Specializations of nonsymmetric Macdonald polynomials at infinity

Daniel Orr
Virginia Polytechnic Institute and State University
Whittaker Functions: Number Theory, Geometry, and Physics
Banff International Research Station
October 14, 2013

Notation

$R \subset \mathbb{R}^{n}$
$\alpha_{i} \in R$
$\alpha_{i}^{\vee} \in R^{\vee}$
s_{i}
$W=\left\langle s_{i}\right\rangle$
$\ell(w)$
w_{0}
$Q=\bigoplus \mathbb{Z} \alpha_{i}$
P
reduced irreducible root system
simple roots
simple coroots
simple reflections
Weyl group
length function
long element
root lattice
weight lattice

Notation

$$
\begin{aligned}
& R \subset \mathbb{R}^{n} \\
& \alpha_{i} \in R \\
& \alpha_{i}^{\vee} \in R^{\vee} \\
& s_{i} \\
& W=\left\langle s_{i}\right\rangle \\
& \ell(w) \\
& w_{0} \\
& Q=\bigoplus \mathbb{Z} \alpha_{i} \\
& P
\end{aligned}
$$

Untwisted affinization of R^{\vee} (results hold more generally)
$\alpha_{0}^{\vee}=-\theta^{\vee}+\delta$
$W_{\mathrm{aff}}=Q \rtimes W$
$W_{\text {ext }}=P \rtimes W$
$\Pi=W_{\text {ext }} / W_{\text {aff }} \cong P / Q$
$w=: t_{\mathrm{wt}(w)} \operatorname{dir}(w)$
reduced irreducible root system
simple roots
simple coroots
simple reflections
Weyl group
length function
long element
root lattice
weight lattice

Nonsymmetric Macdonald polynomials

The nonsymmetric Macdonald polynomials $E_{\lambda}(X ; q, v)$ lie in the group algebra $\mathbb{Q}(q, v)[P]=\mathbb{Q}(q, v)\left[X^{\lambda}: \lambda \in P\right]$; they form a basis.

They are variants of the symmetric Macdonald polynomials $P_{\lambda}(X ; q, v)$, which form a basis of $\mathbb{Q}(q, v)[P]^{W}$ and generalize the Weyl characters ($q=v^{2}$), Hall-Littlewood polynomials $(q=0$), Jack polynomials ($v^{2}=q^{k}$), and other important families of symmetric polynomials.

The E_{λ} can be constructed (and are most naturally defined) using double affine Hecke algebras (Cherednik).

Nonsymmetric Macdonald polynomials

The nonsymmetric Macdonald polynomials $E_{\lambda}(X ; q, v)$ lie in the group algebra $\mathbb{Q}(q, v)[P]=\mathbb{Q}(q, v)\left[X^{\lambda}: \lambda \in P\right]$; they form a basis.
They are variants of the symmetric Macdonald polynomials $P_{\lambda}(X ; q, v)$, which form a basis of $\mathbb{Q}(q, v)[P]^{W}$ and generalize the Weyl characters ($q=v^{2}$), Hall-Littlewood polynomials $(q=0)$, Jack polynomials ($v^{2}=q^{k}$), and other important families of symmetric polynomials.

The E_{λ} can be constructed (and are most naturally defined) using double affine Hecke algebras (Cherednik).

Demazure-Lusztig operators

$$
T_{i}=v s_{i}+\frac{v-v^{-1}}{X^{\alpha_{i}}-1}\left(s_{i}-1\right) \quad \text { where } \quad w\left(X^{\lambda}\right)=X^{w(\lambda)}
$$

These operators are an important ingredient in the construction of the E_{λ}. $T_{w}:=T_{i_{1}} \cdots T_{i_{\ell}}$ is independent of the reduced expression $w=s_{i_{1}} \cdots s_{i_{\ell}}$.

