Testing for skew-symmetric models

M. Dolores Jiménez-Gamero

Departamento de Estadística e Investigación Operativa
Universidad de Sevilla (Spain)

May, 2013

- Let f and F be the pdf and the cdf, respectively, of a symmetric law on the real line,

$$
f(x)=f(-x), \quad \forall x \in \mathbb{R}
$$

Let p be a pdf on [0,1]. According to Abtahi et al (2011), a rv X with pdf

$$
\begin{equation*}
g(x)=f(x) p\{F(x)\} \tag{1}
\end{equation*}
$$

is said to have a unified skewed distribution with functional parameters f and $p, X \sim \operatorname{USD}(f, p)$.

- Every skewed pdf can be expressed in the form (1).
- In fact, from Wang, Boyer and Genton (2004), any continuous pdf can be uniquely expressed as (1) for certain pdfs

$$
\begin{gathered}
f \in \mathcal{S}=\{f: \mathbb{R} \rightarrow \mathbb{R}, f \text { is a symmetric pdf }\} \text { and } \\
p \in \mathcal{P}=\{p:[0,1] \rightarrow \mathbb{R}, p \text { is a pdf }\}
\end{gathered}
$$

Introduction

$$
g(x)=f(x) p\{F(x)\}
$$

If

- X is a continuous rv with pdf g,
- Y is a continuous rv with pdf f,
- τ is an even function
then

$$
\tau(Y) \stackrel{d}{=} \tau(X)
$$

In particular: $Y^{2} \stackrel{d}{=} X^{2}, E\left(Y^{2 k}\right)=E\left(X^{2 k}\right), \forall k, \ldots$

Introduction

Consequence: for certain inferential objectives, it is not necessary to know the law of X, but only that of the symmetric component of its pdf.

The purpose of this work is to propose a test for testing gof for the symmetric component:
H_{0} : the symmetric part of g is $f \Leftrightarrow g \in \mathbb{F}_{f}=\{g(x)=f(x) p\{F(x)\}, p \in \mathcal{P}\}$, $H_{1}: g \notin \mathbb{F}_{f}$.

The test statistic

Proposition 1 (Abtahi et al, 2011)

Let $f \in \mathcal{S}$ and $p \in \mathcal{P}$.
(a) If $X \sim \operatorname{USD}(f, p)$, then $F(X)$ has pdf p.
(b) If X has pdf $p \in \mathcal{P}$, then $F^{-1}(X) \sim U S D(f, p)$.

Let X_{1}, \ldots, X_{n} from $X \sim \operatorname{USD}(f, p)$. Assume f known. The above result led Abtahi et al (2011) to propose the following estimator

$$
\hat{g}_{1}(x)=f(x) \hat{p}\{F(x)\}
$$

where \hat{p} is a kernel-based estimator of p,

$$
\hat{p}(x)=\frac{1}{n h} \sum_{i=1}^{n} K_{1}\left(\frac{Y_{i}-x}{h}\right)
$$

$Y_{i}=F\left(X_{i}\right), 1 \leq i \leq n, h$ is the bandwidth and K_{1} is a kernel.
Note that to build $\hat{g}_{1}(x)$ we only need to know the symmetric part of g

$$
\hat{g}_{1}(x)=f(x) \hat{p}\{F(x)\}
$$

Another consistent kernel-based estimator (could take different bandwidths)

$$
\hat{g}_{2}(x)=\frac{1}{n h} \sum_{i=1}^{n} K_{2}\left(\frac{X_{i}-x}{h}\right)
$$

To test the null hypothesis
H_{0} : the symmetric part of g is $f \Leftrightarrow g \in \mathbb{F}_{f}=\{g(x)=f(x) p\{F(x)\}, p \in \mathcal{P}\}$, $H_{1}: g \notin \mathbb{F}_{f}$.
a reasonable test statistic is

$$
T=\int\left\{\hat{g}_{1}(x)-\hat{g}_{2}(x)\right\}^{2} \omega(x) d x
$$

where $\omega(x) \geq 0$ is a weight function.

$$
T=\int\left\{\hat{g}_{1}(x)-\hat{g}_{2}(x)\right\}^{2} \omega(x) d x
$$

T can be considered as an analogue of the test statistic studied in

- Hall (1984) for testing gof to a totally specified pdf: $\hat{g}_{1}(x)=g_{0}(x)$
- Fan (1994) for testing gof to a parametric family: $\hat{g}_{1}(x)=g(x ; \hat{\theta})$

