Weak crystal operators and flag Gromov-Witten invariants

Anne Schilling (UC Davis)
joint with Jennifer Morse (Drexel)
Banff, October 16, 2013

- Littlewood-Richardson template
- Variations
- k-Schur functions
- Crystal operators on affine factorizations

Weak crystal operators and flag Gromov-Witten invariants

Anne Schilling (UC Davis)
joint with Jennifer Morse (Drexel)
Banff, October 16, 2013

- Littlewood-Richardson template
- Variations
- k-Schur functions
- Crystal operators on affine factorizations

Weak crystal operators and flag Gromov-Witten invariants

Anne Schilling (UC Davis)
joint with Jennifer Morse (Drexel)
Banff, October 16, 2013

- Littlewood-Richardson template
- Variations
- k-Schur functions
- Crystal operators on affine factorizations

Variation 1: Littlewood-Richardson coefficients $c_{\lambda \mu}^{\nu}$

Indexed by partitions:

$\square \square \square$

- Tensor product multiplicities

$$
V(\lambda) \otimes V(\mu)=\bigoplus_{\nu} c_{\lambda \mu}^{\nu} V(\nu)
$$

- Symmetric function coefficients

$$
s_{\lambda} s_{\mu}=\sum_{\nu} c_{\lambda \mu}^{\nu} s_{\nu} \quad \text { and } \quad s_{\nu / \lambda}=\sum_{\mu} c_{\lambda \mu}^{\nu} s_{\mu}
$$

- Intersections in the Grassmannian

$$
c_{\lambda \mu}^{\nu}=X_{\lambda} \cap X_{\mu} \cap X_{\hat{\nu}}
$$

- Cohomology of the Grassmannian structure constants

$$
\sigma_{\lambda} \cup \sigma_{\mu}=\sum_{\nu \subset \text { rect }} c_{\lambda \mu}^{\nu} \sigma_{\nu}
$$

Combinatorial description

Littlewood-Richardson rule

$c_{\lambda \mu}^{\nu}=\#$ skew tableaux t of shape ν / λ and weight μ such that $\operatorname{row}(t)$ is a reverse lattice word.

Combinatorial description

Littlewood-Richardson rule

$c_{\lambda \mu}^{\nu}=\#$ skew tableaux t of shape ν / λ and weight μ such that $\operatorname{row}(t)$ is a reverse lattice word.

Example

Combinatorial description

Littlewood-Richardson rule

$c_{\lambda \mu}^{\nu}=\#$ skew tableaux t of shape ν / λ and weight μ such that $\operatorname{row}(t)$ is a reverse lattice word.

Example

2		
	1	
		1

$\begin{array}{ll}\frac{1}{1} & 112 \\ \frac{1}{2} & 112\end{array}$

Combinatorial description

Littlewood-Richardson rule

$c_{\lambda \mu}^{\nu}=\#$ skew tableaux t of shape ν / λ and weight μ such that $\operatorname{row}(t)$ is a reverse lattice word.

Example

$$
\begin{array}{|l|l}
\left.\frac{2}{1}\right|_{1} & 211 \\
\frac{1}{2} & \frac{1}{1} \\
\frac{1}{1} 2 \\
\frac{1}{2} & 112
\end{array} \quad \Rightarrow c_{21,21}^{321}=2
$$

Combinatorial description

Littlewood-Richardson rule

$c_{\lambda \mu}^{\nu}=\#$ skew tableaux t of shape ν / λ and weight μ such that $\operatorname{row}(t)$ is a reverse lattice word.

Example

$$
\Rightarrow c_{21,21}^{321}=2
$$

Gordon James (1987) on the Littlewood-Richardson rule:
"Unfortunately the Littlewood-Richardson rule is much harder to prove than was at first suspected. The author was once told that the Littlewood-Richardson rule helped to get men on the moon but was not proved until after they got there."

Crystal graph

Action of crystal operators e_{i}, f_{i}, s_{i} on tableaux:
(1) Consider letters i and $i+1$ in row reading word of the tableau
(2) Successively "bracket" pairs of the form $(i+1, i)$
(3) Left with word of the form $i^{r}(i+1)^{s}$

Crystal graph

Action of crystal operators e_{i}, f_{i}, s_{i} on tableaux:
(1) Consider letters i and $i+1$ in row reading word of the tableau
(2) Successively "bracket" pairs of the form $(i+1, i)$
(3) Left with word of the form $i^{r}(i+1)^{s}$

$$
\begin{aligned}
& e_{i}\left(i^{r}(i+1)^{s}\right)= \begin{cases}i^{r+1}(i+1)^{s-1} & \text { if } s>0 \\
0 & \text { else }\end{cases} \\
& f_{i}\left(i^{r}(i+1)^{s}\right)= \begin{cases}i^{r-1}(i+1)^{s+1} & \text { if } r>0\end{cases} \\
& s_{i}\left(i^{r}(i+1)^{s}\right)=i^{s}(i+1)^{r}
\end{aligned}
$$

Crystal reformulation

3					
1	2	2	3		
	1	1	2	3	3

Crystal reformulation

3					
1	2	2	3		
	1	1	2	3	3

Crystal reformulation

e_{2} : change leftmost unpaired 3 into 2 f_{2} : change rightmost unpaired 2 into 3

Crystal reformulation

e_{2} : change leftmost unpaired 3 into 2
f_{2} : change rightmost unpaired 2 into 3

Theorem

b where all $e_{i}(b)=0$ (highest weight)
\leftrightarrow connected component
\leftrightarrow irreducible

Crystal reformulation

e_{2} : change leftmost unpaired 3 into 2
f_{2} : change rightmost unpaired 2 into 3

Theorem

b where all $e_{i}(b)=0$ (highest weight)
\leftrightarrow connected component
\leftrightarrow irreducible

Reformulation of LR rule

$c_{\lambda \mu}^{\nu}$ counts tableaux of shape ν / λ and weight μ which are highest weight.