Example for $R=B_{2}$

$$
\begin{aligned}
E_{(-1,0)}(X ; q, v)=X^{(-1,0)} & +\frac{(1-v)(1+v)}{1-q v^{2}}\left(X^{(0,1)}+X^{(0,-1)}\right) \\
& +\frac{(1-v)(1+v)\left(1-q v^{6}\right)}{\left(1-q v^{2}\right)\left(1-q v^{3}\right)\left(1+q v^{3}\right)} X^{(1,0)} \\
& +\frac{(1-v)(1+v)\left(1+q v^{2}\right)\left(1-q v^{4}\right)}{\left(1-q v^{2}\right)\left(1-q v^{3}\right)\left(1+q v^{3}\right)}
\end{aligned}
$$

Remarks

- Sage calculates $E_{\lambda}(X ; q, v)$ for any (affine) type.
- $E_{\lambda}(X ; q, v)$ is well-defined at $q^{ \pm 1}=0$ or $v^{ \pm 1}=0$.
- Let m_{λ} denote the minimal coset representative of t_{λ} for $W_{\text {ext }} / W$. Then X^{μ} appears in $E_{\lambda}(X ; q, v)$ iff $m_{\mu} \leq m_{\lambda}$ in Bruhat order.

Some specializations of $E_{\lambda}(X ; q, v)$

$q=0$ p-adic Iwahori-Spherical functions (Ion)	$q=\infty$ p-adic Iwahori-Whittaker functions (Brubaker-Bump-Licata)
$v=0$ level-one affine Demazure characters (lon)	$v=\infty$
$? ? ?$	

Alcove paths

Let $u, w \in W_{\text {ext }}$ and fix a reduced expression $w=\pi s_{i_{1}} \cdots s_{i_{\ell}}$.

Definition

An alcove path of type $\left(i_{1}, \ldots, i_{\ell}\right)$ starting at u is a sequence of elements $u_{0}, u_{1}, \ldots, u_{\ell} \in W_{\text {ext }}$ satisfying

$$
u_{0}=u \pi \quad \text { and } \quad u_{k} \in\left\{u_{k-1}, u_{k-1} s_{i_{k}}\right\} \text { for } k \geq 1
$$

Alcove paths

Let $u, w \in W_{\text {ext }}$ and fix a reduced expression $w=\pi s_{i_{1}} \cdots s_{i_{\ell}}$.

Definition

An alcove path of type $\left(i_{1}, \ldots, i_{\ell}\right)$ starting at u is a sequence of elements $u_{0}, u_{1}, \ldots, u_{\ell} \in W_{\text {ext }}$ satisfying

$$
u_{0}=u \pi \quad \text { and } \quad u_{k} \in\left\{u_{k-1}, u_{k-1} s_{i_{k}}\right\} \text { for } k \geq 1
$$

By abuse of notation, we write $\mathcal{B}(u, w)$ for the set of alcove paths of type $\left(i_{1}, \ldots, i_{\ell}\right)$ starting at u.

Say that p has a \pm-fold at step k if $u_{k}=u_{k-1}$ and

$$
u_{k-1}\left(\alpha_{i_{k}}^{\vee}\right) \in \mathbb{Z} \delta \pm R_{+}^{\vee}
$$

Visualizing alcove paths

Alcoves are connected components of $\mathbb{R}^{n} \backslash \bigcup_{\alpha^{\vee}+m \delta}\left\{x:\left\langle\alpha^{\vee}, x\right\rangle+m=0\right\}$. $W_{\text {aff }}$ acts simply-transitively on the set of alcoves.

Examples: Alcove paths for $R=B_{2} . \quad \alpha_{1}=(1,-1), \alpha_{2}=(0,1)$

Ram-Yip formula

Recall that m_{λ} is the minimal coset representative of t_{λ} for $W_{\text {ext }} / W$.
Define $w_{\lambda} \in W$ by $t_{\lambda}=m_{\lambda} w_{\lambda}$.
Let $\mathrm{wt}(p)=\mathrm{wt}\left(u_{\ell}\right), \operatorname{dir}(p)=\operatorname{dir}\left(u_{\ell}\right)$.
Theorem (Ram-Yip)

$$
T_{u} E_{\lambda}(X ; q, v)=v^{-\ell\left(w_{\lambda}\right)} \sum_{p \in \mathcal{B}\left(u, m_{\lambda}\right)} X^{\mathrm{wt}(p)} v^{\ell(\operatorname{dir}(p))} f^{+}(p) f^{-}(p)
$$

