Specializations of nonsymmetric Macdonald polynomials at infinity

Daniel Orr

Virginia Polytechnic Institute and State University

Whittaker Functions: Number Theory, Geometry, and Physics Banff International Research Station October 14, 2013

Notation

 $R \subset \mathbb{R}^{n}$ $\alpha_{i} \in R$ $\alpha_{i}^{\vee} \in R^{\vee}$ s_{i} $W = \langle s_{i} \rangle$ $\ell(w)$ w_{0} $Q = \bigoplus \mathbb{Z}\alpha_{i}$ P reduced irreducible root system simple roots simple coroots simple reflections Weyl group length function long element root lattice weight lattice

Notation

 $R \subset \mathbb{R}^{n}$ $\alpha_{i} \in R$ $\alpha_{i}^{\vee} \in R^{\vee}$ s_{i} $W = \langle s_{i} \rangle$ $\ell(w)$ w_{0} $Q = \bigoplus \mathbb{Z}\alpha_{i}$ P reduced irreducible root system simple roots simple coroots simple reflections Weyl group length function long element root lattice weight lattice

Untwisted affinization of R^{\vee} (results hold more generally)

 $\begin{aligned} R^{\vee} + \mathbb{Z}\delta \\ \alpha_0^{\vee} &= -\theta^{\vee} + \delta \\ W_{\text{aff}} &= Q \rtimes W \\ W_{\text{ext}} &= P \rtimes W \\ \Pi &= W_{\text{ext}}/W_{\text{aff}} \cong P/Q \\ w &=: t_{\text{wt}(w)} \text{dir}(w) \end{aligned}$

affine coroots $\theta^{\vee} = \text{highest coroot}$ affine Weyl group extended affine Weyl group length zero elements where $w \in W_{\text{ext}}$, $\operatorname{wt}(w) \in P$, $\operatorname{dir}(w) \in W$

Nonsymmetric Macdonald polynomials

The nonsymmetric Macdonald polynomials $E_{\lambda}(X;q,v)$ lie in the group algebra $\mathbb{Q}(q,v)[P] = \mathbb{Q}(q,v)[X^{\lambda} : \lambda \in P]$; they form a basis.

They are variants of the symmetric Macdonald polynomials $P_{\lambda}(X;q,v)$, which form a basis of $\mathbb{Q}(q,v)[P]^W$ and generalize the Weyl characters $(q = v^2)$, Hall-Littlewood polynomials (q = 0), Jack polynomials $(v^2 = q^k)$, and other important families of symmetric polynomials.

The E_{λ} can be constructed (and are most naturally defined) using double affine Hecke algebras (Cherednik).

Nonsymmetric Macdonald polynomials

The nonsymmetric Macdonald polynomials $E_{\lambda}(X;q,v)$ lie in the group algebra $\mathbb{Q}(q,v)[P] = \mathbb{Q}(q,v)[X^{\lambda} : \lambda \in P]$; they form a basis.

They are variants of the symmetric Macdonald polynomials $P_{\lambda}(X;q,v)$, which form a basis of $\mathbb{Q}(q,v)[P]^W$ and generalize the Weyl characters $(q = v^2)$, Hall-Littlewood polynomials (q = 0), Jack polynomials $(v^2 = q^k)$, and other important families of symmetric polynomials.

The E_{λ} can be constructed (and are most naturally defined) using double affine Hecke algebras (Cherednik).

Demazure-Lusztig operators

$$T_i = vs_i + \frac{v - v^{-1}}{X^{\alpha_i} - 1}(s_i - 1) \qquad \text{where} \qquad w(X^{\lambda}) = X^{w(\lambda)}$$

These operators are an important ingredient in the construction of the E_{λ} . $T_w := T_{i_1} \cdots T_{i_{\ell}}$ is independent of the reduced expression $w = s_{i_1} \cdots s_{i_{\ell}}$.

$$\begin{split} E_{(-1,0)}(X;q,v) &= X^{(-1,0)} + \frac{(1-v)(1+v)}{1-qv^2} \left(X^{(0,1)} + X^{(0,-1)} \right) \\ &+ \frac{(1-v)(1+v)(1-qv^6)}{(1-qv^2)(1-qv^3)(1+qv^3)} \; X^{(1,0)} \\ &+ \frac{(1-v)(1+v)(1+qv^2)(1-qv^4)}{(1-qv^2)(1-qv^3)(1+qv^3)} \end{split}$$

Remarks

- Sage calculates $E_{\lambda}(X;q,v)$ for any (affine) type.
- $E_{\lambda}(X;q,v)$ is well-defined at $q^{\pm 1} = 0$ or $v^{\pm 1} = 0$.
- Let m_{λ} denote the minimal coset representative of t_{λ} for W_{ext}/W . Then X^{μ} appears in $E_{\lambda}(X;q,v)$ iff $m_{\mu} \leq m_{\lambda}$ in Bruhat order.

