Combinatorics of the Casselman-Shalika formula in type A

Ben Salisbury

Central Michigan University

October 2013
Whittaker Functions: Number Theory, Geometry and Physics Banff International Research Station
*Joint work with Kyu-Hwan Lee and Philip Lombardo

The Casselman-Shalika formula

Theorem (Casselman-Shalika formula)

If $\left|\mathbf{z}^{\alpha}\right|<1$ for $\alpha \in \Delta^{+}$and $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n+1}\right)$ is a dominant weight for $\mathrm{GL}_{r+1}(\mathbb{C})$, then

$$
W\left(t_{\lambda}\right):=\int_{N(F)} f_{\mathbf{z}}^{\circ}\left(w_{0} n t_{\lambda}\right) \psi(n) d n=\delta^{1 / 2}\left(t_{\lambda}\right) \chi_{\lambda}(\mathbf{z}) \prod_{\alpha \in \Delta^{+}}\left(1-q^{-1} \mathbf{z}^{\alpha}\right),
$$

 system of $\mathrm{GL}_{r+1}(\mathbb{C})$.

The Casselman-Shalika formula

Theorem (Casselman-Shalika formula)

If $\left|\mathbf{z}^{\alpha}\right|<1$ for $\alpha \in \Delta^{+}$and $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n+1}\right)$ is a dominant weight for $\mathrm{GL}_{r+1}(\mathbb{C})$, then

$$
W\left(t_{\lambda}\right):=\int_{N(F)} f_{\mathbf{z}}^{\circ}\left(w_{0} n t_{\lambda}\right) \psi(n) d n=\delta^{1 / 2}\left(t_{\lambda}\right) \chi_{\lambda}(\mathbf{z}) \prod_{\alpha \in \Delta^{+}}\left(1-q^{-1} \mathbf{z}^{\alpha}\right),
$$

where $t_{\lambda}=\operatorname{diag}\left(\varpi^{\lambda_{1}}, \ldots, \varpi^{\lambda_{r+1}}\right), \varpi$ is a uniformizer in \mathfrak{o}, and Δ is the root system of $\mathrm{GL}_{r+1}(\mathbb{C})$.

- The term $\prod_{\alpha \in \Delta^{+}}\left(1-q^{-1} \mathbf{z}^{\alpha}\right) \chi_{\lambda}(\mathbf{z})$ is a q-deformation of a Weyl character for the irreducible highest weight representation $V(\lambda+\rho)$.
- Expresses the value of the spherical Whittaker function in terms of a Weyl character.

The Casselman-Shalika formula

Theorem (Casselman-Shalika formula)

If $\left|\mathbf{z}^{\alpha}\right|<1$ for $\alpha \in \Delta^{+}$and $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n+1}\right)$ is a dominant weight for $\mathrm{GL}_{r+1}(\mathbb{C})$, then

$$
W\left(t_{\lambda}\right):=\int_{N(F)} f_{\mathbf{z}}^{\circ}\left(w_{0} n t_{\lambda}\right) \psi(n) d n=\delta^{1 / 2}\left(t_{\lambda}\right) \chi_{\lambda}(\mathbf{z}) \prod_{\alpha \in \Delta^{+}}\left(1-q^{-1} \mathbf{z}^{\alpha}\right)
$$

where $t_{\lambda}=\operatorname{diag}\left(\varpi^{\lambda_{1}}, \ldots, \varpi^{\lambda_{r+1}}\right), \varpi$ is a uniformizer in \mathfrak{o}, and Δ is the root system of $\mathrm{GL}_{r+1}(\mathbb{C})$.

- The term $\prod_{\alpha \in \Delta^{+}}\left(1-q^{-1} \mathbf{z}^{\alpha}\right) \chi_{\lambda}(\mathbf{z})$ is a q-deformation of a Weyl character for the irreducible highest weight representation $V(\lambda+\rho)$.
- Expresses the value of the spherical Whittaker function in terms of a Weyl character.

Goal

Express the product as a sum over the crystal $\mathcal{B}(\lambda+\rho)$ realized as the set of semistandard Young tableaux.

BZL paths

Definition

For a given reduced word $\mathbf{i}=\left(i_{1}, i_{2}, \ldots, i_{N}\right)$ for the longest element w_{0} of the Weyl group, define the $B Z L$ path of $b \in \mathcal{B}(\lambda+\rho)$ as follows. Inductively, let

$$
a_{1}=\max \left\{k: \widetilde{e}_{i_{1}}^{k} b \neq 0\right\}, \quad a_{j}=\max \left\{k: \widetilde{i}_{i_{j}}^{k} \widetilde{i}_{i_{j-1}}^{a_{j-1}} \cdots \widetilde{e}_{i_{2}}^{a_{2}} \widetilde{i}_{i_{1}}^{a_{1}} b \neq 0\right\}
$$

for $j=1, \ldots, N$. Then we define $\psi_{\mathbf{i}}(b)=\left(a_{1}, \ldots, a_{N}\right)$.
These are also known as string parameterizations or i-Kashiwara data.
P. Littelmann proved that such a path terminates at the highest weight vector $b_{\lambda+\rho} \in \mathcal{B}(\lambda+\rho)$.