The test statistic

Theorem 1

Suppose that K_{1} and K_{2} satisfy Assumptions a-d, that X has pdf ϱ and $Y=F(X)$ has pdf v, ϱ and v are uniformly continuous. Suppose $h \rightarrow 0$ and $(n h)^{-1} \log n \rightarrow 0$. Suppose $\omega: \mathbb{R} \rightarrow[0, \infty)$ satisfies
$\int \omega(x) d x<\infty, \int f^{2}(x) \omega(x) d x<\infty, \int f(x) v\{F(t)\} \omega(x) d x<\infty, \int \varrho(x) \omega(x) d x$
Then

$$
T \xrightarrow{a s} I=\int[f(x) v\{F(x)\}-\varrho(x)]^{2} w(t) d t .
$$

- Note that $I \geq 0$. If H_{0} is true then $I=0$. In fact, if $\omega(t)>0, \forall t \in \mathbb{R}$, then if follows that $I=0$ iff H_{0} is true.
- The result in Theorem 1 is also true for $\omega(x)=1$
- The statement in Theorem 1 is also true if we take different bandwidths, say h_{1} and h_{2}, whenever $h_{i} \rightarrow 0$ and $\left(n h_{i}\right)^{-1} \log n \rightarrow 0, i=1,2$.

Asymptotic null distribution

Theorem 2

Suppose that K_{1} satisfies Assumption 2, K_{2} satisfies Assumption 2 (a), Assumptions $1,3,4$ hold and that H_{0} is true. If $n h^{5} \rightarrow \delta$, for some $\delta \in \mathbb{R}, \delta \geq 0$, then

$$
n h^{1 / 2}\left(T-\mu_{03}-\mu_{04}\right) \xrightarrow{\mathcal{L}} \sqrt{2} \sigma_{1} N_{1},
$$

where $\mu_{03}=\mu_{3} /(n h)$,

$$
\mu_{3}=\int \kappa^{2}(t, u) \omega(t) g(t) d u d t,
$$

$\mu_{04}=h^{4} \mu_{4}$,

$$
\mu_{4}=\int\left[\tau_{1} f(t) p^{\prime \prime}\{F(t)\}-\tau_{2} g^{\prime \prime}(t)\right]^{2} \omega(t) d t,
$$

$\tau_{i}=\int x^{2} K_{i}(t) d t, i=1,2, N_{1} \sim N(0,1)$,

$$
\sigma_{1}^{2}=\int\left\{\int \kappa(t, u) \kappa(t, u+v) d u\right\}^{2} \omega^{2}(t) g^{2}(t) d v d t
$$

and $\kappa(t, u)=f(t) K_{1}\{u f(t)\}-K_{2}(u)$.

Asymptotic null distribution

Theorem 2

$$
n h^{1 / 2}\left(T-\mu_{03}-\mu_{04}\right) \xrightarrow{\mathcal{L}} \sqrt{2} \sigma_{1} N_{1}
$$

$$
\begin{gathered}
T=\frac{1}{n^{2}} \sum_{i, j=1}^{n} U_{n}\left(X_{i}, X_{j}\right) \quad \text { with } \quad U_{n}(x, y)=\int v_{n}(x ; t) v_{n}(y ; t) \omega(t) d t \\
\mu_{n}(t)=E_{0}\left\{v_{n}(X ; t)\right\}, \quad w_{n}(x ; t)=v_{n}(x ; t)-\mu_{n}(t) \\
T=T_{1}+T_{2}+T_{3}+T_{4}
\end{gathered}
$$

with

$$
\begin{gathered}
T_{1}=\frac{1}{n^{2}} \sum_{i \neq j} \int w_{n}\left(X_{i} ; t\right) w_{n}\left(X_{j} ; t\right) \omega(t) d t, \quad T_{2}=\frac{2}{n} \sum_{i=1}^{n} \int w_{n}\left(X_{i} ; t\right) \mu_{n}(t) \omega(t) d t, \\
T_{3}=\frac{1}{n^{2}} \sum_{i=1}^{n} \int w_{n}^{2}\left(X_{i} ; t\right) \omega(t) d t, \quad T_{4}=\int \mu_{n}^{2}(t) \omega(t) d t .
\end{gathered}
$$

