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Introduction

Let f and F be the pdf and the cdf, respectively, of a symmetric law on
the real line,

f (x) = f (−x), ∀x ∈ R.

Let p be a pdf on [0,1]. According to Abtahi et al (2011), a rv X with pdf

g(x) = f (x)p{F (x)} (1)

is said to have a unified skewed distribution with functional parameters f
and p, X ∼ USD(f , p).

Every skewed pdf can be expressed in the form (1).

In fact, from Wang, Boyer and Genton (2004), any continuous pdf can be
uniquely expressed as (1) for certain pdfs

f ∈ S = {f : R→ R, f is a symmetric pdf} and

p ∈ P = {p : [0, 1]→ R, p is a pdf}
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Introduction

g(x) = f (x)p{F (x)}

If

X is a continuous rv with pdf g,

Y is a continuous rv with pdf f ,

τ is an even function

then
τ(Y )

d
= τ(X )

In particular: Y 2 d
= X 2, E(Y 2k ) = E(X 2k ), ∀k , . . .
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Introduction

Consequence: for certain inferential objectives, it is not necessary to know
the law of X , but only that of the symmetric component of its pdf.

The purpose of this work is to propose a test for testing gof for the symmetric
component:

H0 : the symmetric part of g is f ⇔ g ∈ Ff = {g(x) = f (x)p{F (x)}, p ∈ P},
H1 : g /∈ Ff .
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The test statistic

Proposition 1 (Abtahi et al, 2011)

Let f ∈ S and p ∈ P.

(a) If X ∼ USD(f , p), then F (X ) has pdf p.

(b) If X has pdf p ∈ P, then F−1(X ) ∼ USD(f , p).

Let X1, . . . ,Xn from X ∼ USD(f , p). Assume f known. The above result led
Abtahi et al (2011) to propose the following estimator

ĝ1(x) = f (x)p̂{F (x)},

where p̂ is a kernel-based estimator of p,

p̂(x) =
1

nh

n∑
i=1

K1

(
Yi − x

h

)
,

Yi = F (Xi ), 1 ≤ i ≤ n, h is the bandwidth and K1 is a kernel.

Note that to build ĝ1(x) we only need to know the symmetric part of g
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The test statistic

ĝ1(x) = f (x)p̂{F (x)}

Another consistent kernel-based estimator (could take different bandwidths)

ĝ2(x) =
1

nh

n∑
i=1

K2

(
Xi − x

h

)
To test the null hypothesis

H0 : the symmetric part of g is f ⇔ g ∈ Ff = {g(x) = f (x)p{F (x)}, p ∈ P},
H1 : g /∈ Ff .

a reasonable test statistic is

T =

∫
{ĝ1(x)− ĝ2(x)}2

ω(x)dx ,

where ω(x) ≥ 0 is a weight function.
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The test statistic

T =

∫
{ĝ1(x)− ĝ2(x)}2

ω(x)dx ,

T can be considered as an analogue of the test statistic studied in

Hall (1984) for testing gof to a totally specified pdf: ĝ1(x) = g0(x)

Fan (1994) for testing gof to a parametric family: ĝ1(x) = g(x ; θ̂)
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The test statistic

Theorem 1

Suppose that K1 and K2 satisfy Assumptions a–d, that X has pdf % and
Y = F (X ) has pdf υ, % and υ are uniformly continuous. Suppose h→ 0 and
(nh)−1 log n→ 0. Suppose ω : R→ [0,∞) satisfies∫
ω(x)dx <∞,

∫
f 2(x)ω(x)dx <∞,

∫
f (x)υ{F (t)}ω(x)dx <∞,

∫
%(x)ω(x)dx <∞.

Then
T as−→ I =

∫
[f (x)υ{F (x)} − %(x)]2 w(t)dt .

Note that I ≥ 0. If H0 is true then I = 0. In fact, if ω(t) > 0, ∀t ∈ R, then if
follows that I = 0 iff H0 is true.