$$
r=2, \mathbf{i}=(1,2,1), \lambda+\rho \gg 0
$$

$$
r=2, \mathbf{i}=(1,2,1), \lambda+\rho \gg 0
$$

$$
r=2, \mathbf{i}=(2,1,2), \lambda+\rho \gg 0
$$

$$
r=2, \mathbf{i}=(2,1,2), \lambda+\rho \gg 0
$$

$$
\psi_{\mathbf{i}}(b)=(1 ; 2,0)
$$

The circling and boxing rules

Write the BZL paths in triangles of the following form:

This triangular array looks more natural if we use Littelmann's result that

$$
a_{1,1} \geq 0 ; \quad a_{2,1} \geq a_{2,2} \geq 0 ; \quad a_{3,1} \geq a_{3,2} \geq a_{3,3} \geq 0
$$

Entries outside the triangle are understood to be 0 .

The circling and boxing rules

Write the BZL paths in triangles of the following form:

$$
\psi_{\mathbf{i}}(b)=\quad \begin{gathered}
a_{1} \\
a_{2}{ }_{4} a_{3} \quad a_{5} \quad a_{6}
\end{gathered}=\quad a_{3,1}{ }^{a_{1,1}}{ }^{2} a_{3,2} a_{2,2} a_{3,3}
$$

This triangular array looks more natural if we use Littelmann's result that

$$
a_{1,1} \geq 0 ; \quad a_{2,1} \geq a_{2,2} \geq 0 ; \quad a_{3,1} \geq a_{3,2} \geq a_{3,3} \geq 0
$$

Entries outside the triangle are understood to be 0 .

Definition (Brubaker-Bump-Friedberg, 2011; Bump-Nakasuji, 2010)

- If the entry $a_{j, \ell-1}=a_{j, \ell}$, then we circle $a_{j, \ell-1}$.
- If $\widetilde{f}_{i_{j}} \tilde{\mathrm{e}}_{i_{j-1}}^{a_{j-1}} \cdots \widetilde{e}_{i_{1}}^{a_{1}} b=0$, then box a_{j}.

BZL paths and the Casselman-Shalika formula

Theorem (Bump-Nakasuji; Brubaker-Bump-Friedberg; Tokuyama)

$$
\text { If } \mathbf{i}=(1,2,1,3,2,1, \ldots, r, r-1, \ldots, 2,1) \text {, then }
$$

$$
\chi_{\lambda}(\mathbf{z}) \prod_{\alpha \in \Delta^{+}}\left(1-q^{-1} \mathbf{z}^{\alpha}\right)=\sum_{b \in \mathcal{B}(\lambda+\rho)} G_{\mathbf{i}}(b) q^{-\left\langle w_{0}(w t(b)-\lambda-\rho), \rho\right\rangle} \mathbf{z}^{w_{0}(w t(b)-\rho)}
$$

BZL paths and the Casselman-Shalika formula

Theorem (Bump-Nakasuji; Brubaker-Bump-Friedberg; Tokuyama)

$$
\text { If } \mathbf{i}=(1,2,1,3,2,1, \ldots, r, r-1, \ldots, 2,1) \text {, then }
$$

$$
\chi_{\lambda}(\mathbf{z}) \prod_{\alpha \in \Delta^{+}}\left(1-q^{-1} \mathbf{z}^{\alpha}\right)=\sum_{b \in \mathcal{B}(\lambda+\rho)} G_{i}(b) q^{-\left\langle w_{0}(w t(b)-\lambda-\rho), \rho\right\rangle} \mathbf{z}^{w_{0}(w t(b)-\rho)}
$$

Applying the longest element w_{0} to both sides gives

$$
\mathbf{z}^{\rho} \chi_{\lambda}(\mathbf{z}) \prod_{\alpha \in \Delta^{+}}\left(1-q^{-1} \mathbf{z}^{-\alpha}\right)=\sum_{b \in \mathcal{B}(\lambda+\rho)} G_{i}(b) q^{\langle\mathrm{wt}(b)-\lambda-\rho, \rho\rangle} \mathbf{z}^{\mathrm{wt}(b)}
$$

BZL paths and the Casselman-Shalika formula

Theorem (Bump-Nakasuji; Brubaker-Bump-Friedberg; Tokuyama)

$$
\begin{aligned}
& \text { If } \mathbf{i}=(1,2,1,3,2,1, \ldots, r, r-1, \ldots, 2,1) \text {, then } \\
& \qquad \chi_{\lambda}(\mathbf{z}) \prod_{\alpha \in \Delta^{+}}\left(1-q^{-1} \mathbf{z}^{\alpha}\right)=\sum_{b \in \mathcal{B}(\lambda+\rho)} G_{i}(b) q^{-\left\langle w_{0}(w t(b)-\lambda-\rho), \rho\right\rangle} \mathbf{z}^{w_{0}(w t(b)-\rho)}
\end{aligned}
$$