Asymptotic null distribution

$$
T^{\text {red }}=\frac{1}{n(n-1)} \sum_{i \neq j} U_{n}\left(X_{i}, X_{j}\right)
$$

Theorem 3

Suppose that assumptions in Theorem 1 hold. Suppose also that $K_{i} \geq 0$, $i=1,2$, and that

$$
\int f^{2}(x) v\{F(t)\} \omega(x) d x<\infty .
$$

Then

$$
T^{\text {red }} \xrightarrow{\text { as }} I=\int[f(x) v\{F(x)\}-\varrho(x)]^{2} w(t) d t .
$$

Theorem 4

Suppose that assumptions in Theorem 2 hold. Then

$$
n h^{1 / 2}\left(T^{\text {red }}-\mu_{04}\right) \xrightarrow{\mathcal{L}} \sqrt{2} \sigma_{1} N_{1} .
$$

Note that

$$
\mu_{04} \approx \int E_{0}^{2}\left\{\hat{g}_{1}(t)-\hat{g}_{2}(t)\right\} \omega(t) d t
$$

Thus, the term μ_{04} accounts for the integrated squared bias of $\hat{g}_{1}(t)-\hat{g}_{2}(t)$ as an estimator of $g(t)-g(t)=0$.

We will restrict our study to $T^{\text {red }}$, since the practical use of T requires to estimate more parameters than that of $T^{\text {red }}$.

Estimating σ_{1}^{2}

Note that

$$
\sigma_{1}^{2}=\int R(t) g^{2}(t) d t
$$

with $R(t)=R_{1}(t) \omega^{2}(t)$,

$$
R_{1}(t)=\int\left\{\int \kappa(t, u) \kappa(t, u+v) d u\right\}^{2} d v
$$

$\kappa(t, u)=f(t) K_{1}\{u f(t)\}-K_{2}(u)$. The only unknown is the pdf of the data g :

$$
\tilde{g}_{1}(x)=f(x) \tilde{p}\{F(x)\}
$$

where

$$
\tilde{p}(x)=\frac{1}{n h_{3}} \sum_{i=1}^{n} K_{3}\left(\frac{Y_{i}-x}{h_{3}}\right)
$$

$Y_{i}=F\left(X_{i}\right), 1 \leq i \leq n, h_{3}$ is the bandwidth and K_{3} is a kernel, that may differ from h and K_{1} in the definition of \hat{g}_{1}, respectively.

Estimating σ_{1}^{2}

Let

$$
\hat{\sigma}_{1}^{2}=\int R(t) \tilde{g}_{1}^{2}(t) d t
$$

The consistency of $\hat{\sigma}_{1}^{2}$ as an estimator of σ_{1}^{2} follows from the next lemma.

Lemma 1

Suppose that K_{3} satisfy Assumptions a-d, that $Y=F(X)$ has pdf v, v is uniformly continuous. Suppose $h_{3} \rightarrow 0$ and $\left(n h_{3}\right)^{-1} \log n \rightarrow 0$. Let $R: \mathbb{R} \rightarrow \mathbb{R}$ be such that $\int|R(t)| f^{2}(t) d t<\infty$ and $\int|R(t)| f(t) l_{1}(t) d t<\infty$, where $I_{1}(t)=f(t) v\{F(t)\}$. Then,

$$
\left.\int R(t) \tilde{g}_{1}^{2}(t) d t \stackrel{\text { as }}{\longrightarrow} \int R(t)\right|_{1} ^{2}(t) d t .
$$

Estimating σ_{1}^{2}

Another estimator of σ_{1}^{2} can be derived by taking into account that

$$
\sigma_{1}^{2}=\int R(t) g^{2}(t) d t=\int R(t) g(t) d G(t)
$$

where G is the cdf of X, which suggests

$$
\tilde{\sigma}_{1}^{2}=\int R(t) \tilde{g}_{1}(t) d G_{n}(t)=\frac{1}{n} \sum_{i=1}^{n} R\left(X_{i}\right) \tilde{g}_{1}\left(X_{i}\right) .
$$

The consistency of $\tilde{\sigma}_{1}^{2}$ as an estimator of σ_{1}^{2} follows from the next lemma.