The result in Theorem 1 is also true for ω(x) = 1

The statement in Theorem 1 is also true if we take different bandwidths,
say h1 and h2, whenever hi → 0 and (nhi )

−1 log n→ 0, i = 1, 2.
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Asymptotic null distribution

Theorem 2

Suppose that K1 satisfies Assumption 2, K2 satisfies Assumption 2 (a),
Assumptions 1,3,4 hold and that H0 is true. If nh5 → δ, for some δ ∈ R, δ ≥ 0,
then

nh1/2(T − µ03 − µ04)
L→
√

2σ1N1,

where µ03 = µ3/(nh),

µ3 =

∫
κ2(t , u)ω(t)g(t)dudt ,

µ04 = h4µ4,

µ4 =

∫ [
τ1f (t)p′′{F (t)} − τ2g′′(t)

]2
ω(t)dt ,

τi =
∫

x2Ki (t)dt , i = 1, 2, N1 ∼ N(0, 1),

σ2
1 =

∫ {∫
κ(t , u)κ(t , u + v)du

}2

ω2(t)g2(t)dvdt

and κ(t , u) = f (t)K1{uf (t)} − K2(u).
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Asymptotic null distribution

Theorem 2

nh1/2(T − µ03 − µ04)
L→
√

2σ1N1

T =
1
n2

n∑
i,j=1

Un(Xi ,Xj ) with Un(x , y) =

∫
vn(x ; t)vn(y ; t)ω(t)dt

µn(t) = E0{vn(X ; t)}, wn(x ; t) = vn(x ; t)− µn(t).

T = T1 + T2 + T3 + T4,

with

T1 =
1
n2

∑
i 6=j

∫
wn(Xi ; t)wn(Xj ; t)ω(t)dt , T2 =

2
n

n∑
i=1

∫
wn(Xi ; t)µn(t)ω(t)dt ,

T3 =
1
n2

n∑
i=1

∫
w2

n (Xi ; t)ω(t)dt , T4 =

∫
µ2

n(t)ω(t)dt .
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Asymptotic null distribution

T red =
1

n(n − 1)

∑
i 6=j

Un(Xi ,Xj ).

Theorem 3

Suppose that assumptions in Theorem 1 hold. Suppose also that Ki ≥ 0,
i = 1, 2, and that ∫

f 2(x)υ{F (t)}ω(x)dx <∞.

Then
T red as−→ I =

∫
[f (x)υ{F (x)} − %(x)]2 w(t)dt .
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Theorem 4

Suppose that assumptions in Theorem 2 hold. Then

nh1/2(T red − µ04)
L→
√

2σ1N1.

Note that
µ04 ≈

∫
E2

0 {ĝ1(t)− ĝ2(t)}ω(t)dt .

Thus, the term µ04 accounts for the integrated squared bias of ĝ1(t)− ĝ2(t)
as an estimator of g(t)− g(t) = 0.

We will restrict our study to T red , since the practical use of T requires to
estimate more parameters than that of T red .
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Estimating σ2
1

Note that
σ2

1 =

∫
R(t)g2(t)dt ,

with R(t) = R1(t)ω2(t),

R1(t) =

∫ {∫
κ(t , u)κ(t , u + v)du

}2

dv ,

κ(t , u) = f (t)K1{uf (t)} − K2(u). The only unknown is the pdf of the data g:

g̃1(x) = f (x)p̃{F (x)},

where

p̃(x) =
1

nh3

n∑
i=1

K3

(
Yi − x

h3

)
,

Yi = F (Xi ), 1 ≤ i ≤ n, h3 is the bandwidth and K3 is a kernel, that may differ
from h and K1 in the definition of ĝ1, respectively.
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Estimating σ2
1

Let
σ̂2

1 =

∫
R(t)g̃2

1 (t)dt

The consistency of σ̂2
1 as an estimator of σ2

1 follows from the next lemma.

