomology of the Grassmannian structure constants

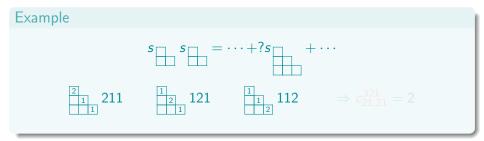
$$\sigma_{\lambda} \cup \sigma_{\mu} = \sum_{\nu \subset rect} c_{\lambda\mu}^{\nu} \sigma_{\nu}$$

Littlewood-Richardson rule

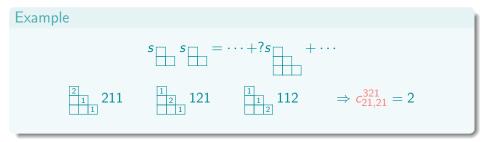
Littlewood-Richardson rule



Littlewood-Richardson rule

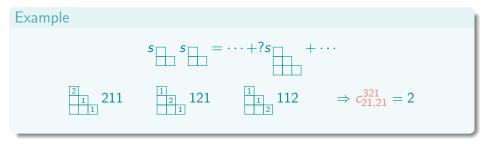


Littlewood-Richardson rule



Littlewood-Richardson rule

 $c_{\lambda\mu}^{\nu} = \#$ skew tableaux t of shape ν/λ and weight μ such that row(t) is a reverse lattice word.



Gordon James (1987) on the Littlewood-Richardson rule:

"Unfortunately the Littlewood-Richardson rule is much harder to prove than was at first suspected. The author was once told that the Littlewood-Richardson rule helped to get men on the moon but was not proved until after they got there." A Constant of the set of t Action of crystal operators e_i , f_i , s_i on tableaux:

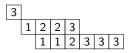
- **(**) Consider letters i and i + 1 in row reading word of the tableau
- 2 Successively "bracket" pairs of the form (i + 1, i)
- Left with word of the form $i^r(i+1)^s$

$$e_i(i^r(i+1)^s) = \begin{cases} i^{r+1}(i+1)^{s-1} & \text{if } s > 0\\ 0 & \text{else} \end{cases}$$
$$f_i(i^r(i+1)^s) = \begin{cases} i^{r-1}(i+1)^{s+1} & \text{if } r > 0\\ & \text{else} \end{cases}$$
$$s_i(i^r(i+1)^s) = i^s(i+1)^r$$

Action of crystal operators e_i , f_i , s_i on tableaux:

- **(**) Consider letters i and i + 1 in row reading word of the tableau
- **2** Successively "bracket" pairs of the form (i + 1, i)
- Left with word of the form $i^r(i+1)^s$

$$e_{i}(i^{r}(i+1)^{s}) = \begin{cases} i^{r+1}(i+1)^{s-1} & \text{if } s > 0\\ 0 & \text{else} \end{cases}$$
$$f_{i}(i^{r}(i+1)^{s}) = \begin{cases} i^{r-1}(i+1)^{s+1} & \text{if } r > 0\\ & \text{else} \end{cases}$$
$$s_{i}(i^{r}(i+1)^{s}) = i^{s}(i+1)^{r}$$

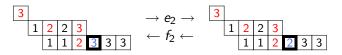


æ

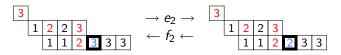
Image: A mathematical states and a mathem

3

Image: A mathematical states and a mathem



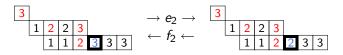
- e_2 : change leftmost unpaired 3 into 2
- f_2 : change rightmost unpaired 2 into 3



- e2: change leftmost unpaired 3 into 2
- f_2 : change rightmost unpaired 2 into 3

Theorem

- b where all $e_i(b) = 0$ (highest weight)
- $\leftrightarrow \textit{ connected component}$
- \leftrightarrow irreducible



- e2: change leftmost unpaired 3 into 2
- f_2 : change rightmost unpaired 2 into 3

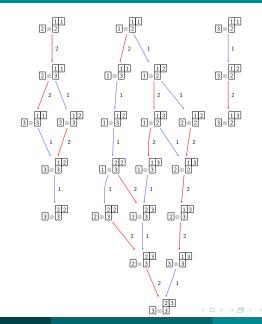
Theorem

- b where all $e_i(b) = 0$ (highest weight)
- \leftrightarrow connected component
- \leftrightarrow irreducible

Reformulation of LR rule

 $c_{\lambda\mu}^{\nu}$ counts tableaux of shape ν/λ and weight μ which are highest weight.

Decomposition



• Littlewood-Richardson template

Variations)

• *k*-Schur functions

• Crystal operators on affine factorizations

• Littlewood-Richardson template

• *k*-Schur functions

• Crystal operators on affine factorizations

The set \mathbb{F}_n of complete flags:

$$0 = W_0 \subset W_1 \subset \cdots \subset W_n = \mathbb{C}^n$$

subvarieties indexed by permutations of S_n

Intersections in the flag variety

Count points in the intersection $c_{uv}^w = X_u \cap X_v \cap X_{w_0w}$

Structure constants in cohomology of the flag variety

$$\sigma_{u}\cup\sigma_{v}=\sum_{w\in S_{n}}c_{uv}^{w}\sigma_{w}$$

Schubert polynomial coefficients

$$\mathfrak{S}_{u}\mathfrak{S}_{v}=\sum c_{uv}^{w}\mathfrak{S}_{w}$$

The set \mathbb{F}_n of complete flags:

$$0 = W_0 \subset W_1 \subset \cdots \subset W_n = \mathbb{C}^n$$

subvarieties indexed by permutations of S_n

Intersections in the flag variety

Count points in the intersection $c_{uv}^w = X_u \cap X_v \cap X_{w_0w}$

Structure constants in cohomology of the flag variety

$$\sigma_{u}\cup\sigma_{v}=\sum_{w\in S_{n}}c_{uv}^{w}\sigma_{w}$$

Schubert polynomial coefficients

$$\mathfrak{S}_{u}\mathfrak{S}_{v}=\sum c_{uv}^{w}\mathfrak{S}_{w}$$

October 16, 2013

8 / 28

The set \mathbb{F}_n of complete flags:

$$0 = W_0 \subset W_1 \subset \cdots \subset W_n = \mathbb{C}^n$$

subvarieties indexed by permutations of S_n

Intersections in the flag variety

Count points in the intersection $c_{uv}^w = X_u \cap X_v \cap X_{w_0w}$

Structure constants in cohomology of the flag variety

$$\sigma_{u} \cup \sigma_{v} = \sum_{w \in S_{n}} c_{uv}^{w} \sigma_{w}$$

Schubert polynomial coefficients

$$\mathfrak{S}_{u}\mathfrak{S}_{v}=\sum c_{uv}^{w}\mathfrak{S}_{w}$$

October 16, 2013

8 / 28

The set \mathbb{F}_n of complete flags:

$$0 = W_0 \subset W_1 \subset \cdots \subset W_n = \mathbb{C}^n$$

subvarieties indexed by permutations of S_n

Intersections in the flag variety

Count points in the intersection $c_{uv}^w = X_u \cap X_v \cap X_{w_0w}$

Structure constants in cohomology of the flag variety

$$\sigma_u \cup \sigma_v = \sum_{w \in S_n} c_{uv}^w \sigma_w$$

Schubert polynomial coefficients

$$\mathfrak{S}_{u}\mathfrak{S}_{v}=\sum c_{uv}^{w}\mathfrak{S}_{w}$$

Grassmannian

Flags

Gromov-Witten invariants Quantum cohomology

count rational curves of degree dthat meet $X_\lambda, X_\mu, X_{\hat{
u}}$ count equivalence classes of rational curves of multidegree d in \mathbb{F}_n

$$\sigma_{\lambda} *_{q} \sigma_{\mu} = \sum_{\nu \subset \textit{rect}} q^{d} \, \mathsf{N}_{\lambda\mu}^{\nu} \sigma_{\nu}$$

$$\sigma_{u} *_{q} \sigma_{v} = \sum_{w \in S_{n}} q^{\mathbf{d}} \langle u, v, w \rangle_{d} \sigma_{w_{0}w}$$

Polynomial coefficients modulo an ideal

Ring of symmetric functions Schur functions $\mathbb{Z}[x_1,\ldots,x_n;q_1,\ldots,q_{n-1}]$ quantum Schubert polynomials

Grassmannian

Flags

Gromov-Witten invariants Quantum cohomology

count rational curves of degree d that meet $X_{\lambda}, X_{\mu}, X_{\hat{\nu}}$

count equivalence classes of rational curves of multidegree d in \mathbb{F}_n

$$\sigma_{\lambda} *_{q} \sigma_{\mu} = \sum_{\nu \subset \textit{rect}} q^{d} N^{\nu}_{\lambda \mu} \sigma_{\nu}$$

$$\sigma_{u} *_{q} \sigma_{v} = \sum_{w \in S_{n}} q^{\mathbf{d}} \langle u, v, w \rangle_{d} \sigma_{w_{0}w}$$

Polynomial coefficients modulo an ideal

Ring of symmetric functions Schur functions

 $\mathbb{Z}[x_1,\ldots,x_n;q_1,\ldots,q_{n-1}]$ quantum Schubert polynomials

< ロト < 同ト < ヨト < ヨト

Grassmannian

Flags

Gromov-Witten invariants Quantum cohomology

count rational curves of degree d that meet $X_{\lambda}, X_{\mu}, X_{\hat{\nu}}$

count equivalence classes of rational curves of multidegree d in \mathbb{F}_n

$$\sigma_{\lambda} *_{q} \sigma_{\mu} = \sum_{
u \subset rect} q^{d} N^{
u}_{\lambda\mu} \sigma_{
u}$$

$$\sigma_{u} *_{q} \sigma_{v} = \sum_{w \in S_{n}} q^{\mathbf{d}} \langle u, v, w \rangle_{d} \sigma_{w_{0}w}$$

Polynomial coefficients modulo an ideal

Ring of symmetric functions Schur functions $\mathbb{Z}[x_1, \ldots, x_n; q_1, \ldots, q_{n-1}]$ quantum Schubert polynomials

Modulo an ideal is non-trivial

$$s_{\lambda} s_{\mu} = \sum_{\nu \subset rect} c^{\nu}_{\lambda\mu} s_{\nu} + \sum_{
u \not \subset rect} c^{\nu}_{\lambda\mu} s_{\nu}$$

$$\Lambda\otimes\mathbb{Z}[q]\twoheadrightarrow QH^*(Gr_{a,n})$$

$$s_{\lambda} \mapsto \begin{cases} \sigma_{\lambda} & \text{when } \lambda \subset rectangle \\ \pm q^* \sigma_{\tilde{\lambda}} & \text{when } \lambda \not \subset rectangle \end{cases}$$

$$\sigma_{\lambda} *_{q} \sigma_{\mu} = \sum_{\nu \subset rect} q^{d} N^{\nu}_{\lambda \mu} \sigma_{\nu}$$

It is not enough to compute in Λ or in $\mathbb{Z}[x_1, \ldots, x_n; q_1, \ldots, q_{n-1}]$

Modulo an ideal is non-trivial

$$s_{\lambda} s_{\mu} = \sum_{\nu \subset rect} c_{\lambda\mu}^{\nu} s_{\nu} + \sum_{\nu \not \subset rect} c_{\lambda\mu}^{\nu} s_{\nu}$$

$$\Lambda\otimes\mathbb{Z}[q]\twoheadrightarrow QH^*(Gr_{a,n})$$

$$s_{\lambda} \mapsto \begin{cases} \sigma_{\lambda} & \text{when} \quad \lambda \subset \textit{rectangle} \\ \pm q^* \sigma_{\tilde{\lambda}} & \text{when} \quad \lambda \not \subset \textit{rectangle} \end{cases}$$

$$\sigma_{\lambda} *_{q} \sigma_{\mu} = \sum_{\nu \subset rect} q^{d} N^{\nu}_{\lambda \mu} \sigma_{\nu}$$

It is not enough to compute in Λ or in $\mathbb{Z}[x_1, \ldots, x_n; q_1, \ldots, q_{n-1}]$

• [Littlewood-Richardson template]

• (Variations)

• *k*-Schur functions

• Crystal operators on affine factorizations

• Littlewood-Richardson template

(Variations)

• *k*-Schur functions

• Crystal operators on affine factorizations

$$\mathcal{H}_\lambda(x;q,t) = \sum_{\mu_1 \leq k} \mathcal{K}_{\lambda\mu}(q,t) \, \mathcal{A}_\mu^{(k)}(x;t) \, ,$$

where $K_{\lambda\mu}(q,t) \in \mathbb{N}[t]$.