Decomposition

Weak crystal operators and flag Gromov-Witten invariants

- Littlewood-Richardson template
- Variations
- k-Schur functions
- Crystal operators on affine factorizations

Weak crystal operators and flag Gromov-Witten invariants

- Littlewood-Richardson template
- Variations
- k-Schur functions
- Crystal operators on affine factorizations

Variation 2: $c_{w V}^{w}$

The set \mathbb{F}_{n} of complete flags:

$$
0=W_{0} \subset W_{1} \subset \cdots \subset W_{n}=\mathbb{C}^{n}
$$

subvarieties indexed by permutations of S_{n}

Intersections in the flag variety
Count points in the intersection $\quad=X_{u} \cap X_{v} \cap X_{\text {wow }}$
Structure constants in cohomology of the flag variety

Schubert polynomial coefficients

Variation 2: $c_{w V}^{w}$

The set \mathbb{F}_{n} of complete flags:

$$
0=W_{0} \subset W_{1} \subset \cdots \subset W_{n}=\mathbb{C}^{n}
$$

subvarieties indexed by permutations of S_{n}

Intersections in the flag variety
Count points in the intersection $c_{u v}^{w}=X_{u} \cap X_{v} \cap X_{w_{0} w}$
Structure constants in cohomology of the flag variety

Schubert polynomial coefficients

Variation 2: $c_{U V}^{w}$

The set \mathbb{F}_{n} of complete flags:

$$
0=W_{0} \subset W_{1} \subset \cdots \subset W_{n}=\mathbb{C}^{n}
$$

subvarieties indexed by permutations of S_{n}

Intersections in the flag variety
Count points in the intersection $c_{u v}^{w}=X_{u} \cap X_{v} \cap X_{w_{0} w}$
Structure constants in cohomology of the flag variety

$$
\sigma_{u} \cup \sigma_{v}=\sum_{w \in S_{n}} c_{u v}^{w} \sigma_{w}
$$

Schubert polynomial coefficients

Variation 2: $c_{U V}^{w}$

The set \mathbb{F}_{n} of complete flags:

$$
0=W_{0} \subset W_{1} \subset \cdots \subset W_{n}=\mathbb{C}^{n}
$$

subvarieties indexed by permutations of S_{n}

Intersections in the flag variety
Count points in the intersection $c_{u v}^{w}=X_{u} \cap X_{v} \cap X_{w_{0} w}$
Structure constants in cohomology of the flag variety

$$
\sigma_{u} \cup \sigma_{v}=\sum_{w \in S_{n}} c_{u v}^{w} \sigma_{w}
$$

Schubert polynomial coefficients

$$
\mathfrak{S}_{u} \mathfrak{S}_{v}=\sum_{w} c_{u v}^{w} \mathfrak{S}_{w}
$$

Variations 1 and 2 quantized

Grassmannian Flags

Gromov-Witten invariants
Quantum cohomology
count rational curves of degree d that meet $X_{\lambda}, X_{\mu}, X_{\hat{\nu}}$

$$
\sigma_{\lambda} *_{q} \sigma_{\mu}=\sum_{\nu \subset r e c t} q^{d} N_{\lambda \mu}^{\nu} \sigma_{\nu} \quad \sigma_{u} *_{q} \sigma_{v}=\sum_{w \in S_{n}} q^{\mathbf{d}}\langle u, v, w\rangle_{d} \sigma_{w_{0} w}
$$

Polynomial coefficients modulo an ideal

Ring of symmetric functions Schur functions
count equivalence classes of rational curves of multidegree d in \mathbb{F}_{n}

Variations 1 and 2 quantized

Grassmannian

Flags

Gromov-Witten invariants
 Quantum cohomology

count rational curves of degree d that meet $X_{\lambda}, X_{\mu}, X_{\hat{\nu}}$

$$
\sigma_{\lambda} *_{q} \sigma_{\mu}=\sum_{\nu \subset \text { rect }} q^{d} N_{\lambda \mu}^{\nu} \sigma_{\nu} \quad \sigma_{u} *_{q} \sigma_{v}=\sum_{w \in S_{n}} q^{\mathbf{d}}\langle u, v, w\rangle_{d} \sigma_{w_{0} w}
$$

count equivalence classes of rational curves of multidegree d in \mathbb{F}_{n}

Polynomial coefficients modulo an ideal

quantum Schubert polynomials

Variations 1 and 2 quantized

Grassmannian Flags

Gromov-Witten invariants Quantum cohomology

count rational curves of degree d that meet $X_{\lambda}, X_{\mu}, X_{\hat{\nu}}$

$$
\sigma_{\lambda} *_{q} \sigma_{\mu}=\sum_{\nu \subset \text { rect }} q^{d} N_{\lambda \mu}^{\nu} \sigma_{\nu} \quad \sigma_{u} *_{q} \sigma_{v}=\sum_{w \in S_{n}} q^{\mathbf{d}}\langle u, v, w\rangle_{d} \sigma_{w_{0} w}
$$

Polynomial coefficients modulo an ideal

Ring of symmetric functions Schur functions
count equivalence classes of rational curves of multidegree d in \mathbb{F}_{n}

$$
\mathbb{Z}\left[x_{1}, \ldots, x_{n} ; q_{1}, \ldots, q_{n-1}\right]
$$ quantum Schubert polynomials