Lemma 1

Suppose that K3 satisfy Assumptions a–d, that Y = F (X ) has pdf υ, υ is
uniformly continuous. Suppose h3 → 0 and (nh3)−1 log n→ 0. Let R : R→ R
be such that

∫
|R(t)|f 2(t)dt <∞ and

∫
|R(t)|f (t)l1(t)dt <∞, where

l1(t) = f (t)υ{F (t)}. Then,∫
R(t)g̃2

1 (t)dt as−→
∫

R(t)l2
1 (t)dt .
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Estimating σ2
1

Another estimator of σ2
1 can be derived by taking into account that

σ2
1 =

∫
R(t)g2(t)dt =

∫
R(t)g(t)dG(t),

where G is the cdf of X , which suggests

σ̃2
1 =

∫
R(t)g̃1(t)dGn(t) =

1
n

n∑
i=1

R(Xi )g̃1(Xi ).

The consistency of σ̃2
1 as an estimator of σ2

1 follows from the next lemma.

Lemma 2

Suppose that K3 satisfy Assumptions a–d, that X has pdf % and Y = F (X )
has pdf υ, υ is uniformly continuous. Suppose h3 → 0 and (nh3)−1 log n→ 0.
Let R : R→ R be such that

∫
|R(t)|f (t)%(t)dt <∞ and∫

|R(t)|l1(t)%(t)dt <∞, where l1 is as defined in Lemma 1. Then,

1
n

n∑
i=1

R(Xi )g̃1(Xi )
as−→
∫

R(t)l1(t)%(t)dt .
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Estimating µ4

Under H0

µ4 =

∫
[{τ1f (t)−τ2f 3(t)}p′′{F (t)}−3τ2f (t)f ′(t)p′{F (t)}−τ2f ′′(t)p{F (t)}]2w(t)dt .

Thus the problem of estimating µ4 is equivalent to that of estimating∫
R(t)p(a){F (t)}p(b){F (t)}dt ,

where R(t) is a known function, p(a)(u) = ∂a

∂ua p(u).
p(a)(u) can be estimated by

p̃(a)(u) =
∂a

∂ua p̃(u) =
1

nha+1
3

n∑
i=1

K (a)
3

(
Yi − u

h3

)
,

Yi = F (Xi ), 1 ≤ i ≤ n, and K (a)
3 (u) = ∂a

∂ua K3(u), a = 0, 1, 2.
Analogously, we estimate p(b)(u) through

˜̃p(b)(u) =
∂b

∂ub
˜̃p(u) =

1
nhb+1

4

n∑
i=1

K (b)
4

(
Yi − u

h4

)
,

h4 and K4 may differ from h3 and K3.
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Estimating µ4

Lemma 3

Suppose that K3 is a times differentiable, K4 is b times differentiable, and
satisfy certain further assumptions. Suppose that Y = F (X ) has pdf υ, υ has
uniformly continuous a and b derivatives. Suppose that
h3 → 0, n−1h−2a−1

3 log(1/h3)→ 0, h4 → 0 and n−1h−2b−1
4 log(1/h4)→ 0. Let

R : R→ R be such that∫
|R(t)|dt <∞,

∫
|R(t)υ(a){F (t)}|dt <∞,

∫
|R(t)υ(b){F (t)}|dt <∞.

Then, ∫
R(t)p̃(a){F (t)}˜̃p(b){F (t)}dt as−→

∫
R(t)υ(a){F (t)}υ(b){F (t)}dt .
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Power: fixed alternatives

Let α ∈ (0, 1). As an immediate consequence of the stated results, the test

Ψα = Ψα(X1, . . . ,Xn) =

 1 if nh1/2 |T red − h4µ̂4|√
2σ̂1

≥ Z1−α/2,

0 otherwise,

is consistent against any fixed alternative, that is to say, if the data have pdf
g /∈ Ff , then

lim
n→∞

P(Ψα = 1) = 1,

whenever ω(t) > 0, ∀t ∈ R. The result is also true if σ̂1 is replaced by σ̃1.
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Power: local alternatives

The first problem is that of defining these alternatives. Here we consider
the following:

H1,n : the pdf of the data is gn(x) = g(x) + and1(x),

where g ∈ Ff , that is, g(x) = f (x)p{F (x)}, for some p ∈ P, an → 0 and∫
d1(x)dx = 0.