Lemma 2

Suppose that K_{3} satisfy Assumptions a-d, that X has pdf ϱ and $Y=F(X)$ has pdf v, v is uniformly continuous. Suppose $h_{3} \rightarrow 0$ and $\left(n h_{3}\right)^{-1} \log n \rightarrow 0$. Let $R: \mathbb{R} \rightarrow \mathbb{R}$ be such that $\int|R(t)| f(t) \varrho(t) d t<\infty$ and $\int|R(t)| l_{1}(t) \varrho(t) d t<\infty$, where Λ_{1} is as defined in Lemma 1. Then,

$$
\frac{1}{n} \sum_{i=1}^{n} R\left(X_{i}\right) \tilde{g}_{1}\left(X_{i}\right) \xrightarrow{\text { as }} \int R(t) l_{1}(t) \varrho(t) d t .
$$

Estimating μ_{4}

- Under H_{0}

$$
\mu_{4}=\int\left[\left\{\tau_{1} f(t)-\tau_{2} f^{3}(t)\right\} p^{\prime \prime}\{F(t)\}-3 \tau_{2} f(t) f^{\prime}(t) p^{\prime}\{F(t)\}-\tau_{2} f^{\prime \prime}(t) p\{F(t)\}\right]^{2} w(t) d t
$$

Thus the problem of estimating μ_{4} is equivalent to that of estimating

$$
\int R(t) p^{(a)}\{F(t)\} p^{(b)}\{F(t)\} d t
$$

where $R(t)$ is a known function, $p^{(a)}(u)=\frac{\partial^{a}}{\partial u^{a}} p(u)$.

- $p^{(a)}(u)$ can be estimated by

$$
\begin{array}{r}
\tilde{p}^{(a)}(u)=\frac{\partial^{a}}{\partial u^{a}} \tilde{p}(u)=\frac{1}{n h_{3}^{a+1}} \sum_{i=1}^{n} K_{3}^{(a)}\left(\frac{Y_{i}-u}{h_{3}}\right), \\
Y_{i}=F\left(X_{i}\right), 1 \leq i \leq n, \text { and } K_{3}^{(a)}(u)=\frac{\partial^{a}}{\partial u^{a}} K_{3}(u), a=0,1,2 .
\end{array}
$$

- Analogously, we estimate $p^{(b)}(u)$ through

$$
\tilde{\tilde{p}}^{(b)}(u)=\frac{\partial^{b}}{\partial u^{b}} \tilde{\tilde{p}}(u)=\frac{1}{n h_{4}^{b+1}} \sum_{i=1}^{n} K_{4}^{(b)}\left(\frac{Y_{i}-u}{h_{4}}\right),
$$

h_{4} and K_{4} may differ from h_{3} and K_{3}.

Estimating μ_{4}

Lemma 3

Suppose that K_{3} is a times differentiable, K_{4} is b times differentiable, and satisfy certain further assumptions. Suppose that $Y=F(X)$ has pdf v, v has uniformly continuous a and b derivatives. Suppose that
$h_{3} \rightarrow 0, n^{-1} h_{3}^{-2 a-1} \log \left(1 / h_{3}\right) \rightarrow 0, h_{4} \rightarrow 0$ and $n^{-1} h_{4}^{-2 b-1} \log \left(1 / h_{4}\right) \rightarrow 0$. Let $R: \mathbb{R} \rightarrow \mathbb{R}$ be such that

$$
\int|R(t)| d t<\infty, \quad \int\left|R(t) v^{(a)}\{F(t)\}\right| d t<\infty, \quad \int\left|R(t) v^{(b)}\{F(t)\}\right| d t<\infty
$$

Then,

$$
\int R(t) \tilde{p}^{(a)}\{F(t)\} \tilde{\tilde{p}}^{(b)}\{F(t)\} d t \xrightarrow{\text { as }} \int R(t) v^{(a)}\{F(t)\} v^{(b)}\{F(t)\} d t .
$$

Let $\alpha \in(0,1)$. As an immediate consequence of the stated results, the test

$$
\Psi_{\alpha}=\Psi_{\alpha}\left(X_{1}, \ldots, X_{n}\right)= \begin{cases}1 & \text { if } n h^{1 / 2} \frac{\left|T^{r e d}-h^{4} \hat{\mu}_{4}\right|}{\sqrt{2} \hat{\sigma}_{1}} \geq Z_{1-\alpha / 2}, \\ 0 & \text { otherwise },\end{cases}
$$

is consistent against any fixed alternative, that is to say, if the data have pdf $g \notin \mathbb{F}_{f}$, then

$$
\lim _{n \rightarrow \infty} P\left(\Psi_{\alpha}=1\right)=1,
$$

whenever $\omega(t)>0, \forall t \in \mathbb{R}$. The result is also true if $\hat{\sigma}_{1}$ is replaced by $\tilde{\sigma}_{1}$.