Some specializations of $E_{\lambda}(X;q,v)$

q=0 p-adic Iwahori-Spherical functions (lon)	$q=\infty$ p -adic Iwahori-Whittaker functions (Brubaker-Bump-Licata)
v=0 level-one affine Demazure characters (lon)	$v = \infty$???

Alcove paths

Let $u, w \in W_{\text{ext}}$ and fix a reduced expression $w = \pi s_{i_1} \cdots s_{i_\ell}$.

Definition

An *alcove path* of type (i_1, \ldots, i_ℓ) starting at u is a sequence of elements $u_0, u_1, \ldots, u_\ell \in W_{\text{ext}}$ satisfying

 $u_0 = u\pi$ and $u_k \in \{u_{k-1}, u_{k-1}s_{i_k}\}$ for $k \ge 1$.

Alcove paths

Let $u, w \in W_{\text{ext}}$ and fix a reduced expression $w = \pi s_{i_1} \cdots s_{i_\ell}$.

Definition

An *alcove path* of type (i_1, \ldots, i_ℓ) starting at u is a sequence of elements $u_0, u_1, \ldots, u_\ell \in W_{\text{ext}}$ satisfying

$$u_0 = u\pi$$
 and $u_k \in \{u_{k-1}, u_{k-1}s_{i_k}\}$ for $k \ge 1$.

By abuse of notation, we write $\mathcal{B}(u,w)$ for the set of alcove paths of type (i_1,\ldots,i_ℓ) starting at u.

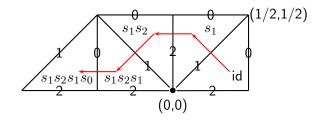
Say that p has a \pm -fold at step k if $u_k = u_{k-1}$ and

$$u_{k-1}(\alpha_{i_k}^{\vee}) \in \mathbb{Z}\delta \pm R_+^{\vee}.$$

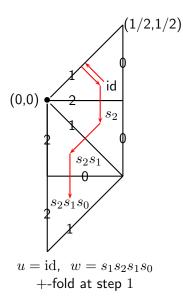
Visualizing alcove paths

Alcoves are connected components of $\mathbb{R}^n \setminus \bigcup_{\alpha^{\vee}+m\delta} \{x : \langle \alpha^{\vee}, x \rangle + m = 0\}.$ W_{aff} acts simply-transitively on the set of alcoves.

Examples: Alcove paths for $R = B_2$. $\alpha_1 = (1, -1)$, $\alpha_2 = (0, 1)$



 $u = \mathrm{id}, \ w = s_1 s_2 s_1 s_0$ no folds



Ram-Yip formula

Recall that m_{λ} is the minimal coset representative of t_{λ} for W_{ext}/W .

Define $w_{\lambda} \in W$ by $t_{\lambda} = m_{\lambda}w_{\lambda}$. Let $\operatorname{wt}(p) = \operatorname{wt}(u_{\ell})$, $\operatorname{dir}(p) = \operatorname{dir}(u_{\ell})$. Theorem (Ram-Yip) $T_{u}E_{\lambda}(X;q,v) = v^{-\ell(w_{\lambda})}\sum_{p \in \mathcal{B}(u,m_{\lambda})} X^{\operatorname{wt}(p)}v^{\ell(\operatorname{dir}(p))}f^{+}(p)f^{-}(p)$

Here $f^{\pm}(p)$ are explicit rational functions of q, v built from the \pm -folds. They are products of terms of the form (where $a, b \ge 0$)

$$\frac{v^{-1}-v}{1-q^av^b} \qquad \text{for} + \\$$

$$\frac{(v^{-1}-v)q^av^b}{1-q^av^b} \quad \text{for } -$$

Specialization at $q = \infty$

Let $\mathcal{B}^-(u,w)$ be the set of alcove paths with all folds negative.

Let |p| denote the number of folds in an alcove path p.

Proposition (O.-Shimozono)

$$E_{\lambda}(X;\infty,v^{-1}) = v^{\ell(w_0) - 2\ell(w_{\lambda})} \sum_{p \in \mathcal{B}^{-}(\mathrm{id},m_{\lambda})} X^{\mathrm{wt}(p)} v^{\ell(w_0\mathrm{dir}(p))} (v^{-1} - v)^{|p|}$$

Schwer proved a similar result at q = 0 in terms of positively-folded alcove paths; his result inspired the Ram-Yip formula.

Specialization at $q = \infty$

Let $\mathcal{B}^-(u,w)$ be the set of alcove paths with all folds negative.

Let |p| denote the number of folds in an alcove path p.

Proposition (O.-Shimozono)

$$E_{\lambda}(X; \infty, v^{-1}) = v^{\ell(w_0) - 2\ell(w_{\lambda})} \sum_{p \in \mathcal{B}^{-}(\mathrm{id}, m_{\lambda})} X^{\mathrm{wt}(p)} v^{\ell(w_0 \mathrm{dir}(p))} (v^{-1} - v)^{|p|}$$

Schwer proved a similar result at q = 0 in terms of positively-folded alcove paths; his result inspired the Ram-Yip formula.