Modulo an ideal is non-trivial

$$
s_{\lambda} s_{\mu}=\sum_{\nu \subset r e c t} c_{\lambda \mu}^{\nu} s_{\nu}+\sum_{\nu \not \subset r e c t} c_{\lambda \mu}^{\nu} s_{\nu}
$$

$$
\begin{aligned}
& \Lambda \otimes \mathbb{Z}[q] \rightarrow Q H^{*}\left(G r_{a, n}\right) \\
& s_{\lambda} \mapsto\left\{\begin{array}{lll}
\sigma_{\lambda} & \text { when } & \lambda \subset \text { rectangle } \\
\pm q^{*} \sigma_{\tilde{\lambda}} & \text { when } & \lambda \not \subset \text { rectangle }
\end{array}\right.
\end{aligned}
$$

Modulo an ideal is non-trivial

$$
\begin{aligned}
& s_{\lambda} s_{\mu}=\sum_{\nu \subset \text { rect }} c_{\lambda \mu}^{\nu} s_{\nu}+\sum_{\nu \not \subset \text { rect }} c_{\lambda \mu}^{\nu} s_{\nu} \\
& \Lambda \otimes \mathbb{Z}[q] \rightarrow Q H^{*}\left(G r_{a, n}\right) \\
& s_{\lambda} \mapsto \begin{cases}\sigma_{\lambda} & \text { when } \\
\pm q^{*} \sigma_{\tilde{\lambda}} & \text { when } \quad \lambda \not \subset \text { rectangle }\end{cases} \\
& \sigma_{\lambda} *_{q} \sigma_{\mu}=\sum_{\nu \subset \text { rectangle }} q^{d} N_{\lambda \mu}^{\nu} \sigma_{\nu}
\end{aligned}
$$

It is not enough to compute in Λ or in $\mathbb{Z}\left[x_{1}, \ldots, x_{n} ; q_{1}, \ldots, q_{n-1}\right]$

Crystal operators and flag Gromov-Witten invariants

- Littlewood-Richardson template
- Variations
- k-Schur functions
- Crystal operators on affine factorizations

Crystal operators and flag Gromov-Witten invariants

- Littlewood-Richardson template
- Variations
- k-Schur functions
- Crystal operators on affine factorizations

k-Schur functions

- Originally an empirical study [Lascoux, Lapointe, Morse], for $\lambda_{1} \leq k$,

$$
H_{\lambda}(x ; q, t)=\sum_{\mu_{1} \leq k} K_{\lambda \mu}(q, t) A_{\mu}^{(k)}(x ; t),
$$

where $K_{\lambda \mu}(q, t) \in \mathbb{N}[t]$.

- Crazy difficulty led to family of functions $\left\{s_{\mu}^{(k)}\right\}_{\mu_{1} \leq k}$ defined in terms
- $\left\{s_{\mu}^{(k)}\right\}_{\mu_{1} \leq k}$ basis for $\Lambda=\mathbb{Z}\left[h_{1}, \ldots, h_{k}\right]$
- $s_{\mu}^{(\text {big })}=s_{\mu}$

k-Schur functions

- Originally an empirical study [Lascoux, Lapointe, Morse], for $\lambda_{1} \leq k$,

$$
H_{\lambda}(x ; q, t)=\sum_{\mu_{1} \leq k} K_{\lambda \mu}(q, t) A_{\mu}^{(k)}(x ; t)
$$

where $K_{\lambda \mu}(q, t) \in \mathbb{N}[t]$.

- Crazy difficulty led to family of functions $\left\{s_{\mu}^{(k)}\right\}_{\mu_{1} \leq k}$ defined in terms of a k-Pieri rule where it was conjectured that $A_{\mu}^{(\bar{k})}(x ; 1)=s_{\mu}^{(k)}$
- $\left\{s_{\mu}^{(k)}\right\}_{\mu_{1} \leq k}$ basis for $\Lambda=\mathbb{Z}\left[h_{1}, \ldots, h_{k}\right]$

k-Schur functions

- Originally an empirical study [Lascoux, Lapointe, Morse], for $\lambda_{1} \leq k$,

$$
H_{\lambda}(x ; q, t)=\sum_{\mu_{1} \leq k} K_{\lambda \mu}(q, t) A_{\mu}^{(k)}(x ; t)
$$

where $K_{\lambda \mu}(q, t) \in \mathbb{N}[t]$.

- Crazy difficulty led to family of functions $\left\{s_{\mu}^{(k)}\right\}_{\mu_{1} \leq k}$ defined in terms of a k-Pieri rule where it was conjectured that $A_{\mu}^{(\bar{k})}(x ; 1)=s_{\mu}^{(k)}$
- $\left\{s_{\mu}^{(k)}\right\}_{\mu_{1} \leq k}$ basis for $\Lambda=\mathbb{Z}\left[h_{1}, \ldots, h_{k}\right]$

k-Schur functions

- Originally an empirical study [Lascoux, Lapointe, Morse], for $\lambda_{1} \leq k$,

$$
H_{\lambda}(x ; q, t)=\sum_{\mu_{1} \leq k} K_{\lambda \mu}(q, t) A_{\mu}^{(k)}(x ; t)
$$

where $K_{\lambda \mu}(q, t) \in \mathbb{N}[t]$.