Crazy difficulty led to family of functions {s^(k)_{μ1≤k} defined in terms of a k-Pieri rule where it was conjectured that A^(k)_μ(x; 1) = s^(k)_μ

•
$$\{s_{\mu}^{(k)}\}_{\mu_1 \leq k}$$
 basis for $\Lambda = \mathbb{Z}[h_1, \dots, h_k]$

•
$$s_{\mu}^{(big)} = s_{\mu}$$

$$\mathcal{H}_\lambda(x;q,t) = \sum_{\mu_1 \leq k} \mathcal{K}_{\lambda\mu}(q,t) \, \mathcal{A}_\mu^{(k)}(x;t) \, ,$$

where $K_{\lambda\mu}(q,t) \in \mathbb{N}[t]$.

• Crazy difficulty led to family of functions $\{s_{\mu}^{(k)}\}_{\mu_1 \leq k}$ defined in terms of a *k*-Pieri rule where it was conjectured that $A_{\mu}^{(k)}(x; 1) = s_{\mu}^{(k)}$

•
$$\{s_{\mu}^{(k)}\}_{\mu_1 \leq k}$$
 basis for $\Lambda = \mathbb{Z}[h_1, \dots, h_k]$

•
$$s_{\mu}^{(big)} = s_{\mu}$$

$$\mathcal{H}_\lambda(x;q,t) = \sum_{\mu_1 \leq k} \mathcal{K}_{\lambda\mu}(q,t) \, \mathcal{A}^{(k)}_\mu(x;t) \, ,$$

where $K_{\lambda\mu}(q,t) \in \mathbb{N}[t]$.

• Crazy difficulty led to family of functions $\{s_{\mu}^{(k)}\}_{\mu_1 \leq k}$ defined in terms of a *k*-Pieri rule where it was conjectured that $A_{\mu}^{(k)}(x; 1) = s_{\mu}^{(k)}$

•
$$\{s_{\mu}^{(k)}\}_{\mu_1 \leq k}$$
 basis for $\Lambda = \mathbb{Z}[h_1, \dots, h_k]$

$$\mathcal{H}_\lambda(x;q,t) = \sum_{\mu_1 \leq k} \mathcal{K}_{\lambda\mu}(q,t) \, \mathcal{A}^{(k)}_\mu(x;t) \, ,$$

where $K_{\lambda\mu}(q,t) \in \mathbb{N}[t]$.

• Crazy difficulty led to family of functions $\{s_{\mu}^{(k)}\}_{\mu_1 \leq k}$ defined in terms of a *k*-Pieri rule where it was conjectured that $A_{\mu}^{(k)}(x; 1) = s_{\mu}^{(k)}$

•
$$\{s_{\mu}^{(k)}\}_{\mu_1 \leq k}$$
 basis for $\Lambda = \mathbb{Z}[h_1, \dots, h_k]$

•
$$s_\mu^{(big)} = s_\mu$$

Variation 1q: quantized $c_{\lambda\mu}^{\nu}$

Wess-Zumino-Witten model of Verlinde algebra

Gromov-Witten invariants of the Grassmannian

$$\sigma_{\lambda} *_{q} \sigma_{\mu} = \sum_{\substack{\nu \subset rect \\ |\nu| = |\lambda| + |\mu| - dn}} q^{d} N^{\nu}_{\lambda\mu} \sigma_{\nu}$$

Symmetric function coefficients

Schur coefficients in product of Schur functions modulo an ideal
 k-Schur coefficients in a product of *k*-Schur functions

$$s_{\lambda}^{(k)} s_{\mu}^{(k)} = \sum_{\hat{\nu} = (a^*, \nu \sub{rect})} N_{\lambda\mu}^{\nu} s_{\hat{\nu}}^{(k)} + \sum_{\hat{\nu} \neq (a^*, \nu \sub{rect})} c_{\lambda\mu}^{\hat{\nu}} s_{\hat{\nu}}^{(k)}$$

Computation in A

Variation 1q: quantized $c_{\lambda\mu}^{\nu}$

Wess-Zumino-Witten model of Verlinde algebra

Gromov-Witten invariants of the Grassmannian

$$\sigma_{\lambda} *_{q} \sigma_{\mu} = \sum_{\substack{\nu \subset \text{rect} \\ |\nu| = |\lambda| + |\mu| - dn}} q^{d} N^{\nu}_{\lambda \mu} \sigma_{\nu}$$

Symmetric function coefficients

- Schur coefficients in product of Schur functions modulo an ideal
- *k*-Schur coefficients in a product of *k*-Schur functions

$$s_{\lambda}^{(k)} s_{\mu}^{(k)} = \sum_{\hat{\nu} = (a^*, \nu \sub{rect})} \mathsf{N}_{\lambda\mu}^{\nu} s_{\hat{\nu}}^{(k)} + \sum_{\hat{\nu} \neq (a^*, \nu \sub{rect})} c_{\lambda\mu}^{\hat{\nu}} s_{\hat{\nu}}^{(k)}$$