Under H1,n, gn can be uniquely expressed as

gn(x) = fn(x)pn{Fn(x)},

where fn ∈ S, Fn(x) =
∫ x
−∞ fn(u)du is the cdf associated with the pdf fn,

fn(x) = f (x) + and(x),

with
d(x) = {d1(x) + d1(−x)}/2 ∈ S
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Power: local alternatives

Theorem 5

Suppose assumption in Theorem 2 hold. Assume also that d1 and
c : [0, 1]→ R, defined as c(u) = d1{F−1(u)}/f{F−1(u)}, are bounded, two
times differentiable, with second derivative bounded and uniformly
continuous. If H1,n holds, then

nh1/2(T red − µ04 − 2anµ05 − a2
nµ06)

L→
√

2σ1N1,

where µ04 and σ1 are as defined in Theorem 2, µ05 = h4µ5, µ06 = h4µ6,

µ5 =

∫ [
τ1f (t)p′′{F (t)} − τ2g′′(t)

] [
τ1f (t)c′′{F (t)} − τ2d ′′1 (t)

]
ω(t)dt ,

µ6 =

∫ [
τ1f (t)c′′{F (t)} − τ2d ′′1 (t)

]2
ω(t)dt .
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Power: local alternatives

The test Ψα is able to detect local alternatives such that

µ5 6= 0 and nh1/2+4an 9 0

or
µ6 6= 0 and nh1/2+4a2

n 9 0.

Suppose that µ5 6= 0. Since we are assuming that nh5 → δ, for some
δ ≥ 0, this implies that the test Ψα is able to detect local alternatives
converging to the null hypothesis at a rate greater than or equal to
n−1/10.

This shortcoming persist if instead of T red we consider a test based on
the initially proposed test statistic T .

The best choice for h is

h = cn−1/5, for some c > 0.
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Some numerical results

H0N : f is the pfd of a N(0, 1),

K1, K2, h, w , σ̂1, σ̃1, µ4,
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Some numerical results

To investigate the goodness of the asymptotic approximation to the null
distribution, we generated samples from generalized skew-normal distribution
with pdf

g(x) = 2φ(x)Φ(α1x + α3x3).
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Figure 1. Graphs of the pdf g, in the top row, and of the associated pdf p, in

the bottom row, for the selected values of (α1, α3), under each graph.
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Some numerical results

Table 1. Estimated type I probability errors.
(0,0) (2,0) (1,1) (1,2) (0,2) (2,-1)

n h f05 f10 f05 f10 f05 f10 f05 f10 f05 f10 f05 f10
50 .08 .038 .062 .045 .069 .040 .079 .054 .076 .046 .082 .080 .106

.10 .042 .064 .060 .085 .049 .081 .071 .096 .074 .114 .113 .161

.12 .048 .062 .075 .095 .072 .104 .102 .138 .128 .172 .174 .237

.14 .056 .087 .105 .142 .100 .150 .147 .191 .198 .243 .286 .372
100 .06 .037 .067 .036 .076 .035 .064 .045 .078 .042 .063 .069 .101

.08 .050 .073 .052 .081 .041 .072 .060 .085 .062 .101 .111 .165

.10 .050 .074 .064 .105 .065 .109 .083 .109 .135 .192 .204 .292

.12 .059 .089 .108 .161 .125 .191 .126 .174 .256 .326 .435 .540
200 .06 .037 .070 .068 .094 .049 .074 .051 .088 .054 .088 .096 .140

.08 .044 .080 .080 .107 .064 .103 .082 .122 .122 .172 .159 .221

.10 .068 .102 .102 .139 .133 .182 .150 .216 .297 .385 .316 .384
300 .05 .052 .082 .060 .088 .042 .084 .042 .064 .048 .088 .096 .162

.06 .056 .086 .062 .090 .042 .078 .042 .060 .056 .084 .196 .274

.07 .050 .078 .070 .102 .046 .070 .048 .066 .068 .104 .294 .390
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Some numerical results