- Crazy difficulty led to family of functions $\left\{s_{\mu}^{(k)}\right\}_{\mu_{1} \leq k}$ defined in terms of a k-Pieri rule where it was conjectured that $A_{\mu}^{(\bar{k})}(x ; 1)=s_{\mu}^{(k)}$
- $\left\{s_{\mu}^{(k)}\right\}_{\mu_{1} \leq k}$ basis for $\Lambda=\mathbb{Z}\left[h_{1}, \ldots, h_{k}\right]$
- $s_{\mu}^{(b i g)}=s_{\mu}$

Variation 1q: quantized $c_{\lambda \mu}^{\nu}$

Wess-Zumino-Witten model of Verlinde algebra

Gromov-Witten invariants of the Grassmannian

$$
\sigma_{\lambda} *_{q} \sigma_{\mu}=\sum_{\substack{\nu \subset r e c t \\|\nu|=|\lambda|+|\mu|-d n}} q^{d} N_{\lambda \mu}^{\nu} \sigma_{\nu}
$$

Symmetric function coefficients

- Schur coefficients in product of Schur functions modulo an ideal - k-Schur coefficients in a product of k-Schur functions

$$
\hat{\nu}=\left(a^{*}, \nu \subset r e c t\right)
$$

Variation 1q: quantized $c_{\lambda \mu}^{\nu}$

Wess-Zumino-Witten model of Verlinde algebra
Gromov-Witten invariants of the Grassmannian

$$
\sigma_{\lambda} *_{q} \sigma_{\mu}=\sum_{\substack{\nu \subset \text { rect } \\|\nu|=|\lambda|+|\mu|-d n}} q^{d} N_{\lambda \mu}^{\nu} \sigma_{\nu}
$$

Symmetric function coefficients

- Schur coefficients in product of Schur functions modulo an ideal
- k-Schur coefficients in a product of k-Schur functions

$$
s_{\lambda}^{(k)} s_{\mu}^{(k)}=\sum_{\hat{\nu}=\left(a^{*}, \nu \subset r e c t\right)} N_{\lambda \mu}^{\nu} s_{\hat{\nu}}^{(k)}+\sum_{\hat{\nu} \neq\left(a^{*}, \nu \subset r e c t\right)} c_{\lambda \mu}^{\hat{\nu}} s_{\hat{\nu}}^{(k)}
$$

Variation 1q: quantized $c_{\lambda \mu}^{\nu}$

Wess-Zumino-Witten model of Verlinde algebra
Gromov-Witten invariants of the Grassmannian

$$
\sigma_{\lambda} *_{q} \sigma_{\mu}=\sum_{\substack{\nu \subset \text { rect } \\|\nu|=|\lambda|+|\mu|-d n}} q^{d} N_{\lambda \mu}^{\nu} \sigma_{\nu}
$$

Symmetric function coefficients

- Schur coefficients in product of Schur functions modulo an ideal
- k-Schur coefficients in a product of k-Schur functions

$$
s_{\lambda}^{(k)} s_{\mu}^{(k)}=\sum_{\hat{\nu}=\left(a^{*}, \nu \subset r e c t\right)} N_{\lambda \mu}^{\nu} s_{\hat{\nu}}^{(k)}+\sum_{\hat{\nu} \neq\left(a^{*}, \nu \subset r e c t\right)} c_{\lambda \mu}^{\hat{\nu}} s_{\hat{\nu}}^{(k)}
$$

Computation in Λ

Variation 2q: Flag Gromov-Witten invariants

$$
\begin{aligned}
& \text { Affine Grassmannian } \\
& \tilde{G} r=S L(n, \mathbb{C}((t))) / S L(n, \mathbb{C}[[t]]) \quad n=k+1
\end{aligned}
$$

homology of affine Grassmannian \rightarrow quantum cohomology of Grassm.

quantum cohomology of flags

wo W
k-bounded partitions
permutations of S_{k+1}
\square
\square

Variation 2q: Flag Gromov-Witten invariants

Affine Grassmannian

$\tilde{G} r=S L(n, \mathbb{C}((t))) / S L(n, \mathbb{C}[[t]])$
$n=k+1$
homology of affine Grassmannian \rightarrow quantum cohomology of Grassm.
quantum cohomology of flags

Product of k-Schurs

Flag Gromov-Wittens
$s_{\lambda}^{(k)} s_{\mu}^{(k)}=\sum_{\nu} C_{\lambda \mu \nu} s_{\nu}^{(k)}$

$$
\sigma_{u} *_{q} \sigma_{v}=\sum_{w} \sum_{d} q^{d}\langle u, v, w\rangle_{d} \sigma_{w_{0} w}
$$

k-bounded partitions

Variation 2q: Flag Gromov-Witten invariants

Affine Grassmannian

$\tilde{G} r=S L(n, \mathbb{C}((t))) / S L(n, \mathbb{C}[[t]])$
$n=k+1$
homology of affine Grassmannian \rightarrow quantum cohomology of Grassm.
quantum cohomology of flags

Product of k-Schurs

Flag Gromov-Wittens
$s_{\lambda}^{(k)} s_{\mu}^{(k)}=\sum_{\nu} C_{\lambda \mu \nu} s_{\nu}^{(k)}$

$$
\sigma_{u} *_{q} \sigma_{v}=\sum_{w} \sum_{d} q^{d}\langle u, v, w\rangle_{d} \sigma_{w_{0} w}
$$

k-bounded partitions permutations of S_{k+1}

Theorem (Morse-Lapointe)

Precise relation between $C_{\lambda \mu \nu}$ and $\langle u, v, w\rangle_{d}$ (up to relabeling).

