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Notation
R ⊂ Rn reduced irreducible root system
αi ∈ R simple roots
α∨i ∈ R∨ simple coroots
si simple reflections
W = 〈si〉 Weyl group
ℓ(w) length function
w0 long element
Q =

⊕

Zαi root lattice
P weight lattice
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Notation
R ⊂ Rn reduced irreducible root system
αi ∈ R simple roots
α∨i ∈ R∨ simple coroots
si simple reflections
W = 〈si〉 Weyl group
ℓ(w) length function
w0 long element
Q =

⊕

Zαi root lattice
P weight lattice

Untwisted affinization of R∨ (results hold more generally)
R∨ + Zδ affine coroots
α∨0 = −θ∨ + δ θ∨ = highest coroot
Waff = Q⋊W affine Weyl group
Wext = P ⋊W extended affine Weyl group
Π = Wext/Waff

∼= P/Q length zero elements
w =: twt(w)dir(w) where w ∈Wext, wt(w) ∈ P , dir(w) ∈W
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Nonsymmetric Macdonald polynomials

The nonsymmetric Macdonald polynomials Eλ(X; q, v) lie in the group
algebra Q(q, v)[P ] = Q(q, v)[Xλ : λ ∈ P ]; they form a basis.

They are variants of the symmetric Macdonald polynomials Pλ(X; q, v),
which form a basis of Q(q, v)[P ]W and generalize the Weyl characters
(q = v2), Hall-Littlewood polynomials (q = 0), Jack polynomials
(v2 = qk), and other important families of symmetric polynomials.

The Eλ can be constructed (and are most naturally defined) using double
affine Hecke algebras (Cherednik).
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Nonsymmetric Macdonald polynomials

The nonsymmetric Macdonald polynomials Eλ(X; q, v) lie in the group
algebra Q(q, v)[P ] = Q(q, v)[Xλ : λ ∈ P ]; they form a basis.

They are variants of the symmetric Macdonald polynomials Pλ(X; q, v),
which form a basis of Q(q, v)[P ]W and generalize the Weyl characters
(q = v2), Hall-Littlewood polynomials (q = 0), Jack polynomials
(v2 = qk), and other important families of symmetric polynomials.

The Eλ can be constructed (and are most naturally defined) using double
affine Hecke algebras (Cherednik).

Demazure-Lusztig operators

Ti = vsi +
v − v−1

Xαi − 1
(si − 1) where w(Xλ) = Xw(λ)

These operators are an important ingredient in the construction of the Eλ.

Tw := Ti1 · · ·Tiℓ is independent of the reduced expression w = si1 · · · siℓ.
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Example for R = B2

E(−1,0)(X; q, v) = X(−1,0) +
(1− v)(1 + v)

1− qv2

(

X(0,1) +X(0,−1)
)

+
(1− v)(1 + v)(1 − qv6)

(1− qv2)(1 − qv3)(1 + qv3)
X(1,0)

+
(1− v)(1 + v)(1 + qv2)(1 − qv4)

(1− qv2)(1− qv3)(1 + qv3)

Remarks

Sage calculates Eλ(X; q, v) for any (affine) type.

Eλ(X; q, v) is well-defined at q±1 = 0 or v±1 = 0.

Let mλ denote the minimal coset representative of tλ for Wext/W .
Then Xµ appears in Eλ(X; q, v) iff mµ ≤ mλ in Bruhat order.
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Some specializations of Eλ(X; q, v)

q = 0
p-adic Iwahori-Spherical

functions
(Ion)

q =∞
p-adic Iwahori-Whittaker

functions
(Brubaker-Bump-Licata)

v = 0
level-one affine Demazure

characters
(Ion)

v =∞

???
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Alcove paths

Let u,w ∈Wext and fix a reduced expression w = πsi1 · · · siℓ .

Definition

An alcove path of type (i1, . . . , iℓ) starting at u is a sequence of elements
u0, u1, . . . , uℓ ∈Wext satisfying

u0 = uπ and uk ∈ {uk−1, uk−1sik} for k ≥ 1.
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Alcove paths

Let u,w ∈Wext and fix a reduced expression w = πsi1 · · · siℓ .

Definition

An alcove path of type (i1, . . . , iℓ) starting at u is a sequence of elements
u0, u1, . . . , uℓ ∈Wext satisfying

u0 = uπ and uk ∈ {uk−1, uk−1sik} for k ≥ 1.

By abuse of notation, we write B(u,w) for the set of alcove paths of type
(i1, . . . , iℓ) starting at u.

Say that p has a ±-fold at step k if uk = uk−1 and

uk−1(α
∨
ik
) ∈ Zδ ±R∨+.
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Visualizing alcove paths

Alcoves are connected components of Rn \
⋃

α∨+mδ{x : 〈α∨, x〉+m = 0}.

Waff acts simply-transitively on the set of alcoves.