October 16, 2013

13 / 28

Computation in A

Variation 1q: quantized $c_{\lambda\mu}^{\nu}$

Wess-Zumino-Witten model of Verlinde algebra

Gromov-Witten invariants of the Grassmannian

$$\sigma_{\lambda} *_{q} \sigma_{\mu} = \sum_{\substack{\nu \subset \text{rect} \\ |\nu| = |\lambda| + |\mu| - dn}} q^{d} N^{\nu}_{\lambda \mu} \sigma_{\nu}$$

Symmetric function coefficients

- Schur coefficients in product of Schur functions modulo an ideal
- *k*-Schur coefficients in a product of *k*-Schur functions

$$s_{\lambda}^{(k)} s_{\mu}^{(k)} = \sum_{\hat{\nu} = (a^*, \nu \sub{rect})} N_{\lambda\mu}^{\nu} s_{\hat{\nu}}^{(k)} + \sum_{\hat{\nu} \neq (a^*, \nu \sub{rect})} c_{\lambda\mu}^{\hat{\nu}} s_{\hat{\nu}}^{(k)}$$

Computation in Λ

Variation 2g: Flag Gromov–Witten invariants

Affine Grassmannian

 $\widetilde{G}r = SL(n, \mathbb{C}((t)))/SL(n, \mathbb{C}[[t]])$

n = k + 1

homology of affine Grassmannian ---- quantum cohomology of Grassm.

quantum cohomology of flags

$$s_{\lambda}^{(k)} s_{\mu}^{(k)} = \sum_{\nu} C_{\lambda\mu\nu} s_{\nu}^{(k)} \qquad \qquad \sigma_{u} *_{q} \sigma_{v} = \sum_{w} \sum_{d} q^{d} \langle u, v, w \rangle_{d} \sigma_{w_{0}v}$$

Product of *k***-Schurs**

Variation 2q: Flag Gromov-Witten invariants

Affine Grassmannian

 $\widetilde{G}r = SL(n, \mathbb{C}((t)))/SL(n, \mathbb{C}[[t]])$

n = k + 1

homology of affine Grassmannian \twoheadrightarrow quantum cohomology of Grassm.

quantum cohomology of flags

Product of *k***-Schurs**

Flag Gromov-Wittens

$$s_{\lambda}^{(k)} s_{\mu}^{(k)} = \sum_{\nu} C_{\lambda\mu\nu} s_{\nu}^{(k)} \qquad \qquad \sigma_{u} *_{q} \sigma_{v} = \sum_{w} \sum_{d} q^{d} \langle u, v, w \rangle_{d} \sigma_{w_{0}w}$$

k-bounded partitions

permutations of
$$S_{k+1}$$

Theorem (Morse-Lapointe)

Precise relation between $C_{\lambda\mu\nu}$ and $\langle u, v, w \rangle_d$ (up to relabeling).

Variation 2q: Flag Gromov-Witten invariants

Affine Grassmannian

 $\widetilde{G}r = SL(n, \mathbb{C}((t)))/SL(n, \mathbb{C}[[t]])$

n = k + 1

homology of affine Grassmannian \twoheadrightarrow quantum cohomology of Grassm.

quantum cohomology of flags

Product of *k***-Schurs**

Flag Gromov-Wittens

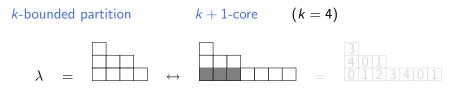
$$s_{\lambda}^{(k)} s_{\mu}^{(k)} = \sum_{\nu} C_{\lambda\mu\nu} s_{\nu}^{(k)} \qquad \qquad \sigma_{u} *_{q} \sigma_{v} = \sum_{w} \sum_{d} q^{d} \langle u, v, w \rangle_{d} \sigma_{w_{0}w}$$

k-bounded partitions

permutations of
$$S_{k+1}$$

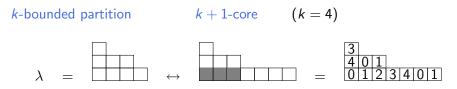
Theorem (Morse-Lapointe)

Precise relation between $C_{\lambda\mu\nu}$ and $\langle u, v, w \rangle_d$ (up to relabeling).



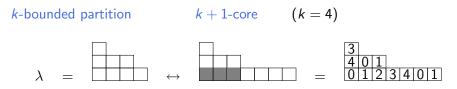
$$s_i \tau = \tau + \begin{cases} all boxes of residue i added \\ all boxes of residue i removed \\ nothing \end{cases}$$

$$\emptyset \xrightarrow{s_0} 0 \xrightarrow{s_4 s_3 s_2 s_1} 4 \xrightarrow{4} 0 \xrightarrow{1} 0 \xrightarrow{1} 2 \xrightarrow{3} 0 \xrightarrow{4} 0 \xrightarrow{1} 0 \xrightarrow{5} 0 \xrightarrow{4} 0 \xrightarrow{1} 2 \xrightarrow{3} 0 \xrightarrow{4} 0 \xrightarrow{1} 2 \xrightarrow{3} 0 \xrightarrow{1} 2 \xrightarrow{1$$



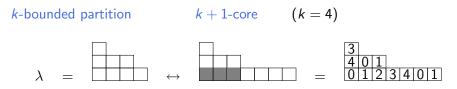
$$s_i \tau = \tau + \begin{cases} all boxes of residue i added \\ all boxes of residue i removed \\ nothing \end{cases}$$

$$\emptyset \xrightarrow{s_0} 0 \xrightarrow{s_4 s_3 s_2 s_1} 4 \xrightarrow{4} 0 \xrightarrow{1} 0 \xrightarrow{1} 2 \xrightarrow{3} 0 \xrightarrow{4} 0 \xrightarrow{1} 0 \xrightarrow{5} 0 \xrightarrow{4} 0 \xrightarrow{1} 2 \xrightarrow{3} 0 \xrightarrow{4} 0 \xrightarrow{1} 2 \xrightarrow{3} 0 \xrightarrow{1} 2 \xrightarrow{1$$