Indexing sets

k-bounded partition $\quad k+1$-core $\quad(k=4)$

Action of affine symmetric group on cores:

$$
s_{i} \tau=\tau+\left\{\begin{array}{l}
\text { all boxes of residue } i \text { added } \\
\text { all boxes of residue } i \text { removed } \\
\text { nothing }
\end{array}\right.
$$

Indexing sets

k-bounded partition $\quad k+1$-core $\quad(k=4)$

Action of affine symmetric group on cores:

$$
s_{i} \tau=\tau+\left\{\begin{array}{l}
\text { all boxes of residue } i \text { added } \\
\text { all boxes of residue } i \text { removed } \\
\text { nothing }
\end{array}\right.
$$

Indexing sets

k-bounded partition

$$
k+1 \text {-core } \quad(k=4)
$$

Action of affine symmetric group on cores:

$$
s_{i} \tau=\tau+\left\{\begin{array}{l}
\text { all boxes of residue } i \text { added } \\
\text { all boxes of residue } i \text { removed } \\
\text { nothing }
\end{array}\right.
$$

Indexing sets

k-bounded partition

$$
k+1 \text {-core } \quad(k=4)
$$

Action of affine symmetric group on cores:

$$
s_{i} \tau=\tau+\left\{\begin{array}{l}
\text { all boxes of residue } i \text { added } \\
\text { all boxes of residue } i \text { removed } \\
\text { nothing }
\end{array}\right.
$$

Indexing sets

k-bounded partition

$$
k+1 \text {-core } \quad(k=4)
$$

Action of affine symmetric group on cores:

$$
s_{i} \tau=\tau+\left\{\begin{array}{l}
\text { all boxes of residue } i \text { added } \\
\text { all boxes of residue } i \text { removed } \\
\text { nothing }
\end{array}\right.
$$

$$
\emptyset \xrightarrow{s_{0}} 0 \xrightarrow{s_{4} s_{3} s_{2} s_{1}} \stackrel{4}{0} 1 \mid 2 / 3 / 4
$$

Indexing sets

k-bounded partition

$$
k+1 \text {-core } \quad(k=4)
$$

Action of affine symmetric group on cores:

$$
s_{i} \tau=\tau+\left\{\begin{array}{l}
\text { all boxes of residue } i \text { added } \\
\text { all boxes of residue } i \text { removed } \\
\text { nothing }
\end{array}\right.
$$

Indexing sets

k-bounded partition

$$
k+1 \text {-core } \quad(k=4)
$$

Action of affine symmetric group on cores:

$$
s_{i} \tau=\tau+\left\{\begin{array}{l}
\text { all boxes of residue } i \text { added } \\
\text { all boxes of residue } i \text { removed } \\
\text { nothing }
\end{array}\right.
$$

Indexing sets

k-bounded partition $\quad k+1$-core $\quad(k=4)$

Action of affine symmetric group on cores:

$$
s_{i} \tau=\tau+\left\{\begin{array}{l}
\text { all boxes of residue } i \text { added } \\
\text { all boxes of residue } i \text { removed } \\
\text { nothing }
\end{array}\right.
$$

Affine Grassmannian element in $\tilde{S}_{k+1} / S_{k+1}: \quad \tilde{w}_{\lambda}=s_{3} s_{1} s_{0} s_{4} s_{3} s_{2} s_{1} s_{0}$

Affine symmetric group

Affine symmetric group \tilde{S}_{n}
$\left\langle s_{0}, s_{1}, \ldots, s_{n-1}\right\rangle$ where $s_{i} s_{j}=s_{j} s_{i}$
$s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1} \quad($ all indices $\quad \bmod n)$

$$
s_{i}^{2}=1
$$

Affine Grassmannian permutations

All reduced words end in s_{0}

Affine symmetric group

Affine symmetric group \tilde{S}_{n}

$$
\begin{array}{ll}
\left\langle s_{0}, s_{1}, \ldots, s_{n-1}\right\rangle \text { where } & s_{i} s_{j}=s_{j} s_{i} \\
& s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1} \quad(\text { all indices } \bmod n) \\
& s_{i}^{2}=1
\end{array}
$$

Example

For $n=3, \quad s_{1} s_{2} s_{1} s_{0}=s_{2} s_{1} s_{2} s_{0}$

$$
s_{2} s_{1} s_{0} s_{2} s_{0}=s_{2} s_{1} s_{2} s_{0} s_{2}=s_{1} s_{2} s_{1} s_{0} s_{2}
$$

Affine Grassmannian permutations

All reduced words end in s_{0}

Affine symmetric group

Affine symmetric group \tilde{S}_{n}
$\left\langle s_{0}, s_{1}, \ldots, s_{n-1}\right\rangle$ where $s_{i} s_{j}=s_{j} s_{i}$

$$
\begin{aligned}
& s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1} \quad(\text { all indices } \bmod n) \\
& s_{i}^{2}=1
\end{aligned}
$$

Example

For $n=3, \quad s_{1} s_{2} s_{1} s_{0}=s_{2} s_{1} s_{2} s_{0}$

$$
s_{2} s_{1} s_{0} s_{2} s_{0}=s_{2} s_{1} s_{2} s_{0} s_{2}=s_{1} s_{2} s_{1} s_{0} s_{2}
$$

Affine Grassmannian permutations
All reduced words end in s_{0}

Affine symmetric group

Affine symmetric group \tilde{S}_{n}
$\left\langle s_{0}, s_{1}, \ldots, s_{n-1}\right\rangle$ where $s_{i} s_{j}=s_{j} s_{i}$

$$
s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1} \quad(\text { all indices } \quad \bmod n)
$$

$$
s_{i}^{2}=1
$$

Example

For $n=3, \quad s_{1} s_{2} s_{1} s_{0}=s_{2} s_{1} s_{2} s_{0}$

Affine Grassmannian permutations
All reduced words end in s_{0}

Affine horizontal strips and Pieri rule

Schur function Pieri rule

$$
h_{r} s_{\lambda}=\sum_{\nu / \lambda \text { horizontal }} s_{\nu}
$$

k-Schur function Pieri rule

ν / λ weak horizontal r-strip
ν / λ is weak horizontal r-strip if $\tilde{w}_{\nu} \tilde{w}_{\lambda}^{-1}$ is cyclically decreasing of length r.