Applying the longest element w_{0} to both sides gives

$$
\mathbf{z}^{\rho} \chi_{\lambda}(\mathbf{z}) \prod_{\alpha \in \Delta^{+}}\left(1-q^{-1} \mathbf{z}^{-\alpha}\right)=\sum_{b \in \mathcal{B}(\lambda+\rho)} G_{\mathbf{i}}(b) q^{\langle\mathrm{wt}(b)-\lambda-\rho, \rho\rangle} \mathbf{z}^{\mathrm{wt}(b)}
$$

Essentially, the right-hand side has the form

$$
\sum_{b \in \mathcal{B}(\lambda+\rho)}\left(-q^{-1}\right)^{\# \text { boxes }}\left(1-q^{-1}\right)^{\# \text { neither circled nor boxed }} \mathbf{z}^{\text {wt }(b)}
$$

However, b with an entry in $\psi_{\mathbf{i}}(b)$ which is both circled and boxed yields a coefficient of 0 .

Crystals of tableaux

Theorem (M. Kashiwara and T. Nakashima, 1994)

The vertices of the highest weight $\mathfrak{s l}_{r+1}$-crystal $\mathcal{B}(\lambda+\rho)$ are in bijection with the semistandard Young tableaux of shape $\lambda+\rho$ over the alphabet $\{1, \ldots, r+1\}$.

Crystals of tableaux

Theorem (M. Kashiwara and T. Nakashima, 1994)

The vertices of the highest weight $\mathfrak{s l}_{r+1}$-crystal $\mathcal{B}(\lambda+\rho)$ are in bijection with the semistandard Young tableaux of shape $\lambda+\rho$ over the alphabet $\{1, \ldots, r+1\}$.

Example

$$
r=2 \quad \Longrightarrow \quad \mathcal{B}(\rho)=
$$

$\mathrm{a}(T)$ and $\mathrm{b}(T)$

Definition

Let $T \in \mathcal{B}(\lambda+\rho)$ be a tableau. Define $\mathbf{a}_{i, j}$ to be the number of $(j+1)$-colored boxes in rows 1 through i for $1 \leq i \leq j \leq r$, and define

$$
\mathbf{a}(T)=\begin{array}{cccc}
\mathbf{a}_{1,1} & \mathbf{a}_{1,2} & \cdots & \mathbf{a}_{1, r} \\
& \mathbf{a}_{2,2} & \cdots & \mathbf{a}_{2, r} \\
& & \ddots & \vdots \\
& & & \mathbf{a}_{r, r}
\end{array}
$$

$\mathbf{a}(T)$ and $\mathbf{b}(T)$

Definition

Let $T \in \mathcal{B}(\lambda+\rho)$ be a tableau. Define $\mathbf{a}_{i, j}$ to be the number of $(j+1)$-colored boxes in rows 1 through i for $1 \leq i \leq j \leq r$, and define

$$
\mathbf{a}(T)=\begin{array}{cccc}
\mathbf{a}_{1,1} & \mathbf{a}_{1,2} & \cdots & \mathbf{a}_{1, r} \\
& \mathbf{a}_{2,2} & \cdots & \mathbf{a}_{2, r} \\
& & \ddots & \vdots \\
& & & \mathbf{a}_{r, r}
\end{array}
$$

Definition

Let $T \in \mathcal{B}(\lambda+\rho)$ be a tableau. The number $\mathbf{b}_{i, j}$ is defined to be the number of boxes in the ith row which have color greater or equal to $j+1$ for $1 \leq i \leq j \leq r$. Set

$$
\mathbf{b}(T)=\begin{array}{cccc}
\mathbf{b}_{1,1} & \mathbf{b}_{1,2} & \cdots & \mathbf{b}_{1, r} \\
& \mathbf{b}_{2,2} & \cdots & \mathbf{b}_{2, r} \\
& & \ddots & \vdots \\
& & & \mathbf{b}_{r, r}
\end{array}
$$

Boxing and circling from tableaux

For $\lambda \in P^{+}$, write $\lambda+\rho$ as

$$
\lambda+\rho=\left(\ell_{1}>\ell_{2}>\cdots>\ell_{r}>\ell_{r+1}=0\right)
$$

and define $\theta_{i}=\ell_{i}-\ell_{i+1}$ for $i=1, \ldots, r$. Let $\theta=\left(\theta_{1}, \ldots, \theta_{r}\right)$.

Boxing and circling from tableaux

For $\lambda \in P^{+}$, write $\lambda+\rho$ as

$$
\lambda+\rho=\left(\ell_{1}>\ell_{2}>\cdots>\ell_{r}>\ell_{r+1}=0\right)
$$

and define $\theta_{i}=\ell_{i}-\ell_{i+1}$ for $i=1, \ldots, r$. Let $\theta=\left(\theta_{1}, \ldots, \theta_{r}\right)$.
Attach θ to the array $\mathbf{b}(T)$:

$$
(\mathbf{b}(T), \theta)=\begin{array}{ccccc}
\mathbf{b}_{1,1} & \mathbf{b}_{1,2} & \cdots & \mathbf{b}_{1, r} & \left(\theta_{1}\right) \\
& \mathbf{b}_{2,2} & \cdots & \mathbf{b}_{2, r} & \left(\theta_{2}\right) \\
& & \ddots & \vdots & \\
& & & \mathbf{b}_{r, r} & \left(\theta_{r}\right)
\end{array}
$$