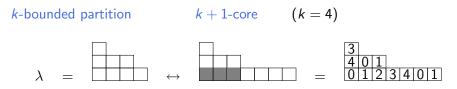
$$s_i \tau = \tau + \begin{cases} all boxes of residue i added \\ all boxes of residue i removed \\ nothing \end{cases}$$

$$\emptyset \xrightarrow{s_0} 0 \xrightarrow{s_4 s_3 s_2 s_1} \overset{4}{\underset{0}{\longrightarrow}} \overset{4}{\underset{0}{\longrightarrow}} \overset{1}{\underset{0}{3}} \overset{3}{\underset{0}{3}} \overset{4}{\underset{0}{3}} \overset{1}{\underset{0}{3}} \overset{3}{\underset{0}{3}} \overset{4}{\underset{0}{3}} \overset{1}{\underset{0}{3}} \overset{1}{\underset{0}{3}$$



$$s_i \tau = \tau + \begin{cases} all boxes of residue i added \\ all boxes of residue i removed \\ nothing \end{cases}$$

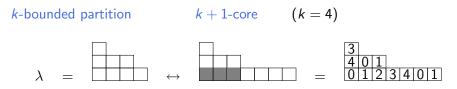
$$\emptyset \xrightarrow{s_0} \mathbb{O} \xrightarrow{s_4 s_3 s_2 s_1} \overset{4}{0} 1 2 3 4 \xrightarrow{s_1 s_0} \overset{4}{0} 1 2 3 4 0 1 \xrightarrow{s_3} \overset{3}{0} 1 2 3 4 0 1 \xrightarrow{s_3} 0 1 2 3 4 0 \xrightarrow{s_3} 0 \xrightarrow{s_3} 0 1 2 3 4 0 \xrightarrow{s_3} 0 \xrightarrow{s_3}$$



$$s_i \tau = \tau + \begin{cases} all boxes of residue i added \\ all boxes of residue i removed \\ nothing \end{cases}$$

$$\emptyset \xrightarrow{s_0} 0 \xrightarrow{s_4 s_3 s_2 s_1} 4 \xrightarrow{4} 0 \xrightarrow{1} 0 \xrightarrow{1$$

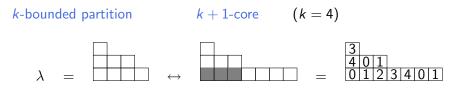
Affine Grassmannian element in \tilde{S}_{k+1}/S_{k+1} : $\tilde{w}_{\lambda} = s_3 s_1 s_0 s_4 s_3 s_2 s_1 s_0$



$$s_i \tau = \tau + \begin{cases} all boxes of residue i added \\ all boxes of residue i removed \\ nothing \end{cases}$$

$$\emptyset \xrightarrow{s_0} 0 \xrightarrow{s_4 s_3 s_2 s_1} 4 \xrightarrow{4} 0 1 2 3 4 \xrightarrow{s_1 s_0} 0 1 2 3 4 0 1 \xrightarrow{s_3} 0 1 2 3 4 0 \xrightarrow{s_3} 0 \xrightarrow{$$

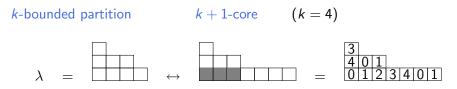
Affine Grassmannian element in \tilde{S}_{k+1}/S_{k+1} : $\tilde{w}_{\lambda} = s_3 s_1 s_0 s_4 s_3 s_2 s_1 s_0$



$$s_i \tau = \tau + \begin{cases} all boxes of residue i added \\ all boxes of residue i removed \\ nothing \end{cases}$$

$$\emptyset \xrightarrow{s_0} [0] \xrightarrow{s_4 s_3 s_2 s_1} [4]{0 | 1 | 2 | 3 | 4} \xrightarrow{s_1 s_0} [4 | 0 | 1]{0 | 1 | 2 | 3 | 4 | 0 | 1} \xrightarrow{s_3} [4 | 0 | 1]{0 | 1 | 2 | 3 | 4 | 0 | 1}$$

Affine Grassmannian element in \tilde{S}_{k+1}/S_{k+1} : $\tilde{w}_{\lambda} = s_3 s_1 s_0 s_4 s_3 s_2 s_1 s_0$



$$s_i \tau = \tau + \begin{cases} all boxes of residue i added \\ all boxes of residue i removed \\ nothing \end{cases}$$

$$\emptyset \xrightarrow{s_0} 0 \xrightarrow{s_4 s_3 s_2 s_1} \stackrel{[4]}{\underset{0}{\longrightarrow}} \xrightarrow{s_1 s_0} \stackrel{[4]}{\underset{0}{\longrightarrow}} \stackrel{[4]}{\underset{0}{\xrightarrow}} \stackrel{[$$

Affine symmetric group \tilde{S}_n

$$\langle s_0, s_1, \dots, s_{n-1}
angle$$
 where $s_i s_j = s_j s_i$
 $s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1}$ (all indices mod *n*)
 $s_i^2 = 1$

Example

For n = 3, $s_1 s_2 s_1 s_0 = s_2 s_1 s_2 s_0$ $s_2 s_1 s_0 s_2 s_0 = s_2 s_1 s_2 s_0 s_2 = s_1 s_2 s_1 s_0 s_2$

Affine Grassmannian permutations

Affine symmetric group \tilde{S}_n

$$\langle s_0, s_1, \dots, s_{n-1}
angle$$
 where $s_i s_j = s_j s_i$
 $s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1}$ (all indices mod *n*)
 $s_i^2 = 1$

Example For n = 3, $s_1 s_2 s_1 s_0 = s_2 s_1 s_2 s_0$ $s_2 s_1 s_0 s_2 s_0 = s_2 s_1 s_2 s_0 s_2 = s_1 s_2 s_1 s_0 s_2$

Affine Grassmannian permutations

Affine symmetric group \tilde{S}_n

$$\langle s_0, s_1, \dots, s_{n-1}
angle$$
 where $s_i s_j = s_j s_i$
 $s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1}$ (all indices mod *n*)
 $s_i^2 = 1$

