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Matrix Coefficients

“In mathematics you don’t understand things. You just get
used to them.” —Jon von Neumann

Definition

For λ an antidominant weight, define the Whittaker coefficient

W (tλ) =

∫
U−

vK(utλ)ψ(u)du.

To evaluate, we integrate over the double Iwasawa cells

Cλµ := U−tλK ∩ U+tµK,

where each utλ = u′tµk ∈ U+AK.
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Matrix Coefficients

Since K =
⋃

w∈W
IwI and λ is antidominant, we can write

U−tλK =
⋃
w∈W

U−tλwI

=
⋃
w∈W
v∈W̃

U−tλwI ∩ IvI,

using the Bruhat decomposition. Therefore, we get a
stratification on the double Iwasawa cells

Cλµ = U−tλK ∩ U+tµK

=
⋃

w,w′∈W
v∈W̃

U−tλwI ∩ IvI ∩ U+tµw′I.
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Matrix Coefficients

Instead of normalizing so that
∫
K dµ = 1, it will be more

convenient to set
∫
I dµ = 1 so that

∫
IwI dµ = q`(w).

Therefore,

vol(K) =
∑
w∈W

q`(w)

if we work over the field Fq((t)).

We can then rewrite the Whittaker coefficient as follows:

W (tλ) =
1

vol(K)

∑
w,w′∈W
v∈W̃

χ(tµ)

 ∫
U−tλwI∩IvI∩U+tµw′I

ψ(u)du

 .

Claim: This integral is actually extremely computable!
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Alcove Walk Model

Main Ingredient: the labeled folded alcove walk model of
Parkinson, Ram, and Schwer.

Theorem (Parkinson-Ram-Schwer)

Orient the affine hyperplanes so that the positive side faces a
point deep in the antidominant Weyl chamber. Then there is a
bijection{

positively folded labeled alcove walks

of type v ending at tλw

}
←→ U−tλwI ∩ IvI.
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Alcove Walk Model

Main Ingredient: the labeled folded alcove walk model of
Parkinson, Ram, and Schwer.

Theorem (Parkinson-Ram-Schwer)

Orient the affine hyperplanes so that the positive side faces a
point deep in the antidominant Weyl chamber. Then there is a
bijection{

positively folded labeled alcove walks
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Need to evaluate ψ(u); the labelings track the unipotent parts.
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Alcove Walk Model

{
positively folded labeled alcove walks

of type v ending at tλw

}
←→ U−tλwI ∩ IvI

Example

In SL2(Fq((t))),

the elements of U− for which

U−t(1,−1)I ∩ It(3,−3)sI 6= ∅

are precisely{[
1 0

at4 + bt3 1

] ∣∣∣∣ a ∈ F×q , b ∈ Fq
}
⊆ U−.

Recall that ψ is trivial on Fq[[t]], and so this path contributes 0
to W (t(1,−1)). (We knew this already since λ not antidominant.)
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Alcove Walk Model

What about the triple intersections in Cλµ?

Theorem (Parkinson-Ram-Schwer: The Remix)

Orient the affine hyperplanes so that the positive side faces a
point deep in the dominant Weyl chamber. There is a bijection{

positively folded labeled alcove walks

of type v ending at tµw′

}
←→ U+tµw′I ∩ IvI.

The cells Cλµ ∼= F(#positive crossings)
q × (F×q )(#positive folds).
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Alcove Walk Model = Matrix Coefficients

To compute W (tλ):

• First find all walks indexing points in U−tλwI ∩ IvI.

• Among those, see which ones also correspond to walks
indexing points in U+tµw′I ∩ IvI.

• Read off the labelings of the walks from both steps to
evaluate the character on the unipotent part.

Theorem (B-Brubaker)

For SL2(Fq((t))), we recover Tokuyama’s formula bijectively.
Roughly speaking, each Gelfand-Tsetlin pattern corresponds to a
stratum in Cλµ; the statistics are recording its weighted volume.
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