New circling and boxing rules

Definition

$$
\text { Box } \mathbf{a}_{i, j} \text { if } \mathbf{b}_{i, j}=\theta_{i}+\mathbf{b}_{i+1, j+1} . \quad \text { Circle } \mathbf{a}_{i, j} \text { if } \mathbf{a}_{i, j}=\mathbf{a}_{i-1, j}
$$

New circling and boxing rules

Definition

$$
\text { Box } \mathbf{a}_{i, j} \text { if } \mathbf{b}_{i, j}=\theta_{i}+\mathbf{b}_{i+1, j+1} . \quad \text { Circle } \mathbf{a}_{i, j} \text { if } \mathbf{a}_{i, j}=\mathbf{a}_{i-1, j}
$$

Consider the tableaux

$$
T=\begin{array}{|l|l|l|l|l}
\hline 1 & 1 & 2 & 2 & 3 \\
\hline 2 & 3 & 3 & & \\
\hline 3 & 4 & & & \\
y
\end{array} .
$$

New circling and boxing rules

Definition

Box $\mathbf{a}_{i, j}$ if $\mathbf{b}_{i, j}=\theta_{i}+\mathbf{b}_{i+1, j+1} . \quad$ Circle $\mathbf{a}_{i, j}$ if $\mathbf{a}_{i, j}=\mathbf{a}_{i-1, j}$.

Consider the tableaux

$$
T=\begin{array}{|l|l|l|l|l}
\hline 1 & 1 & 2 & 2 & 3 \\
\hline 2 & 3 & 3 & & \\
\hline 3 & 4 & & & \\
y
\end{array} .
$$

Then

$$
\mathbf{a}(T)=\begin{array}{lll}
2 & 1 & 0 \\
& 3 & 0 \\
& & 1
\end{array}, \quad(\mathbf{b}(T), \theta)=\begin{array}{llll}
3 & 1 & 0 & (2) \\
2 & 0 & (1) \\
& & 1 & (2)
\end{array} .
$$

New circling and boxing rules

Definition

Box $\mathbf{a}_{i, j}$ if $\mathbf{b}_{i, j}=\theta_{i}+\mathbf{b}_{i+1, j+1} . \quad$ Circle $\mathbf{a}_{i, j}$ if $\mathbf{a}_{i, j}=\mathbf{a}_{i-1, j}$.

Consider the tableaux

$$
T=\begin{array}{|l|l|l|l|l}
\hline 1 & 1 & 2 & 2 & 3 \\
\hline 2 & 3 & 3 & & \\
\hline 3 & 4 & &
\end{array} .
$$

Then

$$
\mathbf{a}(T)=\begin{array}{ccc}
2 & 1 & 0 \\
& \boxed{3} & 0 \\
& & 1
\end{array}, \quad(\mathbf{b}(T), \theta)=\begin{array}{llll}
3 & 1 & 0 & (2) \\
& 2 & 0 & (1) \\
& & 1 & (2)
\end{array} .
$$

Comparison of circling and boxing rules

Lemma

Let $T \in \mathcal{B}(\lambda+\rho)$. Then the sequences $\psi_{\mathbf{i}}(T)=\left(a_{i, j}\right)$ and $\mathbf{a}(T)=\left(\mathbf{a}_{i, j}\right)$ are related via the formula $a_{i, j}=\mathbf{a}_{i-j+1, i}$.

Comparison of circling and boxing rules

Lemma

Let $T \in \mathcal{B}(\lambda+\rho)$. Then the sequences $\psi_{\mathbf{i}}(T)=\left(a_{i, j}\right)$ and $\mathbf{a}(T)=\left(\mathbf{a}_{i, j}\right)$ are related via the formula $a_{i, j}=\mathbf{a}_{i-j+1, i}$.

Proposition

An entry $a_{i, j}$ in $\psi_{\mathbf{i}}(T)$ is circled (by the original rule) if and only if the corresponding entry in $\mathbf{a}(T)$ is circled (by the new rule).

Comparison of circling and boxing rules

Lemma

Let $T \in \mathcal{B}(\lambda+\rho)$. Then the sequences $\psi_{\mathbf{i}}(T)=\left(a_{i, j}\right)$ and $\mathbf{a}(T)=\left(\mathbf{a}_{i, j}\right)$ are related via the formula $a_{i, j}=\mathbf{a}_{i-j+1, i}$.

Proposition

An entry $a_{i, j}$ in $\psi_{\mathbf{i}}(T)$ is circled (by the original rule) if and only if the corresponding entry in $\mathbf{a}(T)$ is circled (by the new rule).

Proposition

An entry $a_{i, j}$ in $\psi_{\mathbf{i}}(T)$ is boxed (by the original rule) if and only if the corresponding entry in $\mathbf{a}(T)$ is boxed (by the new rule).