Example

For n = 3, $s_1 s_2 s_1 s_0 = s_2 s_1 s_2 s_0$ $s_2 s_1 s_0 s_2 s_0 = s_2 s_1 s_2 s_0 s_2 = s_1 s_2 s_1 s_0 s_2$

Affine Grassmannian permutations

Affine symmetric group \tilde{S}_n

$$\langle s_0, s_1, \dots, s_{n-1}
angle$$
 where $s_i s_j = s_j s_i$
 $s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1}$ (all indices mod *n*)
 $s_i^2 = 1$

Example

For n = 3, $s_1 s_2 s_1 s_0 = s_2 s_1 s_2 s_0$

 $s_2 s_1 s_0 s_2 s_0 = s_2 s_1 s_2 s_0 s_2 = s_1 s_2 s_1 s_0 s_2$

Affine Grassmannian permutations

Affine horizontal strips and Pieri rule

Schur function Pieri rule

$$h_r s_\lambda = \sum_{\substack{
u \
u/\lambda ext{ horizontal } r ext{-strip}}} s_
u$$

k-Schur function Pieri rule

$$h_r s_\lambda^{(k)} = \sum_{\substack{
u \
u/\lambda ext{ weak horizontal } r ext{-strip}}} s_
u^{(k)}$$

 ν/λ is weak horizontal *r*-strip if $\tilde{w}_{\nu}\tilde{w}_{\lambda}^{-1}$ is cyclically decreasing of length *r*.

Affine horizontal strips and Pieri rule

Schur function Pieri rule

$$h_r s_\lambda = \sum_{\substack{
u \
u/\lambda ext{ horizontal } r ext{-strip}}} s_
u$$

k-Schur function Pieri rule

$$h_r s_\lambda^{(k)} = \sum_{\substack{
u \
u/\lambda ext{ weak horizontal } r ext{-strip}}} s_
u^{(k)}$$

 ν/λ is weak horizontal *r*-strip if $\tilde{w}_{\nu}\tilde{w}_{\lambda}^{-1}$ is cyclically decreasing of length *r*.

Affine horizontal strips and Pieri rule

Schur function Pieri rule

$$h_r s_\lambda = \sum_{\substack{
u \
u < \lambda \text{ horizontal } r-strip}} s_
u$$

k-Schur function Pieri rule

$$h_r s_{\lambda}^{(k)} = \sum_{\substack{
u \
u/\lambda ext{ weak horizontal } r ext{-strip}}} s_{
u}^{(k)}$$

 ν/λ is weak horizontal *r*-strip if $\tilde{w}_{\nu}\tilde{w}_{\lambda}^{-1}$ is cyclically decreasing of length *r*.

Cyclically decreasing permutation

Definition

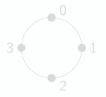
 $\tilde{w} \in \tilde{S}_n$ is cyclically decreasing if every reduced word has no j-1 preceeding $j \pmod{n}$.

Remark

In particular, every letter in the reduced word appears at most once.

Example

For n = 4, cyclically decreasing: $\tilde{w} = s_1 s_0 s_3$ and $\tilde{w} = s_3 s_1$ not cyclically decreasing $\tilde{w} = s_3 s_1 s_0$



Cyclically decreasing permutation

Definition

 $\tilde{w} \in \tilde{S}_n$ is cyclically decreasing if every reduced word has no j-1 preceeding $j \pmod{n}$.

Remark

In particular, every letter in the reduced word appears at most once.

Example

```
For n = 4, cyclically decreasing: \tilde{w} = s_1 s_0 s_3 and \tilde{w} = s_3 s_1
not cyclically decreasing \tilde{w} = s_3 s_1 s_0
```

Cyclically decreasing permutation

Definition

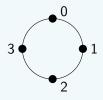
 $\tilde{w} \in \tilde{S}_n$ is cyclically decreasing if every reduced word has no j-1 preceeding $j \pmod{n}$.

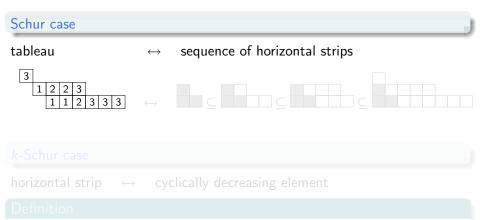
Remark

In particular, every letter in the reduced word appears at most once.

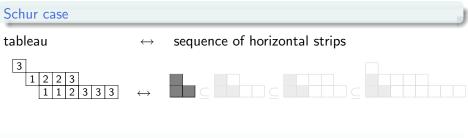
Example

```
For n = 4, cyclically decreasing: \tilde{w} = s_1 s_0 s_3 and \tilde{w} = s_3 s_1
not cyclically decreasing \tilde{w} = s_3 s_1 s_0
```





- $\ell(\tilde{w}_{\lambda}) = |\alpha|$
- v^i is cyclically decreasing of length α_i

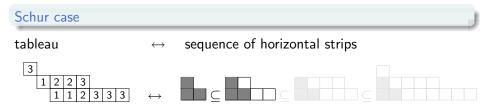


k-Schur case

horizontal strip \leftrightarrow cyclically decreasing element

Definition

- $\ell(\tilde{w}_{\lambda}) = |\alpha|$
- v^i is cyclically decreasing of length α_i

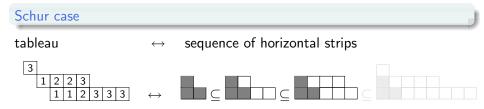


k-Schur case

horizontal strip \leftrightarrow cyclically decreasing element

Definition

- $\ell(\tilde{w}_{\lambda}) = |\alpha|$
- v^i is cyclically decreasing of length α_i

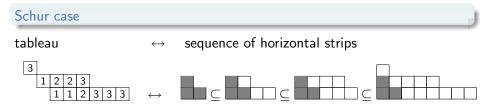


k-Schur case

horizontal strip \leftrightarrow cyclically decreasing element

Definition

- $\ell(\tilde{w}_{\lambda}) = |\alpha|$
- v^i is cyclically decreasing of length α_i