- The first problem is that of defining these alternatives. Here we consider the following:

$$
H_{1, n} \text { : the pdf of the data is } g_{n}(x)=g(x)+a_{n} d_{1}(x) \text {, }
$$

where $g \in \mathbb{F}_{f}$, that is, $g(x)=f(x) p\{F(x)\}$, for some $p \in \mathcal{P}, a_{n} \rightarrow 0$ and $\int d_{1}(x) d x=0$.

- Under $H_{1, n}, g_{n}$ can be uniquely expressed as

$$
g_{n}(x)=f_{n}(x) p_{n}\left\{F_{n}(x)\right\},
$$

where $f_{n} \in \mathcal{S}, F_{n}(x)=\int_{-\infty}^{x} f_{n}(u) d u$ is the cdf associated with the pdf f_{n},

$$
f_{n}(x)=f(x)+a_{n} d(x),
$$

with

$$
d(x)=\left\{d_{1}(x)+d_{1}(-x)\right\} / 2 \in \mathcal{S}
$$

Power: local alternatives

Theorem 5

Suppose assumption in Theorem 2 hold. Assume also that d_{1} and $c:[0,1] \rightarrow \mathbb{R}$, defined as $c(u)=d_{1}\left\{F^{-1}(u)\right\} / f\left\{F^{-1}(u)\right\}$, are bounded, two times differentiable, with second derivative bounded and uniformly continuous. If $H_{1, n}$ holds, then

$$
n h^{1 / 2}\left(T^{\text {red }}-\mu_{04}-2 a_{n} \mu_{05}-a_{n}^{2} \mu_{06}\right) \xrightarrow{\mathcal{L}} \sqrt{2} \sigma_{1} N_{1},
$$

where μ_{04} and σ_{1} are as defined in Theorem 2, $\mu_{05}=h^{4} \mu_{5}, \mu_{06}=h^{4} \mu_{6}$,

$$
\begin{gathered}
\mu_{5}=\int\left[\tau_{1} f(t) p^{\prime \prime}\{F(t)\}-\tau_{2} g^{\prime \prime}(t)\right]\left[\tau_{1} f(t) c^{\prime \prime}\{F(t)\}-\tau_{2} d_{1}^{\prime \prime}(t)\right] \omega(t) d t, \\
\mu_{6}=\int\left[\tau_{1} f(t) c^{\prime \prime}\{F(t)\}-\tau_{2} d_{1}^{\prime \prime}(t)\right]^{2} \omega(t) d t .
\end{gathered}
$$

- The test Ψ_{α} is able to detect local alternatives such that

$$
\mu_{5} \neq 0 \text { and } n h^{1 / 2+4} a_{n} \nrightarrow 0
$$

or

$$
\mu_{6} \neq 0 \quad \text { and } \quad n h^{1 / 2+4} a_{n}^{2} \nrightarrow 0
$$

- Suppose that $\mu_{5} \neq 0$. Since we are assuming that $n h^{5} \rightarrow \delta$, for some $\delta \geq 0$, this implies that the test Ψ_{α} is able to detect local alternatives converging to the null hypothesis at a rate greater than or equal to $n^{-1 / 10}$.
- This shortcoming persist if instead of $T^{\text {red }}$ we consider a test based on the initially proposed test statistic T.
- The best choice for h is

$$
h=c n^{-1 / 5}, \text { for some } c>0
$$

Some numerical results

$H_{0 N}: f$ is the pfd of a $N(0,1)$,

$$
K_{1}, K_{2}, h, w, \hat{\sigma}_{1}, \tilde{\sigma}_{1}, \mu_{4},
$$

Some numerical results

To investigate the goodness of the asymptotic approximation to the null distribution, we generated samples from generalized skew-normal distribution with pdf

$$
g(x)=2 \phi(x) \Phi\left(\alpha_{1} x+\alpha_{3} x^{3}\right)
$$

$(0,0)$

$(2,0)$

$(1,1)$

$(1,2)$

$(0,2)$

(2,-1)

Figure 1. Graphs of the pdf g, in the top row, and of the associated pdf p, in the bottom row, for the selected values of (α_{1}, α_{3}), under each graph.

Some numerical results

Table 1. Estimated type I probability errors.