Comparison of circling and boxing rules

Lemma

Let $T \in \mathcal{B}(\lambda+\rho)$. Then the sequences $\psi_{\mathbf{i}}(T)=\left(a_{i, j}\right)$ and $\mathbf{a}(T)=\left(\mathbf{a}_{i, j}\right)$ are related via the formula $a_{i, j}=\mathbf{a}_{i-j+1, i}$.

Proposition

An entry $a_{i, j}$ in $\psi_{\mathbf{i}}(T)$ is circled (by the original rule) if and only if the corresponding entry in $\mathbf{a}(T)$ is circled (by the new rule).

Proposition

An entry $a_{i, j}$ in $\psi_{\mathbf{i}}(T)$ is boxed (by the original rule) if and only if the corresponding entry in $\mathbf{a}(T)$ is boxed (by the new rule).

Definition

Say $T \in \mathcal{B}(\lambda+\rho)$ is strict if no entry of $\mathbf{a}(T)$ is both circled and boxed.

The CS formula using tableaux

Let $T \in \mathcal{B}(\lambda+\rho)$.

- non $(T)=$ number of entries in $\mathbf{a}(T)$ which are neither circled nor boxed
- box $(T)=$ number of entries in $\mathbf{a}(T)$ which are boxed

Define

$$
C_{\lambda}\left(T ; q^{-1}\right)=\left\{\begin{array}{cl}
\left(-q^{-1}\right)^{\operatorname{box}(T)}\left(1-q^{-1}\right)^{\operatorname{non}(T)} & \text { if } T \text { is strict } \\
0 & \text { otherwise }
\end{array}\right.
$$

The CS formula using tableaux

Let $T \in \mathcal{B}(\lambda+\rho)$.

- non $(T)=$ number of entries in $\mathbf{a}(T)$ which are neither circled nor boxed
- box $(T)=$ number of entries in $\mathbf{a}(T)$ which are boxed

Define

$$
C_{\lambda}\left(T ; q^{-1}\right)=\left\{\begin{array}{cl}
\left(-q^{-1}\right)^{\operatorname{box}(T)}\left(1-q^{-1}\right)^{\operatorname{non}(T)} & \text { if } T \text { is strict } \\
0 & \text { otherwise }
\end{array}\right.
$$

Theorem (K.-H. Lee, P. Lombardo, and S)

$$
\mathbf{z}^{\rho} \chi_{\lambda}(\mathbf{z}) \prod_{\alpha \in \Delta^{+}}\left(1-q^{-1} \mathbf{z}^{-\alpha}\right)=\sum_{T \in \mathcal{B}(\lambda+\rho)} C_{\lambda}\left(T ; q^{-1}\right) \mathbf{z}^{\mathrm{wt}(T)} .
$$

Segments and the Gindikin-Karpelevich formula

Example (J. Hong and H. Lee, 2008)

$$
r=3 \Longrightarrow \mathcal{B}(\infty)=\left\{\begin{array}{l|l|l|l|l|l|l|l|l|}
\hline 1 & 1 \cdots 1 & 1 & 1 \cdots 1 & 1 \cdots 1 & & 2 \cdots 2 & 3 \cdots 3 & 4 \cdots 4 \\
\hline 2 & 2 \cdots 2 & 2 & \cdots \cdots 3 & 4 \cdots 4 & & & \\
\hline 3 & 4 \cdots 4 & & & &
\end{array}\right\}
$$

Segments and the Gindikin-Karpelevich formula

Example (J. Hong and H. Lee, 2008)

$$
r=3 \Longrightarrow \mathcal{B}(\infty)=\left\{\right\}
$$

Theorem (Gindikin-Karpelevich formula)
If $\left|\mathbf{z}^{\alpha}\right|<1$ for all $\alpha \in \Delta^{+}$, then

$$
\int_{N(F)} f_{\mathrm{z}}^{\circ}\left(w_{0} n t_{\lambda}\right) d n=\left(\prod_{\alpha \in \Delta^{+}} \frac{1-q^{-1} \mathbf{z}^{\alpha}}{1-\mathbf{z}^{\alpha}}\right)\left(\delta^{1 / 2} \tau_{w_{0} \mathrm{z}}\right)\left(t_{\lambda}\right) .
$$

Segments and the Gindikin-Karpelevich formula

Example (J. Hong and H. Lee, 2008)

$$
r=3 \Longrightarrow \mathcal{B}(\infty)=\left\{\begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline 1 & 1 \cdots 1 & 1 & 1 \cdots 1 & 1 \cdots 1 & 1 & 2 \cdots 2 & 3 \cdots 3 & 4 \cdots 4 \\
\hline 2 & 2 \cdots 2 & 2 & 3 \cdots 3 & 4 \cdots 4 & & &
\end{array}\right.
$$

Theorem (Gindikin-Karpelevich formula)
If $\left|\mathbf{z}^{\alpha}\right|<1$ for all $\alpha \in \Delta^{+}$, then

$$
\int_{N(F)} f_{\mathbf{z}}^{\circ}\left(w_{0} n t_{\lambda}\right) d n=\left(\prod_{\alpha \in \Delta^{+}} \frac{1-q^{-1} \mathbf{z}^{\alpha}}{1-\mathbf{z}^{\alpha}}\right)\left(\delta^{1 / 2} \tau_{w_{0} \mathbf{z}}\right)\left(t_{\lambda}\right) .
$$