Table 2. Bootstrap estimated type I probability errors vs asymptotic approx. for n = 50 and h = 0.10.
(0,0) (2,0) (1,1) (1,2) (0,2) (2,-1)

f05 f10 f05 f10 f05 f10 f05 f10 f05 f10 f05 f10
Boot .042 .092 .066 .114 .062 .130 .078 .150 .058 .156 .132 .230
Asym .042 .064 .060 .085 .049 .081 .071 .096 .074 .114 .113 .161

M. Dolores Jiménez-Gamero Testing for skew-symmetric models



Non-Gaussian Multivariate Statistical Models and their Applications

Some numerical results

Table 3. Estimated type I probability errors with bootstrap selection of the bandwidth.
(0,0) (2,0) (1,1) (1,2) (0,2) (2,-1)

n f05 f10 f05 f10 f05 f10 f05 f10 f05 f10 f05 f10
50 .038 .062 .048 .076 .042 .088 .050 .082 .042 .074 .074 .100

100 .052 .086 .052 .090 .044 .078 .048 .090 .042 .075 .068 .104
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Some numerical results

Table 4. Estimated powers with bootstrap selection of the bandwidth.
t5 U χ2

3 M1 M2
n f05 f10 f05 f10 f05 f10 f05 f10 f05 f10

50 0.048 0.070 1.000 1.000 0.500 0.594 0.532 0.630 0.050 0.088
100 0.048 0.082 1.000 1.000 0.820 0.872 0.860 0.904 0.513 0.613

M1=0.5 N(0,1)+0.5 N(4,1), M2=0.5 N(0,1)+0.5 N(4,σ2), σ = 2
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Figure 2. Graphs of the pdf of the t5 (dashed line) and the pdf of the law
N(0, 1) (solid line).
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Further research

The results in this talk could be extended in several directions:

we could let the pdf in the the null hypothesis depend on unknown
parameters, such a location and scale parameters;

the results could be extended to the d-dimensional case, for any fixed
d ≥ 1;

instead of letting the window parameter go to 0 as the sample size
increases, we could keep it fixed in order to get better results for the
detection of local alternatives;

. . .
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Further research

For the second extension one can follow the steps in this work, by taking into
account that Abtahi and Towhidi (2013) have shown that any continuous
d-variate pdf g can be expressed as

g(x) = f (x)p{F (x1),F (x2|x1), . . . ,F (xd |x1, x2, . . . , xd−1)}, (2)

where f is a symmetric pdf on on Rd .

In addition, these authors have proven the following, which is a multivariate
analogue of Proposition 1

Proposition 2 (Abtahi and Towhidi, 2013)

Let f be pdf of a symmetric random vector and let p be a pdf defined on
[0, 1]d .

(a) If the pdf of X is as in (2), then
F(X ) = (F (X1),F (X2|X1), . . . ,F (Xd |X1, . . . ,Xd−1) has pdf p.

(b) If X has pdf p ∈ P, then
(F−1(X1),F−1(X2|X1), . . . ,F−1(Xd |X1, . . . ,Xd−1) has pdf (2).
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Thank you for your attention !!
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Assumptions for Theorem 1

ASSUMPTION a The kernel K is of bounded variation and uniformly
continuous, with modulus of continuity mK .

ASSUMPTION b
∫
|K (x)| dx <∞ and K (x)→ 0 as |x | → ∞.

ASSUMPTION c
∫

K (x)dx = 1.

ASSUMPTION d
∫
|x log |x ||1/2 dK (x)dx <∞.

ASSUMPTION e
∫ 1

0 {log(1/u)}1/2dγ(u) <∞, where γ(u) = {mk (u)}1/2.
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Assumptions for Theorem 2

ASSUMPTION 1 h = hn → 0, nh→∞.

ASSUMPTION 2 (a) K : R→ [0,∞) is bounded and satisfy∫
K (x)dx = 1,

∫
xK (x)dx = 0,

∫
x2K (x)dx <∞.

(b) K is continuous.

ASSUMPTION 3 The functions f and p are bounded, two times differentiable,
their second derivatives are bounded and uniformly
continuous.

ASSUMPTION 4 (a) ω : R→ [0,∞) is bounded and satisfies∫
ω(x)dx <∞.

(b) ω is continuous.
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