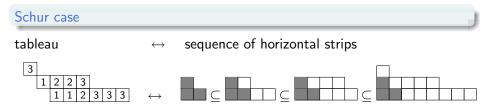


k-Schur case

horizontal strip \leftrightarrow cyclically decreasing element

Definition

- $\ell(\tilde{w}_{\lambda}) = |\alpha|$
- v^i is cyclically decreasing of length α_i



k-Schur case

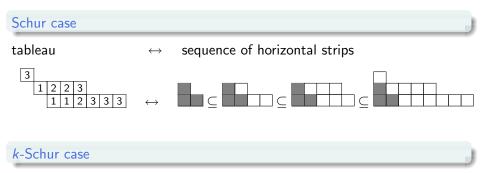
horizontal strip \leftrightarrow cyclically decreasing element

Definition

A *k*-tableau or affine factorization of shape λ and weight α is a factorization of $\tilde{w}_{\lambda} = v^r \cdots v^1$ such that:

• $\ell(\tilde{w}_{\lambda}) = |\alpha|$

• v^i is cyclically decreasing of length α_i



horizontal strip \leftrightarrow cyclically decreasing element

Definition

A *k*-tableau or affine factorization of shape λ and weight α is a factorization of $\tilde{w}_{\lambda} = v^r \cdots v^1$ such that:

•
$$\ell(\tilde{w}_{\lambda}) = |\alpha|$$

• v^i is cyclically decreasing of length α_i

Definition

A *k*-tableau or affine factorization of shape λ and weight α is a factorization of $\tilde{w}_{\lambda} = v^r \cdots v^1$ such that:

•
$$\ell(\tilde{w}_{\lambda}) = |\alpha|$$

• v^i is cyclically decreasing of length α_i

Example

Affine factorizations of $ilde w_\lambda \ = \ s_3s_2s_3s_1s_0 \ = \ s_2s_3s_2s_1s_0 \ \in \ ilde S_4$

with weight $lpha = (21^3) \ \{(s_3)(s_2)(s_3)(s_1s_0), (s_2)(s_3)(s_2)(s_1s_0)\}$

with weight $\alpha = (122) \{(s_3s_2)(s_3s_1)(s_0)\}$

Definition

A *k*-tableau or affine factorization of shape λ and weight α is a factorization of $\tilde{w}_{\lambda} = v^r \cdots v^1$ such that:

•
$$\ell(\tilde{w}_{\lambda}) = |\alpha|$$

• v^i is cyclically decreasing of length α_i

Example

Affine factorizations of $\tilde{w}_{\lambda} = s_3 s_2 s_3 s_1 s_0 = s_2 s_3 s_2 s_1 s_0 \in \tilde{S}_4$

with weight $\alpha = (21^3) \{(s_3)(s_2)(s_3)(s_1s_0), (s_2)(s_3)(s_2)(s_1s_0)\}$

with weight $\alpha = (122) \{(s_3s_2)(s_3s_1)(s_0)\}$

Weak crystal operators and flag Gromov-Witten invariants

• Littlewood-Richardson template

Variations

• *k*-Schur functions

• Crystal operators on affine factorizations

Weak crystal operators and flag Gromov-Witten invariants

• Littlewood-Richardson template

Variations

• *k*-Schur functions

• Crystal operators on affine factorizations

Schur times k-Schur

k-Schur coefficients in $s_{\mu} s_{\tilde{v}}^{(k)}$ include

- all fusion coefficients
- coefficients in Schur times a Schubert polynomial
- Gromov-Witten invariants for flags $\langle u, v, w \rangle_d$ where u has one descent

Schur times k-Schur

k-Schur coefficients in $s_{\mu} s_{\tilde{v}}^{(k)}$ include

- all fusion coefficients
- coefficients in Schur times a Schubert polynomial
- Gromov-Witten invariants for flags $\langle u, v, w \rangle_d$ where u has one descent

Can use Giambelli formula:

$$s_{\mu} s_{\tilde{v}}^{(k)} = det (h_{\mu_i+j-1})_{ij} s_{\tilde{v}}^{(k)}$$
$$= \sum_{\sigma} sgn(\sigma) \underbrace{h_{\alpha_1} \cdots h_{\alpha_\ell} s_{\tilde{v}}^{(k)}}_{\sum_{\tilde{w}} s_{\tilde{w}\tilde{v}}^{(k)}}$$

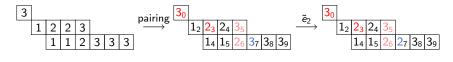
where \tilde{w} is an affine factorization of weight α .

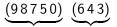
Crystal operators on affine factorizations

Recall *e_i* pairing and action:

Label cells diagonally

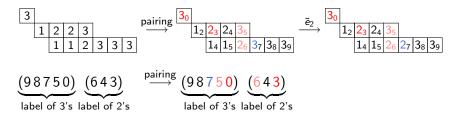
Label cells diagonally





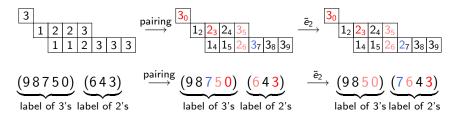
label of 3's label of 2's

Label cells diagonally



from left to right: pair $x \in 3$'s with smallest $y \in 2$'s that is bigger than x

Label cells diagonally



from left to right: pair $x \in 3$'s with smallest $y \in 2$'s that is bigger than xdelete rightmost unpaired $z \in 3$'s and add z - t to 2's

Definition

The above defines \tilde{e}_i and \tilde{f}_i on factorizations $\tilde{w} = v^r \cdots v^1 \in \langle s_0, \ldots, s_{\hat{x}}, \ldots, s_{n-1} \rangle$ where v^i is cyclically decreasing.