Theorem (Lee-S, 2012; Kim-Lee, 2011; Bump-Nakasuji, 2010)

$$
\prod_{\alpha \in \Delta^{+}} \frac{1-q^{-1} \mathbf{z}^{\alpha}}{1-\mathbf{z}^{\alpha}}=\sum_{T \in \mathcal{B}(\infty)}\left(1-q^{-1}\right)^{\operatorname{seg}(T)} \mathbf{z}^{-w t(T)}
$$

Segments and the Gindikin-Karpelevich formula

There exists an embedding

$$
\Psi_{\lambda+\rho}: \mathcal{B}(\lambda+\rho) \longleftrightarrow \mathcal{B}(\infty) \otimes \mathcal{T}_{\lambda+\rho}
$$

which commutes with each \widetilde{e}_{i} and is weight-preserving.

Segments and the Gindikin-Karpelevich formula

There exists an embedding

$$
\Psi_{\lambda+\rho}: \mathcal{B}(\lambda+\rho) \longleftrightarrow \mathcal{B}(\infty) \otimes \mathcal{T}_{\lambda+\rho}
$$

which commutes with each \widetilde{e}_{i} and is weight-preserving.

Example

$$
\left.\Psi_{\lambda+\rho}\left(\begin{array}{llll|l|l|l|l|l}
\hline 1 & 1 & 2 & 2 & 2 & 3 & 3 & 4 \\
\hline 2 & 2 & 3 & 3 & 3 & 4 & & \\
\hline 4 & 4 & 4 & & &
\end{array}\right)=\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 3 & 3 \\
\hline
\end{array}\right)
$$

$\operatorname{seg}(T)$ and flush (T) for $T \in \mathcal{B}(\lambda+\rho)$

Definition

Let $T \in \mathcal{B}(\lambda+\rho)$ be a tableau.
(1) Let $T \in \mathcal{B}(\lambda+\rho)$ be a tableaux. We define a k-segment of T (in the i th row) to be a maximal consecutive sequence of k-boxes in the i th row for any $i+1 \leq k \leq r+1$. Denote the total number of k-segments in T by $\operatorname{seg}(T)$.

$\operatorname{seg}(T)$ and flush (T) for $T \in \mathcal{B}(\lambda+\rho)$

Definition

Let $T \in \mathcal{B}(\lambda+\rho)$ be a tableau.
(1) Let $T \in \mathcal{B}(\lambda+\rho)$ be a tableaux. We define a k-segment of T (in the i th row) to be a maximal consecutive sequence of k-boxes in the i th row for any $i+1 \leq k \leq r+1$. Denote the total number of k-segments in T by $\operatorname{seg}(T)$.
(2) Let $1 \leq i<k \leq r+1$ and suppose ℓ is the smallest integer greater than k such that there exists an ℓ-segment in the $(i+1)$ st row of T. A k-segment in the ith row of T is called flush if the leftmost box in the k-segment and the leftmost box of the ℓ-segment are in the same column of T. If, however, no such ℓ exists, then this k-segment is said to be flush if the number of boxes in the k-segment is equal to θ_{i}. Denote the number of flush k-segments in T by flush (T).

Calculation of $C_{\lambda}\left(T, q^{-1}\right)$

Corollary

Let $T \in \mathcal{B}(\lambda+\rho)$ be a tableau.
(1) Let $1 \leq i<k \leq r$. Suppose the following two conditions hold.
(a) There is no k-segment in the ith row of T.
(b) Let ℓ be the smallest integer greater than k such that there exist an ℓ-segment in the ith row. There is no p-segment in the $(i+1)$ st row, for $k+1 \leq p \leq \ell$, and the ℓ-segment is flush. ${ }^{\text {a }}$
Then $C_{\lambda}\left(T ; q^{-1}\right)=0$.

Calculation of $C_{\lambda}\left(T, q^{-1}\right)$

Corollary

Let $T \in \mathcal{B}(\lambda+\rho)$ be a tableau.
(1) Let $1 \leq i<k \leq r$. Suppose the following two conditions hold.
(a) There is no k-segment in the ith row of T.
(b) Let ℓ be the smallest integer greater than k such that there exist an ℓ-segment in the ith row. There is no p-segment in the $(i+1)$ st row, for $k+1 \leq p \leq \ell$, and the ℓ-segment is flush. ${ }^{a}$
Then $C_{\lambda}\left(T ; q^{-1}\right)=0$.
(2) If condition (1) is not satisfied, then

$$
C_{\lambda}\left(T ; q^{-1}\right)=\left(-q^{-1}\right)^{f l u s h(T)}\left(1-q^{-1}\right)^{\operatorname{seg}(T)-f l u s h(T)}
$$

${ }^{2}$ By convention, if no such ℓ exists, then condition (b) is not satisfied.