Proof. Use the formula

$$E_{\lambda}(X^{-1}; q^{-1}, v^{-1}) = v^{\ell(w_0) - 2\ell(w_{\lambda})} T_{w_0} E_{-w_0(\lambda)}(X; q, v)$$

and take $q \rightarrow 0$ in the Ram-Yip formula for the right-hand side.

Quantum Bruhat graph

Our formula for at $v = \infty$ requires the *quantum Bruhat graph*, which has vertices $w \in W$ and directed labeled edges $w \xrightarrow{\alpha} ws_{\alpha}$ for $\alpha \in R_+$ and

$$\ell(ws_{\alpha}) = \ell(w) + 1$$
 (Bruhat edge)
or $\ell(ws_{\alpha}) = \ell(w) - \langle \alpha^{\vee}, 2\rho \rangle + 1$ (quantum edge)

Quantum Bruhat graph

Our formula for at $v = \infty$ requires the *quantum Bruhat graph*, which has vertices $w \in W$ and directed labeled edges $w \xrightarrow{\alpha} ws_{\alpha}$ for $\alpha \in R_+$ and

$$\ell(ws_{\alpha}) = \ell(w) + 1 \qquad (\text{Bruhat edge})$$

or $\ell(ws_{\alpha}) = \ell(w) - \langle \alpha^{\vee}, 2\rho \rangle + 1 \qquad (\text{quantum edge})$

We also need a projection of $p \in \mathcal{B}(u, w)$ to a sequence in $W^{|p|}$, defined by successively deleting simple reflections at fold positions from left to right and taking dir.

Example. Take u = id and $w = t_{(-1,0)} = s_1 s_2 s_1 s_0$ for $R = B_2$. Let p have folds at steps 1 and 3. Then the projection of p is (y_0, y_1, y_2) where

$$uw = s_1 s_2 s_1 s_0 \qquad y_0 = \operatorname{dir}(s_1 s_2 s_1 s_0) = \operatorname{id} \\ s_2 s_1 s_0 \qquad y_1 = \operatorname{dir}(s_2 s_1 s_0) = s_1 \\ s_2 \quad s_0 \qquad y_2 = \operatorname{dir}(s_2 s_0) = s_2 s_1 s_2 s_1$$

Specialization at $v = \infty$

Let $\overleftarrow{\mathcal{QB}}(u,w)$ be the subset of $\mathcal{B}(u,w)$ made up of alcove paths that project to *reverse* paths in the quantum Bruhat graph.

Theorem (O.-Shimozono)

$$E_{\lambda}(X;q^{-1},\infty) = \sum_{p \in \overleftarrow{\mathbb{QB}}(\mathrm{id},m_{\lambda})} X^{\mathrm{wt}(p)} q^{n(p)} \quad \text{for explicit } n(p) \in \mathbb{Z}_{\geq 0}.$$

Remarks

- An analogous result at v = 0 due to Lenart was our starting point.
- Proof uses the " T_{w_0} -formula" but is more subtle than at $q = \infty$.
- Corollary: $E_{\lambda}(X;q^{-1},\infty)$ has coefficients in $\mathbb{Z}_{\geq 0}[q]$.
- Cherednik and E. Feigin conjecture a relation to the PBW filtration of level-one affine Demazure modules, for antidominant λ.

 $\lambda = (-1, 0) \qquad m_{\lambda} = t_{\lambda} = s_1 s_2 s_1 s_0$

Let $p \in \mathcal{B}(\mathrm{id}, s_1 s_2 s_1 s_0)$ with folds at steps 1 and 3.

 $\lambda = (-1, 0) \qquad m_{\lambda} = t_{\lambda} = s_1 s_2 s_1 s_0$

Let $p \in \mathcal{B}(\mathrm{id}, s_1 s_2 s_1 s_0)$ with folds at steps 1 and 3.

Then:

•
$$\operatorname{wt}(p) = \operatorname{wt}(s_2 s_0) = (1, 0)$$

 $\bullet \ p$ projects to the following reverse path in the quantum Bruhat graph

$$\mathrm{id} \xleftarrow{\alpha_1} s_1 \xleftarrow{\alpha_1 + 2\alpha_2} s_2 s_1 s_2 s_1$$

with both edges quantum.

 $\lambda = (-1,0) \qquad m_{\lambda} = t_{\lambda} = s_1 s_2 s_1 s_0$

Let $p \in \mathcal{B}(\mathrm{id}, s_1 s_2 s_1 s_0)$ with folds at steps 1 and 3.

Then:

•
$$\operatorname{wt}(p) = \operatorname{wt}(s_2 s_0) = (1, 0)$$

• p projects to the following reverse path in the quantum Bruhat graph

$$\mathrm{id} \xleftarrow{\alpha_1} s_1 \xleftarrow{\alpha_1 + 2\alpha_2} s_2 s_1 s_2 s_1$$

with both edges quantum.

 $E_{(-1,0)}(X;q^{-1},\infty) = X^{(-1,0)} + q^2 X^{(1,0)} + q \left(X^{(0,-1)} + X^{(0,1)} + X^{(0,0)} \right)$