Here $f^{ \pm}(p)$ are explicit rational functions of q, v built from the \pm-folds.
They are products of terms of the form (where $a, b \geq 0$)

$$
\begin{array}{cc}
\frac{v^{-1}-v}{1-q^{a} v^{b}} & \text { for }+ \\
\frac{\left(v^{-1}-v\right) q^{a} v^{b}}{1-q^{a} v^{b}} & \text { for }-
\end{array}
$$

Specialization at $q=\infty$

Let $\mathcal{B}^{-}(u, w)$ be the set of alcove paths with all folds negative.
Let $|p|$ denote the number of folds in an alcove path p.

Proposition (O.-Shimozono)

$$
E_{\lambda}\left(X ; \infty, v^{-1}\right)=v^{\ell\left(w_{0}\right)-2 \ell\left(w_{\lambda}\right)} \sum_{p \in \mathcal{B}^{-}\left(\mathrm{id}, m_{\lambda}\right)} X^{\mathrm{wt}(p)} v^{\ell\left(w_{0} \operatorname{dir}(p)\right)}\left(v^{-1}-v\right)^{|p|}
$$

Schwer proved a similar result at $q=0$ in terms of positively-folded alcove paths; his result inspired the Ram-Yip formula.

Specialization at $q=\infty$

Let $\mathcal{B}^{-}(u, w)$ be the set of alcove paths with all folds negative.
Let $|p|$ denote the number of folds in an alcove path p.

Proposition (O.-Shimozono)

$$
E_{\lambda}\left(X ; \infty, v^{-1}\right)=v^{\ell\left(w_{0}\right)-2 \ell\left(w_{\lambda}\right)} \sum_{p \in \mathcal{B}^{-}\left(\mathrm{id}, m_{\lambda}\right)} X^{\mathrm{wt}(p)} v^{\ell\left(w_{0} \operatorname{dir}(p)\right)}\left(v^{-1}-v\right)^{|p|}
$$

Schwer proved a similar result at $q=0$ in terms of positively-folded alcove paths; his result inspired the Ram-Yip formula.

Proof. Use the formula

$$
E_{\lambda}\left(X^{-1} ; q^{-1}, v^{-1}\right)=v^{\ell\left(w_{0}\right)-2 \ell\left(w_{\lambda}\right)} T_{w_{0}} E_{-w_{0}(\lambda)}(X ; q, v)
$$

and take $q \rightarrow 0$ in the Ram-Yip formula for the right-hand side.

Quantum Bruhat graph

Our formula for at $v=\infty$ requires the quantum Bruhat graph, which has vertices $w \in W$ and directed labeled edges $w \xrightarrow{\alpha} w s_{\alpha}$ for $\alpha \in R_{+}$and

$$
\begin{array}{rlrl}
\ell\left(w s_{\alpha}\right) & =\ell(w)+1 & & \text { (Bruhat edge) } \\
\text { or } & \ell\left(w s_{\alpha}\right) & =\ell(w)-\left\langle\alpha^{\vee}, 2 \rho\right\rangle+1 & \\
\text { (quantum edge) }
\end{array}
$$

Quantum Bruhat graph

Our formula for at $v=\infty$ requires the quantum Bruhat graph, which has vertices $w \in W$ and directed labeled edges $w \xrightarrow{\alpha} w s_{\alpha}$ for $\alpha \in R_{+}$and

$$
\begin{array}{rlrl}
\ell\left(w s_{\alpha}\right) & =\ell(w)+1 & & \text { (Bruhat edge) } \\
\text { or } & \ell\left(w s_{\alpha}\right) & =\ell(w)-\left\langle\alpha^{\vee}, 2 \rho\right\rangle+1 & \\
\text { (quantum edge) }
\end{array}
$$

We also need a projection of $p \in \mathcal{B}(u, w)$ to a sequence in $W^{|p|}$, defined by successively deleting simple reflections at fold positions from left to right and taking dir.