Example

Let $\lambda=\omega_{2}+\omega_{3}, r=3$, and

$$
T=\begin{array}{|l|l|l|l|l|}
\hline 1 & 1 & 1 & 3 & 4 \\
\hline 2 & 2 & 2 & 4 & \\
\hline 3 & 4 & & & \\
\hline
\end{array} .
$$

Example

Let $\lambda=\omega_{2}+\omega_{3}, r=3$, and

$$
T=\begin{array}{|l|l|l|l|l|}
\hline 1 & 1 & 1 & 3 & 4 \\
\hline 2 & 2 & 2 & 4 & \\
\hline 3 & 4 & & & \\
\hline
\end{array} .
$$

- There is no 2 -segment in the first row nor is there a 3 -segment in the second row.

Example

Let $\lambda=\omega_{2}+\omega_{3}, r=3$, and

$$
T=\begin{array}{|l|l|l|l|l|}
\hline 1 & 1 & 1 & 3 & 4 \\
\hline 2 & 2 & 2 & 4 & \\
\hline 3 & 4 & & & \\
\hline
\end{array} .
$$

- There is no 2 -segment in the first row nor is there a 3 -segment in the second row.
- The 3-segment in the first row is flush, so $C_{\lambda}\left(T ; q^{-1}\right)=0$.

Example

Let $\lambda=\omega_{2}+\omega_{3}, r=3$, and

$$
T=\begin{array}{|l|l|l|l|l|}
\hline 1 & 1 & 1 & 3 & 4 \\
\hline 2 & 2 & 2 & 4 & \\
\hline 3 & 4 & & & \\
\hline
\end{array} .
$$

- There is no 2 -segment in the first row nor is there a 3 -segment in the second row.
- The 3-segment in the first row is flush, so $C_{\lambda}\left(T ; q^{-1}\right)=0$.

As a check, we have

$$
\mathbf{a}(T)=\begin{array}{ccc}
1 & \begin{array}{c}
1 \\
1
\end{array} & \boxed{1} \\
1 & 2 \\
& \begin{array}{l}
3
\end{array}
\end{array}, \quad(\mathbf{b}(T), \theta)=\begin{array}{llll}
2 & 2 & 1 & (1) \\
& 1 & 1 & (2) \\
& & 1 & (1)
\end{array} .
$$

Example

Let $\lambda=\omega_{1}+2 \omega_{2}+2 \omega_{3}, r=3$, and

$$
T=\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 1 & 1 & 2 & 2 & 2 & 3 & 3 & 4 \\
\hline 2 & 2 & 3 & 3 & 3 & 4 & & \\
\hline 4 & 4 & 4 & & & & & \\
\hline
\end{array} .
$$

Example

Let $\lambda=\omega_{1}+2 \omega_{2}+2 \omega_{3}, r=3$, and

$T=$| 1 | 1 | 2 | 2 | 2 | 3 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 2 | 3 | 3 | 3 | 4 | | |
| 4 | 4 | 4 | | | | | |.

Then

- all possible segments are included in T, so $C_{\lambda}\left(T ; q^{-1}\right) \neq 0$ and $\operatorname{seg}(T)=6$, and

Example

Let $\lambda=\omega_{1}+2 \omega_{2}+2 \omega_{3}, r=3$, and

$T=$| 1 | 1 | 2 | 2 | 2 | 3 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 2 | 3 | 3 | 3 | 4 | | |
| 4 | 4 | 4 | | | | | |.

Then

- all possible segments are included in T, so $C_{\lambda}\left(T ; q^{-1}\right) \neq 0$ and $\operatorname{seg}(T)=6$, and
- flush $(T)=3$.

Example

Let $\lambda=\omega_{1}+2 \omega_{2}+2 \omega_{3}, r=3$, and

$$
T=\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 1 & 1 & 2 & 2 & 2 & 3 & 3 & 4 \\
\hline 2 & 2 & 3 & 3 & 3 & 4 & & \\
\hline 4 & 4 & 4 & & & & & \\
\hline
\end{array} .
$$

Then

- all possible segments are included in T, so $C_{\lambda}\left(T ; q^{-1}\right) \neq 0$ and $\operatorname{seg}(T)=6$, and
- flush $(T)=3$.

Hence

$$
C_{\lambda}\left(T ; q^{-1}\right)=\left(-q^{-1}\right)^{3}\left(1-q^{-1}\right)^{3}
$$

Example

Let $\lambda=\omega_{1}+2 \omega_{2}+2 \omega_{3}, r=3$, and

$$
T=\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 1 & 1 & 2 & 2 & 2 & 3 & 3 & 4 \\
\hline 2 & 2 & 3 & 3 & 3 & 4 & & \\
\hline 4 & 4 & 4 & & & & & \\
\hline
\end{array} .
$$

Then

- all possible segments are included in T, so $C_{\lambda}\left(T ; q^{-1}\right) \neq 0$ and $\operatorname{seg}(T)=6$, and
- flush $(T)=3$.