Theorem

For partition $\mu \subseteq (a^{n-a})$ and affine Grassmannian \tilde{v} , let

$$s_\mu\,s^{(k)}_{\widetilde{v}}=\sum_{\widetilde{w}}c^{\widetilde{w}}_{\mu\widetilde{v}}\,s^{(k)}_{\widetilde{w}}\,.$$

If $\tilde{w}\tilde{v}^{-1} \in \langle s_0, \dots, s_{\hat{x}}, \dots, s_{n-1} \rangle$, $c_{\mu,\tilde{v}}^{\tilde{w}} = \#$ of affine factorizations of $\tilde{w}\tilde{v}^{-1}$ with weight μ killed by all \tilde{e}_i .

Proof

Via sign-reversing involution using $\tilde{s}_i \tilde{e}_i$ following Remmel-Shimozono. All terms cancel in Giambelli formula except highest weight elements..

Theorem

For partition $\mu \subseteq (a^{n-a})$ and affine Grassmannian \tilde{v} , let

$$s_\mu\,s^{(k)}_{\widetilde{v}}=\sum_{\widetilde{w}}c^{\widetilde{w}}_{\mu\widetilde{v}}\,s^{(k)}_{\widetilde{w}}\,.$$

If
$$\tilde{w}\tilde{v}^{-1} \in \langle s_0, \dots, s_{\hat{x}}, \dots, s_{n-1} \rangle$$
,
 $c_{\mu,\tilde{v}}^{\tilde{w}} = \#$ of affine factorizations of $\tilde{w}\tilde{v}^{-1}$ with weight μ killed by all \tilde{e}_i .

Proof

Via sign-reversing involution using $\tilde{s}_i \tilde{e}_i$ following Remmel-Shimozono. All terms cancel in Giambelli formula except highest weight elements..

Corollary

Schubert polynomial expansion of $s_{\lambda} \mathfrak{S}_{w}$ for any $w \in S_{n}$ and partition λ where $|\lambda^{c}| < n$.

Corollary

Fusion rules $N_{\lambda\mu}^{\nu}$ for any λ , μ and ν such that

- ν/μ has a cut-point
- or λ satisfies $|\lambda^c| < n$.

Corollary

Gromov-Witten invariants for flags $\langle u, v, w \rangle_d$ when u has one descent and $v_r w_{R_r} w^{-1} \in S_{\hat{x}}$ $(v_r \text{ is } v \text{ shifted by } r; w_{R_r} \text{ element obtained from } r\text{th } k\text{-rectangle})$

Corollary

Schubert polynomial expansion of $s_{\lambda} \mathfrak{S}_{w}$ for any $w \in S_{n}$ and partition λ where $|\lambda^{c}| < n$.

Corollary

Fusion rules $N_{\lambda\mu}^{\nu}$ for any λ , μ and ν such that

- ν/μ has a cut-point
- or λ satisfies $|\lambda^c| < n$.

Corollary

Gromov-Witten invariants for flags $\langle u, v, w \rangle_d$ when u has one descent and $v_r w_{R_r} w^{-1} \in S_{\hat{x}}$ (v_r is v shifted by r; w_{R_r} element obtained from rth k-rectangle)

Corollary

Schubert polynomial expansion of $s_{\lambda} \mathfrak{S}_{w}$ for any $w \in S_{n}$ and partition λ where $|\lambda^c| < n$.

Corollary

Fusion rules $N_{\lambda\mu}^{\nu}$ for any λ , μ and ν such that

- ν/μ has a cut-point
- or λ satisfies $|\lambda^c| < n$.

Corollary

Gromov-Witten invariants for flags $\langle u, v, w \rangle_d$ when u has one descent and $v_r w_{R_r} w^{-1} \in S_{\hat{x}}$ $(v_r \text{ is } v \text{ shifted by } r; w_{R_r} \text{ element obtained from } r \text{th } k \text{-rectangle})$

Related work

Quantum cohomology of Grassmannian

- Buch, Kresch, Tamvakis 2003
- Knutson, Tao puzzles 2003
- Coskun recursive algorithm 2009
- Buch et al. forthcoming

Quantum Flag

- Fomin, Gelfand, Postnikov quantum Monk 1997
- Postnikov quantum Pieri 1999
- Berg, Saliola, Serrano *k*-Schur indexed by rectangle minus a box, quantum Monk 2012

Fusion

- Tudose two row and two column case 2000
- Korff, Stroppel plactic algebra 2010

Related work

Quantum cohomology of Grassmannian

- Buch, Kresch, Tamvakis 2003
- Knutson, Tao puzzles 2003
- Coskun recursive algorithm 2009
- Buch et al. forthcoming

Quantum Flag

- Fomin, Gelfand, Postnikov quantum Monk 1997
- Postnikov quantum Pieri 1999
- Berg, Saliola, Serrano k-Schur indexed by rectangle minus a box, quantum Monk 2012

Fusion

- Tudose two row and two column case 2000
- Korff, Stroppel plactic algebra 2010

Related work

Quantum cohomology of Grassmannian

- Buch, Kresch, Tamvakis 2003
- Knutson, Tao puzzles 2003
- Coskun recursive algorithm 2009
- Buch et al. forthcoming

Quantum Flag

- Fomin, Gelfand, Postnikov quantum Monk 1997
- Postnikov quantum Pieri 1999
- Berg, Saliola, Serrano k-Schur indexed by rectangle minus a box, quantum Monk 2012

Fusion

- Tudose two row and two column case 2000
- Korff, Stroppel plactic algebra 2010

Schur times Schubert

- Lenart growth diagrams, plactic approach 2009
- Benedetti, Bergeron relation to dual k-Schur coefficients 2012
- Meszaros, Panova, Postnikov Fomin-Kirillov algebra, hook and two-row case in quantum case 2012

- *t*-analogue of *k*-Schur functions and relation to energy on KR crystals (charge plus offset)
- Schur expansion for LLT polynomials

- *t*-analogue of *k*-Schur functions and relation to energy on KR crystals (charge plus offset)
- Schur expansion for LLT polynomials

- *t*-analogue of *k*-Schur functions and relation to energy on KR crystals (charge plus offset)
- Schur expansion for LLT polynomials

- *t*-analogue of *k*-Schur functions and relation to energy on KR crystals (charge plus offset)
- Schur expansion for LLT polynomials