Example. Take $u=\mathrm{id}$ and $w=t_{(-1,0)}=s_{1} s_{2} s_{1} s_{0}$ for $R=B_{2}$. Let p have folds at steps 1 and 3 . Then the projection of p is $\left(y_{0}, y_{1}, y_{2}\right)$ where

$$
\begin{array}{r}
u w=s_{1} s_{2} s_{1} s_{0} \\
s_{2} s_{1} s_{0} \\
s_{2} \quad s_{0}
\end{array}
$$

$$
\begin{aligned}
& y_{0}=\operatorname{dir}\left(s_{1} s_{2} s_{1} s_{0}\right)=\mathrm{id} \\
& y_{1}=\operatorname{dir}\left(s_{2} s_{1} s_{0}\right)=s_{1} \\
& y_{2}=\operatorname{dir}\left(s_{2} s_{0}\right)=s_{2} s_{1} s_{2} s_{1}
\end{aligned}
$$

Specialization at $v=\infty$

Let $\overleftarrow{\mathcal{Q B}}(u, w)$ be the subset of $\mathcal{B}(u, w)$ made up of alcove paths that project to reverse paths in the quantum Bruhat graph.

Theorem (O.-Shimozono)
$E_{\lambda}\left(X ; q^{-1}, \infty\right)=\sum_{p \in \overleftarrow{\mathcal{Q B}}\left(\mathrm{id}, m_{\lambda}\right)} X^{\mathrm{wt}(p)} q^{n(p)} \quad$ for explicit $n(p) \in \mathbb{Z}_{\geq 0}$

Remarks

- An analogous result at $v=0$ due to Lenart was our starting point.
- Proof uses the " $T_{w_{0}}$-formula" but is more subtle than at $q=\infty$.
- Corollary: $E_{\lambda}\left(X ; q^{-1}, \infty\right)$ has coefficients in $\mathbb{Z}_{\geq 0}[q]$.
- Cherednik and E. Feigin conjecture a relation to the PBW filtration of level-one affine Demazure modules, for antidominant λ.

Example for $R=B_{2}$

$\lambda=(-1,0) \quad m_{\lambda}=t_{\lambda}=s_{1} s_{2} s_{1} s_{0}$
Let $p \in \mathcal{B}\left(\mathrm{id}, s_{1} s_{2} s_{1} s_{0}\right)$ with folds at steps 1 and 3 .

Example for $R=B_{2}$

$\lambda=(-1,0) \quad m_{\lambda}=t_{\lambda}=s_{1} s_{2} s_{1} s_{0}$
Let $p \in \mathcal{B}\left(\mathrm{id}, s_{1} s_{2} s_{1} s_{0}\right)$ with folds at steps 1 and 3 .
Then:

- $\mathrm{wt}(p)=\mathrm{wt}\left(s_{2} s_{0}\right)=(1,0)$
- p projects to the following reverse path in the quantum Bruhat graph

$$
\mathrm{id} \stackrel{\alpha_{1}}{\longleftarrow} s_{1} \stackrel{\alpha_{1}+2 \alpha_{2}}{\Leftarrow} s_{2} s_{1} s_{2} s_{1}
$$

with both edges quantum.

Example for $R=B_{2}$

$\lambda=(-1,0) \quad m_{\lambda}=t_{\lambda}=s_{1} s_{2} s_{1} s_{0}$
Let $p \in \mathcal{B}\left(\mathrm{id}, s_{1} s_{2} s_{1} s_{0}\right)$ with folds at steps 1 and 3 .
Then:

- $\mathrm{wt}(p)=\mathrm{wt}\left(s_{2} s_{0}\right)=(1,0)$
- p projects to the following reverse path in the quantum Bruhat graph

$$
\mathrm{id} \stackrel{\alpha_{1}}{\longleftarrow} s_{1} \stackrel{\alpha_{1}+2 \alpha_{2}}{\rightleftarrows} s_{2} s_{1} s_{2} s_{1}
$$

with both edges quantum.

$$
E_{(-1,0)}\left(X ; q^{-1}, \infty\right)=X^{(-1,0)}+q^{2} X^{(1,0)}+q\left(X^{(0,-1)}+X^{(0,1)}+X^{(0,0)}\right)
$$