Hence

$$
C_{\lambda}\left(T ; q^{-1}\right)=\left(-q^{-1}\right)^{3}\left(1-q^{-1}\right)^{3}
$$

As a check,

$$
\mathbf{a}(T)=\begin{array}{ccc}
3 & \begin{array}{c}
2 \\
\hline
\end{array} & 1 \\
& 5 & 2 \\
& & 5
\end{array}, \quad(\mathbf{b}(T), \theta)=\begin{array}{cccc}
6 & 3 & 1 & (2) \\
& 4 & 1 & (3) \\
& & 3 & (3)
\end{array} .
$$

Application of the $C_{\lambda}\left(-; q^{-1}\right)$

For $\beta \in Q^{+}$, define a polynomial $H_{\lambda}\left(\beta ; q^{-1}\right) \in \mathbb{Z}\left[q^{-1}\right]$ by

$$
H_{\lambda}\left(\beta ; q^{-1}\right)=\sum_{\substack{T \in \mathcal{B}(\lambda+\rho) \\ w t(T)=\lambda+\rho-\beta}} C_{\lambda}\left(T, q^{-1}\right)
$$

Application of the $C_{\lambda}\left(-; q^{-1}\right)$

For $\beta \in Q^{+}$, define a polynomial $H_{\lambda}\left(\beta ; q^{-1}\right) \in \mathbb{Z}\left[q^{-1}\right]$ by

$$
H_{\lambda}\left(\beta ; q^{-1}\right)=\sum_{\substack{T \in \mathcal{B}(\lambda+\rho) \\ \operatorname{wt}(T)=\lambda+\rho-\beta}} C_{\lambda}\left(T, q^{-1}\right)
$$

Theorem (Brubaker, Bump, and Friedberg, 2011)

The function $H_{\lambda}\left(\beta ; q^{-1}\right)$ is the p-part of a nonmetaplectic Weyl group multiple Dirichlet series of type A_{r}.

Application of the $C_{\lambda}\left(-; q^{-1}\right)$

For $\beta \in Q^{+}$, define a polynomial $H_{\lambda}\left(\beta ; q^{-1}\right) \in \mathbb{Z}\left[q^{-1}\right]$ by

$$
H_{\lambda}\left(\beta ; q^{-1}\right)=\sum_{\substack{T \in \mathcal{B}(\lambda+\rho) \\ w t(T)=\lambda+\rho-\beta}} C_{\lambda}\left(T, q^{-1}\right)
$$

Theorem (Brubaker, Bump, and Friedberg, 2011)

The function $H_{\lambda}\left(\beta ; q^{-1}\right)$ is the p-part of a nonmetaplectic Weyl group multiple Dirichlet series of type A_{r}.

Proposition (H. Kim and K.-H. Lee, 2012)

- $H_{\lambda}(\beta ; 0)$ is the multiplicity of $\lambda-\beta$ in $V(\lambda)$;
- $H_{\lambda}(\beta ;-1)$ is the multiplicity of $\lambda+\rho-\beta$ in $V(\lambda) \otimes V(\mu)$;
- $H_{\lambda}(\beta ; 1)= \begin{cases}(-1)^{\ell(w)} & w(\lambda+\rho)-\rho=\lambda-\beta \text { for some } w \in W, \\ 0 & \text { otherwise } .\end{cases}$

Extensions and future directions

- Casselman-Shalika formula in types B_{r}, C_{r}, D_{r}, and G_{2} (in progress with P. Lombardo)
- Metaplectic version?

Extensions and future directions

- Casselman-Shalika formula in types B_{r}, C_{r}, D_{r}, and G_{2} (in progress with P. Lombardo)
- Metaplectic version?
- Gindikin-Karpelevich formula in types $A_{r}, B_{r}, C_{r}, D_{r}$, and G_{2}. (Lee and S: http://dx.doi.org/10.1016/j.jcta.2012.01.011 and arXiv:1205.6006)
- Does (some version of) seg apply to types E and F ?

Extensions and future directions

- Casselman-Shalika formula in types B_{r}, C_{r}, D_{r}, and G_{2} (in progress with P. Lombardo)
- Metaplectic version?
- Gindikin-Karpelevich formula in types $A_{r}, B_{r}, C_{r}, D_{r}$, and G_{2}. (Lee and S: http://dx.doi.org/10.1016/j.jcta.2012.01.011 and arXiv:1205.6006)
- Does (some version of) seg apply to types E and F ?
- Gindikin-Karpelevich formula in affine types (Kang, Lee, Ryu, and S: arXiv:1203.1640)

Extensions and future directions

- Casselman-Shalika formula in types B_{r}, C_{r}, D_{r}, and G_{2} (in progress with P. Lombardo)
- Metaplectic version?
- Gindikin-Karpelevich formula in types $A_{r}, B_{r}, C_{r}, D_{r}$, and G_{2}. (Lee and S: http://dx.doi.org/10.1016/j.jcta.2012.01.011 and arXiv:1205.6006)
- Does (some version of) seg apply to types E and F ?
- Gindikin-Karpelevich formula in affine types (Kang, Lee, Ryu, and S: arXiv:1203.1640)
- Are seg and flush useful elsewhere in combinatorics?