Affine horizontal strips and Pieri rule

Schur function Pieri rule

$$
h_{r} s_{\lambda}=\sum_{\nu / \lambda \text { horizontal }} s_{\nu}
$$

k-Schur function Pieri rule

$$
h_{r} s_{\lambda}^{(k)}=\sum_{\nu / \lambda \text { weak horizontal }} s_{\nu \text {-strip }} s_{\nu}^{(k)}
$$

Affine horizontal strips and Pieri rule

Schur function Pieri rule

$$
h_{r} s_{\lambda}=\sum_{\nu / \lambda \text { horizontal }} s_{\nu}
$$

k-Schur function Pieri rule

$$
h_{r} s_{\lambda}^{(k)}=\sum_{\nu / \lambda \text { weak horizontal }} s_{\nu \text {-strip }}^{(k)}
$$

ν / λ is weak horizontal r-strip if $\tilde{w}_{\nu} \tilde{w}_{\lambda}^{-1}$ is cyclically decreasing of length r.

Cyclically decreasing permutation

Definition

$\tilde{w} \in \tilde{S}_{n}$ is cyclically decreasing if every reduced word has no $j-1$ preceeding $j(\bmod n)$.

In particular, every letter in the reduced word appears at most once.

Cyclically decreasing permutation

Definition

$\tilde{w} \in \tilde{S}_{n}$ is cyclically decreasing if every reduced word has no $j-1$ preceeding $j(\bmod n)$.

Remark

In particular, every letter in the reduced word appears at most once.

Cyclically decreasing permutation

Definition

$\tilde{w} \in \tilde{S}_{n}$ is cyclically decreasing if every reduced word has no $j-1$ preceeding $j(\bmod n)$.

Remark

In particular, every letter in the reduced word appears at most once.

Example

For $n=4$, cyclically decreasing: $\tilde{w}=s_{1} s_{0} s_{3}$ and $\tilde{w}=s_{3} s_{1}$ not cyclically decreasing $\tilde{w}=s_{3} s_{1} s_{0}$

k-tableaux or affine factorizations

Schur case

tableau $\quad \leftrightarrow$ sequence of horizontal strips

horizontal strip

$\leftrightarrow \quad$ cyclically decreasing element

\square factorization of $\tilde{w}_{\lambda}=v^{r} \cdots v^{1}$ such that:
\square

- v^{i} is cyclically decreasing of length α_{i}

k-tableaux or affine factorizations

Schur case

tableau $\quad \leftrightarrow$ sequence of horizontal strips

horizontal strip
 cyclically decreasing element

\square
A k-tableau or affine factorization of shape λ and weight α is a factorization of $\tilde{w}_{\lambda}=v^{r} \cdots v^{1}$ such that:

- $\ell\left(\tilde{w}_{\lambda}\right)=|\alpha|$
- v^{i} is cyclically decreasing of length α_{i}

k-tableaux or affine factorizations

Schur case

tableau $\quad \leftrightarrow$ sequence of horizontal strips

horizontal strip
 cyclically decreasing element

\square
A k-tableau or affine factorization of shape λ and weight α is a factorization of $\tilde{w}_{\lambda}=v^{r} \cdots v^{1}$ such that:

- $\ell\left(\tilde{w}_{\lambda}\right)=|\alpha|$
- v^{i} is cyclically decreasing of length α_{i}

k-tableaux or affine factorizations

Schur case

tableau $\quad \leftrightarrow$ sequence of horizontal strips

horizontal strip

cyclically decreasing element
\square
A k-tableau or affine factorization of shape λ and weight α is a factorization of $\tilde{w}_{\lambda}=v^{r} \cdots v^{1}$ such that:
\square

- v^{i} is cyclically decreasing of length α_{i}

k-tableaux or affine factorizations

Schur case

tableau $\quad \leftrightarrow$ sequence of horizontal strips

horizontal strip
 $\leftrightarrow \quad$ cyclically decreasing element

k-tableaux or affine factorizations

Schur case

tableau $\quad \leftrightarrow \quad$ sequence of horizontal strips

k-Schur case

 horizontal strip \leftrightarrow cyclically decreasing element\square

k-tableaux or affine factorizations

Schur case

tableau $\quad \leftrightarrow$ sequence of horizontal strips

k-Schur case

horizontal strip \leftrightarrow cyclically decreasing element

Definition

A k-tableau or affine factorization of shape λ and weight α is a factorization of $\tilde{w}_{\lambda}=v^{r} \cdots v^{1}$ such that:

- $\ell\left(\tilde{w}_{\lambda}\right)=|\alpha|$
- v^{i} is cyclically decreasing of length α_{i}

k-tableaux or affine factorizations (continued)

Definition

A k-tableau or affine factorization of shape λ and weight α is a factorization of $\tilde{w}_{\lambda}=v^{r} \cdots v^{1}$ such that:

- $\ell\left(\tilde{w}_{\lambda}\right)=|\alpha|$
- v^{i} is cyclically decreasing of length α_{i}

k-tableaux or affine factorizations (continued)

Definition

A k-tableau or affine factorization of shape λ and weight α is a factorization of $\tilde{w}_{\lambda}=v^{r} \cdots v^{1}$ such that:

- $\ell\left(\tilde{w}_{\lambda}\right)=|\alpha|$
- v^{i} is cyclically decreasing of length α_{i}

Example

Affine factorizations of $\quad \tilde{w}_{\lambda}=s_{3} s_{2} s_{3} s_{1} s_{0}=s_{2} s_{3} s_{2} s_{1} s_{0} \in \tilde{S}_{4}$
with weight $\alpha=\left(21^{3}\right) \quad\left\{\left(s_{3}\right)\left(s_{2}\right)\left(s_{3}\right)\left(s_{1} s_{0}\right),\left(s_{2}\right)\left(s_{3}\right)\left(s_{2}\right)\left(s_{1} s_{0}\right)\right\}$
with weight $\alpha=(122) \quad\left\{\left(s_{3} s_{2}\right)\left(s_{3} s_{1}\right)\left(s_{0}\right)\right\}$

Weak crystal operators and flag Gromov-Witten invariants

- Littlewood-Richardson template
- Variations
- k-Schur functions
- Crystal operators on affine factorizations

Weak crystal operators and flag Gromov-Witten invariants

- Littlewood-Richardson template
- Variations
- k-Schur functions
- Crystal operators on affine factorizations

Schur times k-Schur

k-Schur coefficients in $s_{\mu} s_{\tilde{V}}^{(k)}$ include

- all fusion coefficients
- coefficients in Schur times a Schubert polynomial
- Gromov-Witten invariants for flags $\langle u, v, w\rangle_{d}$ where u has one descent

Schur times k-Schur

k-Schur coefficients in $s_{\mu} s_{\tilde{V}}^{(k)}$ include

- all fusion coefficients
- coefficients in Schur times a Schubert polynomial
- Gromov-Witten invariants for flags $\langle u, v, w\rangle_{d}$ where u has one descent

Can use Giambelli formula:

$$
\begin{aligned}
s_{\mu} s_{\tilde{v}}^{(k)} & =\operatorname{det}\left(h_{\mu_{i}+j-1}\right)_{i j} s_{\tilde{v}}^{(k)} \\
& =\sum_{\sigma} \operatorname{sgn}(\sigma) \underbrace{h_{\alpha_{1}} \cdots h_{\alpha_{\ell}} s_{\tilde{v}}^{(k)}}_{\sum_{\tilde{w}} s_{\tilde{w} \tilde{v}}^{(k)}}
\end{aligned}
$$

where \tilde{w} is an affine factorization of weight α.

Crystal operators on affine factorizations

Recall e_{i} pairing and action:

Crystal operators on affine factorizations

Label cells diagonally

Crystal operators on affine factorizations

Label cells diagonally

$\underbrace{(98750)}_{\text {label of 3's label of 2's }} \underbrace{(643)}$

Crystal operators on affine factorizations

Label cells diagonally

$\underbrace{(98750)}_{\text {label of 3's label of 2's }} \underbrace{(643)}_{\text {label of 3's label of 2's }} \stackrel{\text { pairing }}{(98750)} \underbrace{(643)}$
from left to right: pair $x \in 3$'s with smallest $y \in 2$'s that is bigger than x

Crystal operators on affine factorizations

Label cells diagonally

from left to right: pair $x \in 3$'s with smallest $y \in 2$'s that is bigger than x delete rightmost unpaired $z \in 3$'s and add $z-t$ to 2 's

Definition

The above defines \tilde{e}_{i} and \tilde{f}_{i} on factorizations $\tilde{w}=v^{r} \cdots v^{1} \in\left\langle s_{0}, \ldots, s_{\hat{x}}, \ldots, s_{n-1}\right\rangle$ where v^{i} is cyclically decreasing.

Main Results (with Morse)

Theorem

For partition $\mu \subseteq\left(a^{n-a}\right)$ and affine Grassmannian \tilde{v}, let

$$
s_{\mu} s_{\tilde{v}}^{(k)}=\sum_{\tilde{w}} c_{\mu \tilde{v}}^{\tilde{w}} s_{\tilde{w}}^{(k)}
$$

If $\tilde{w} \tilde{v}^{-1} \in\left\langle s_{0}, \ldots, s_{\hat{x}}, \ldots, s_{n-1}\right\rangle$,
$c_{\mu, \tilde{v}}^{\tilde{n}}=\#$ of affine factorizations of $\tilde{w} \tilde{v}^{-1}$ with weight μ killed by all \tilde{e}_{i}.

Via sign-reversing involution using $\tilde{s}_{i} \tilde{e}_{j}$ following Remmel-Shimozono All terms cancel in Giambelli formula except highest weight elements.

Main Results (with Morse)

Theorem

For partition $\mu \subseteq\left(a^{n-a}\right)$ and affine Grassmannian \tilde{v}, let

$$
s_{\mu} s_{\tilde{v}}^{(k)}=\sum_{\tilde{w}} c_{\mu \tilde{v}}^{\tilde{w}} s_{\tilde{w}}^{(k)}
$$

If $\tilde{w} \tilde{v}^{-1} \in\left\langle s_{0}, \ldots, s_{\hat{x}}, \ldots, s_{n-1}\right\rangle$,
$c_{\mu, \tilde{v}}^{\tilde{n}}=\#$ of affine factorizations of $\tilde{w} \tilde{v}^{-1}$ with weight μ killed by all \tilde{e}_{i}.