		$(0,0)$		$(2,0)$		$(1,1)$		$(1,2)$		$(0,2)$		(2,-1)	
n	h	f05	f10	f05	$f 10$	f05	$f 10$	f05	$f 10$	$f 05$	$f 10$	f05	f10
50	. 08	. 038	. 062	. 045	. 069	. 040	. 079	. 054	. 076	. 046	. 082	. 080	. 106
	. 10	. 042	. 064	. 060	. 085	. 049	. 081	. 071	. 096	. 074	. 114	. 113	. 161
	. 12	. 048	. 062	. 075	. 095	. 072	. 104	. 102	. 138	. 128	. 172	. 174	. 237
	. 14	. 056	. 087	. 105	. 142	. 100	. 150	. 147	. 191	. 198	. 243	. 286	. 372
100	. 06	. 037	. 067	. 036	. 076	. 035	. 064	. 045	. 078	. 042	. 063	. 069	. 101
	. 08	. 050	. 073	. 052	. 081	. 041	. 072	. 060	. 085	. 062	. 101	. 111	. 165
	. 10	. 050	. 074	. 064	. 105	. 065	. 109	. 083	. 109	. 135	. 192	. 204	. 292
	. 12	. 059	. 089	. 108	. 161	. 125	. 191	. 126	. 174	. 256	. 326	. 435	. 540
200	. 06	. 037	. 070	. 068	. 094	. 049	. 074	. 051	. 088	. 054	. 088	. 096	. 140
	. 08	. 044	. 080	. 080	. 107	. 064	. 103	. 082	. 122	. 122	. 172	. 159	. 221
	. 10	. 068	. 102	. 102	. 139	. 133	. 182	. 150	. 216	. 297	. 385	. 316	. 384
300	. 05	. 052	. 082	. 060	. 088	. 042	. 084	. 042	. 064	. 048	. 088	. 096	. 162
	. 06	. 056	. 086	. 062	. 090	. 042	. 078	. 042	. 060	. 056	. 084	. 196	. 274
	. 07	. 050	. 078	. 070	. 102	. 046	. 070	. 048	. 066	. 068	. 104	. 294	. 390

Some numerical results

Table 2. Bootstrap estimated type I probability errors vs asymptotic approx. for $n=50$ and $h=0.10$.

	$(0,0)$		$(2,0)$		$(1,1)$		$(1,2)$		$(0,2)$		$(2,-1)$	
	$\mathrm{f0}$	$\mathrm{f10}$	$\mathrm{f05}$	$\mathrm{f10}$								
Boot	.042	.092	.066	.114	.062	.130	.078	.150	.058	.156	.132	.230
Asym	.042	.064	.060	.085	.049	.081	.071	.096	.074	.114	.113	.161

Some numerical results

Table 3. Estimated type I probability errors with bootstrap selection of the bandwidth.

	$(0,0)$		$(2,0)$		$(1,1)$		$(1,2)$		$(0,2)$		$(2,-1)$	
n	$\mathrm{f05}$	$\mathrm{f10}$										
50	.038	.062	.048	.076	.042	.088	.050	.082	.042	.074	.074	.100
100	.052	.086	.052	.090	.044	.078	.048	.090	.042	.075	.068	.104

Some numerical results

Table 4. Estimated powers with bootstrap selection of the bandwidth.

	t_{5}		U		χ_{3}^{2}		M1		M2	
n	f05	$f 10$	f05	$f 10$	f05	f10	f05	$f 10$	f05	f10
50	0.048	0.070	1.000	1.000	0.500	0.594	0.532	0.630	0.050	0.088
100	0.048	0.082	1.000	1.000	0.820	0.872	0.860	0.904	0.513	0.613

Figure 2. Graphs of the pdf of the t_{5} (dashed line) and the pdf of the law $N(0,1)$ (solid line).

Further research

The results in this talk could be extended in several directions:

- we could let the pdf in the the null hypothesis depend on unknown parameters, such a location and scale parameters;
- the results could be extended to the d-dimensional case, for any fixed $d \geq 1$;
- instead of letting the window parameter go to 0 as the sample size increases, we could keep it fixed in order to get better results for the detection of local alternatives;
- ...