Examples: Alcove paths for R = B2. α1 = (1,−1), α2 = (0, 1)

(0,0)

(1/2,1/2)

id

s1s1s2

s1s2s1s1s2s1s0
•

1

2

02
1

2

00

0

2

1

u = id, w = s1s2s1s0
no folds
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(0,0)

(1/2,1/2)

id

s2

s2s1

s2s1s0

•

1

2

1

0

0

02

2
1

u = id, w = s1s2s1s0
+-fold at step 1
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Ram-Yip formula
Recall that mλ is the minimal coset representative of tλ for Wext/W .

Define wλ ∈W by tλ = mλwλ.

Let wt(p) = wt(uℓ), dir(p) = dir(uℓ).

Theorem (Ram-Yip)

TuEλ(X; q, v) = v−ℓ(wλ)
∑

p∈B(u,mλ)

Xwt(p)vℓ(dir(p))f+(p)f−(p)

Here f±(p) are explicit rational functions of q, v built from the ±-folds.

They are products of terms of the form (where a, b ≥ 0)

v−1 − v

1− qavb
for +

(v−1 − v)qavb

1− qavb
for −
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Specialization at q =∞

Let B−(u,w) be the set of alcove paths with all folds negative.

Let |p| denote the number of folds in an alcove path p.

Proposition (O.-Shimozono)

Eλ(X;∞, v−1) = vℓ(w0)−2ℓ(wλ)
∑

p∈B−(id,mλ)

Xwt(p)vℓ(w0dir(p))(v−1 − v)|p|

Schwer proved a similar result at q = 0 in terms of positively-folded alcove
paths; his result inspired the Ram-Yip formula.
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Specialization at q =∞

Let B−(u,w) be the set of alcove paths with all folds negative.

Let |p| denote the number of folds in an alcove path p.

Proposition (O.-Shimozono)

Eλ(X;∞, v−1) = vℓ(w0)−2ℓ(wλ)
∑

p∈B−(id,mλ)

Xwt(p)vℓ(w0dir(p))(v−1 − v)|p|

Schwer proved a similar result at q = 0 in terms of positively-folded alcove
paths; his result inspired the Ram-Yip formula.

Proof. Use the formula

Eλ(X
−1; q−1, v−1) = vℓ(w0)−2ℓ(wλ)Tw0

E−w0(λ)(X; q, v)

and take q → 0 in the Ram-Yip formula for the right-hand side.
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Quantum Bruhat graph
Our formula for at v =∞ requires the quantum Bruhat graph, which has
vertices w ∈W and directed labeled edges w

α
−→ wsα for α ∈ R+ and

ℓ(wsα) = ℓ(w) + 1 (Bruhat edge)

or ℓ(wsα) = ℓ(w) − 〈α∨, 2ρ〉+ 1 (quantum edge)
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Quantum Bruhat graph
Our formula for at v =∞ requires the quantum Bruhat graph, which has
vertices w ∈W and directed labeled edges w

α
−→ wsα for α ∈ R+ and

ℓ(wsα) = ℓ(w) + 1 (Bruhat edge)

or ℓ(wsα) = ℓ(w) − 〈α∨, 2ρ〉+ 1 (quantum edge)

We also need a projection of p ∈ B(u,w) to a sequence in W |p|, defined
by successively deleting simple reflections at fold positions from left to
right and taking dir.

Example. Take u = id and w = t(−1,0) = s1s2s1s0 for R = B2. Let p have
folds at steps 1 and 3. Then the projection of p is (y0, y1, y2) where

uw = s1s2s1s0 y0 = dir(s1s2s1s0) = id

s2s1s0 y1 = dir(s2s1s0) = s1

s2s1s0 y2 = dir(s2s0) = s2s1s2s1
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Specialization at v =∞
Let
←−
QB(u,w) be the subset of B(u,w) made up of alcove paths that

project to reverse paths in the quantum Bruhat graph.

Theorem (O.-Shimozono)

Eλ(X; q−1,∞) =
∑

p∈
←−
QB(id,mλ)

Xwt(p)qn(p) for explicit n(p) ∈ Z≥0.

Remarks

An analogous result at v = 0 due to Lenart was our starting point.

Proof uses the “Tw0
-formula” but is more subtle than at q =∞.

Corollary: Eλ(X; q−1,∞) has coefficients in Z≥0[q].

Cherednik and E. Feigin conjecture a relation to the PBW filtration of
level-one affine Demazure modules, for antidominant λ.
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Example for R = B2

λ = (−1, 0) mλ = tλ = s1s2s1s0

Let p ∈ B(id, s1s2s1s0) with folds at steps 1 and 3.
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Let p ∈ B(id, s1s2s1s0) with folds at steps 1 and 3.

Then:

wt(p) = wt(s2s0) = (1, 0)

p projects to the following reverse path in the quantum Bruhat graph

id
α1←− s1

α1+2α2←−−−−− s2s1s2s1

with both edges quantum.
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Let p ∈ B(id, s1s2s1s0) with folds at steps 1 and 3.

Then:

wt(p) = wt(s2s0) = (1, 0)

p projects to the following reverse path in the quantum Bruhat graph

id
α1←− s1

α1+2α2←−−−−− s2s1s2s1

with both edges quantum.

E(−1,0)(X; q−1,∞) = X(−1,0) + q2X(1,0) + q (X(0,−1) +X(0,1) +X(0,0))
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