Proof

Via sign-reversing involution using $\tilde{s}_{i} \tilde{e}_{i}$ following Remmel-Shimozono. All terms cancel in Giambelli formula except highest weight elements..

Corollaries

Corollary

Schubert polynomial expansion of $s_{\lambda} \mathfrak{S}_{w}$ for any $w \in S_{n}$ and partition λ where $\left|\lambda^{c}\right|<n$.

```
\(\square\)
```



```
\(\square\)
```



```
vr}\mp@subsup{W}{\mp@subsup{R}{r}{}}{}\mp@subsup{W}{}{-1}\in\mp@subsup{S}{\hat{\chi}}{
```

vr}\mp@subsup{W}{\mp@subsup{R}{r}{}}{}\mp@subsup{W}{}{-1}\in\mp@subsup{S}{\hat{\chi}}{
(}\mp@subsup{v}{r}{}\mathrm{ is v}\mathrm{ shifted by r; w}\mp@subsup{R}{r}{}\mathrm{ element obtained from rth k-rectangle)

```
(}\mp@subsup{v}{r}{}\mathrm{ is v}\mathrm{ shifted by r; w}\mp@subsup{R}{r}{}\mathrm{ element obtained from rth k-rectangle)
```


Corollaries

Corollary

Schubert polynomial expansion of $s_{\lambda} \mathfrak{S}_{w}$ for any $w \in S_{n}$ and partition λ where $\left|\lambda^{c}\right|<n$.

Corollary

Fusion rules $N_{\lambda \mu}^{\nu}$ for any λ, μ and ν such that

- ν / μ has a cut-point
- or λ satisfies $\left|\lambda^{c}\right|<n$.

Corollaries

Corollary

Schubert polynomial expansion of $s_{\lambda} \mathfrak{S}_{w}$ for any $w \in S_{n}$ and partition λ where $\left|\lambda^{c}\right|<n$.

Corollary

Fusion rules $N_{\lambda \mu}^{\nu}$ for any λ, μ and ν such that

- ν / μ has a cut-point
- or λ satisfies $\left|\lambda^{c}\right|<n$.

Corollary

Gromov-Witten invariants for flags $\langle u, v, w\rangle_{d}$ when u has one descent and $v_{r} w_{R_{r}} w^{-1} \in S_{\hat{x}}$
(v_{r} is v shifted by r; $w_{R_{r}}$ element obtained from r th k-rectangle)

Related work

Quantum cohomology of Grassmannian

- Buch, Kresch, Tamvakis 2003
- Knutson, Tao puzzles 2003
- Coskun recursive algorithm 2009
- Buch et al. forthcoming

Quantum Flag

- Fomin, Gelfand, Postnikov quantum Monk 1997
- Postnikov quantum Pieri 1999
- Berg, Saliola, Serrano k-Schur indexed by rectangle minus a box, quantum Monk 2012

Fusion

- Tudose two row and two column case 2000
- Korff, Stroppel plactic algebra 2010

Related work

Quantum cohomology of Grassmannian

- Buch, Kresch, Tamvakis 2003
- Knutson, Tao puzzles 2003
- Coskun recursive algorithm 2009
- Buch et al. forthcoming

Quantum Flag

- Fomin, Gelfand, Postnikov quantum Monk 1997
- Postnikov quantum Pieri 1999
- Berg, Saliola, Serrano k-Schur indexed by rectangle minus a box, quantum Monk 2012

Fusion

- Tudose two row and two column case 2000
- Korff, Stronnel plactic algebra 2010

Related work

Quantum cohomology of Grassmannian

- Buch, Kresch, Tamvakis 2003
- Knutson, Tao puzzles 2003
- Coskun recursive algorithm 2009
- Buch et al. forthcoming

Quantum Flag

- Fomin, Gelfand, Postnikov quantum Monk 1997
- Postnikov quantum Pieri 1999
- Berg, Saliola, Serrano k-Schur indexed by rectangle minus a box, quantum Monk 2012

Fusion

- Tudose two row and two column case 2000
- Korff, Stroppel plactic algebra 2010

Related work (continued)

Schur times Schubert

- Lenart growth diagrams, plactic approach 2009
- Benedetti, Bergeron relation to dual k-Schur coefficients 2012
- Meszaros, Panova, Postnikov Fomin-Kirillov algebra, hook and two-row case in quantum case 2012

Future Work

- Gromov-Witten invariants

Closer study of crystal structure on affine factorizations and crystal operators on dual k-tableaux

- t-analogue of k-Schur functions and relation to energy on KR crystals (charge plus offset)
- Schur expansion for LLT polynomials

Future Work

- Gromov-Witten invariants

Closer study of crystal structure on affine factorizations and crystal operators on dual k-tableaux

- t-analogue of k-Schur functions and relation to energy on KR crystals (charge plus offset)
- Schur expansion for LLT polynomials

Future Work

- Gromov-Witten invariants

Closer study of crystal structure on affine factorizations and crystal operators on dual k-tableaux

- t-analogue of k-Schur functions and relation to energy on KR crystals (charge plus offset)
- Schur expansion for LLT polynomials

Future Work

- Gromov-Witten invariants

Closer study of crystal structure on affine factorizations and crystal operators on dual k-tableaux

- t-analogue of k-Schur functions and relation to energy on KR crystals (charge plus offset)
- Schur expansion for LLT polynomials

Thank you!