Further research

For the second extension one can follow the steps in this work, by taking into account that Abtahi and Towhidi (2013) have shown that any continuous d-variate pdf g can be expressed as

$$
\begin{equation*}
g(x)=f(x) p\left\{F\left(x_{1}\right), F\left(x_{2} \mid x_{1}\right), \ldots, F\left(x_{d} \mid x_{1}, x_{2}, \ldots, x_{d-1}\right)\right\} \tag{2}
\end{equation*}
$$

where f is a symmetric pdf on on \mathbb{R}^{d}.
In addition, these authors have proven the following, which is a multivariate analogue of Proposition 1

Proposition 2 (Abtahi and Towhidi, 2013)

Let f be pdf of a symmetric random vector and let p be a pdf defined on $[0,1]^{d}$.
(a) If the pdf of X is as in (2), then $\mathcal{F}(X)=\left(F\left(X_{1}\right), F\left(X_{2} \mid X_{1}\right), \ldots, F\left(X_{d} \mid X_{1}, \ldots, X_{d-1}\right)\right.$ has pdf p.
(b) If X has pdf $p \in \mathcal{P}$, then
$\left(F^{-1}\left(X_{1}\right), F^{-1}\left(X_{2} \mid X_{1}\right), \ldots, F^{-1}\left(X_{d} \mid X_{1}, \ldots, X_{d-1}\right)\right.$ has pdf (2).

Thank you for your attention !!

References

Abtahi, A., Towhidi, M., Behboodian, J., 2011. An appropriate empirical version of skew-normal density. Stat. Papers, 52, 469-489.
Abtahi, A., Towhidi, M., 2013. The new unified representation of multivariate skewed distributions. Statistics, 57, 126-140.
Azzalini, A., 1985. A class of distributions which includes the normal ones. Scand. J. Statist., 12, 171-178.
Azzalini, A., Capitanio, A., 2003. Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution. J.R. Statist. Soc. B, 65, 367-389.
Azzalini, A., Dalla Valle, A., 1996. The multivariate skew-normal distribution. Biometrika, 83, 715-726.
Branco, M.D., Dey, D.K., 2001. A general class of multivariate skew-elliptical distributions. J. Multivariate Anal., 79, 99-113.
Fan, Y., 1994. Testing goodness of fit of a parametric density function by kernel method. Econometric Theory, 10, 316-356.
Fan, Y., 1998. Goodness-of-fit tests based on kernel density estimators with fixed smoothing parameters. Econom. Theory 14, 604-621.
Genton, M.G., Loperfido, N., 2005. Generalized skew-elliptical distributions and their quadratic forms. Ann. Inst. Statist. Math., 57, 389-401.
Hall, P., 1984. Central limit theorem for integrated square error of multivariate nonparametric density estimators. J. Multivar. Anal. 14, 1-16.
Silverman, B.W., 1978. Weak and strong uniform consistency of the kernel estimate of a density and its derivatives. Ann. Statist., 6, 177-184.
R Development Core Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, 2009, URL http://www.R-project.org.
Wang, J., Boyer, J., Genton, M.G., 2004. A skew-symmetric representation of multivariate distributions. Statist. Sinica, 14, 1259-1270.

Assumptions for Theorem 1

ASSUMPTION a The kernel K is of bounded variation and uniformly continuous, with modulus of continuity m_{K}.
Assumption b $\int|K(x)| d x<\infty$ and $K(x) \rightarrow 0$ as $|x| \rightarrow \infty$.
Assumption c $\int K(x) d x=1$.
Assumption d $\int|x \log | x\left|\left.\right|^{1 / 2} d K(x) d x<\infty\right.$.
Assumption e $\int_{0}^{1}\{\log (1 / u)\}^{1 / 2} d \gamma(u)<\infty$, where $\gamma(u)=\left\{m_{k}(u)\right\}^{1 / 2}$.

Assumptions for Theorem 2

ASSUMPTION $1 \quad h=h_{n} \rightarrow 0, n h \rightarrow \infty$.
ASSUMPTION 2 (a) $K: \mathbb{R} \rightarrow[0, \infty)$ is bounded and satisfy

$$
\int K(x) d x=1, \quad \int x K(x) d x=0, \quad \int x^{2} K(x) d x<\infty
$$

(b) K is continuous.

Assumption 3 The functions f and p are bounded, two times differentiable, their second derivatives are bounded and uniformly continuous.

ASSUMPTION 4 (a) $\omega: \mathbb{R} \rightarrow[0, \infty)$ is bounded and satisfies

$$
\int \omega(x) d x<\infty
$$

(b) ω is continuous.

