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Multivariate SN

Azzalini e Dalla Valle, Biometrika (1996)

• Conditioning: if X has N(0, 1) marginals and Ω is a
correlation matrix,(

Z

X

)
∼ Np+1

[(
0

0

)
,

(
1 δT

δ Ω

)]
⇒ U =

{
X Z > 0

−X Z < 0
∼ SNp(Ω, 0,α)

with density

f (x; ξ,Ω,α) = 2ϕp (x; Ω) ·Φ1

[
α′x
]

x, ξ,α ∈ Rp

with α = (1− δTΩ−1δ)−
1
2 Ω−1δ.



Adding location and scale parameters

Let ξ a p-dimensional vector and let

ω = diag (ω1, . . . , ωp)

be the “vector” of marginal scale parameters, that is Σ = ωΩω.
Then Y = ξ + ωX ∼ SNp(Σ, ξ,α) with density

f (y; ξ,Σ,α) = 2ϕp(y − ξ; Σ)Φ1

[
α′ω−1(y − ξ)

]



Inference

The likelihood function for an i.i.d. sample is then

L(Σ, ξ,α; y) ∝ | Σ |−
n
2 exp

{
−1

2

n∑
i=1

[
(yi − ξ)′Σ−1(yi − ξ)

]}

×
n∏

i=1

Φ1

(
α′ω−1(yi − ξ)

)
.

Difficult to work with...(Azzalini & Capitanio, 1999, and many
others...)

Small simulation: 2K samples of size 30 from a
SN2 (ξ = (0, 0),Σ = I2,α = (2, 2)).
Estimates obtained with the R suite sn.
38% of samples resulted in an infinite estimate for α.
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Finite point estimates for α.



Existing solutions

In addition to the obvious MLE strategy

Penalized Likelihood Arellano Valle & Azzalini (2013)

Hellinger distance based Greco (2011)

semiparametric local likelihood Ma & Hart, (2007)

Bias Prevention, Sartori (2006)



The big problem

The likelihood can be multi-modal.

Technical problem: MLE difficult to find -
or . . .
in a Bayesian setting, Gibbs sampling does not necessarily
works . . .

Statistical problem: nearly unidentifiability

An alternative:

Exploit the latent structure of the SN density in order to obtain an
augmented likelihood.
This will hopefully help solving the former problem ...

The following result holds.



Proposition.

Let Ω be a correlation matrix, δ a p-dimensional vector and
α = (1− δTΩ−1δ)−

1
2 Ω−1δ. Define(

Z

X

)
∼ Np+1

[(
0

0

)
,

(
1 δT

δ Ω

)]
and U =

{
X Z ≥ 0

−X Z < 0
.

Then, (a) the random vector Y = ωU + ξ ∼ SNp(Σ, ξ,α), with
Σ = ωΩω, and (b) the joint density of (Y,Z ) is given by

fp+1 (y, z) = fp(y | z)f (z) = Np

(
ξ + ωδ|z |,ω(Ω− δδ′)ω

)
× N1(0, 1).

Also, write

ψ = ωδ; ω(Ω− δδ′)ω = Σ−ψψ′ = G;

The parameter vector is then
θ∗ = (δ,Σ, ξ) - more suitable for elicitation -
θ = (ψ,G, ξ) more suitable for computation.



Augmented Likelihood Function

The above result allows to set up efficient MCMC and/or
Population Monte Carlo algorithms. The augmented likelihood
function is

L(θ; y, z) ∝
n∏

i=1

{
ϕp(yi − ξ −ψ | zi |; Σ−ψψ′)× ϕ1(zi ; 1)

}
=

1

| G |
n
2

exp

(
−1

2

n∑
i=1

z2
i

)

× exp

(
−1

2

n∑
i=1

(yi − ξ −ψ | zi |)′G−1(yi − ξ −ψ | zi |)

)
.

Warning! The matrix G must be positive definite ⇒ constraint for
the values of δ and Ω which must be taken into account when
exploring the parameter space via simulation methods.
This issue seems to have been neglected in Bayesian literature.



Objective priors

The above formulation makes the SN model almost Gaussian . . .
We set, as usual in Bayesian inference,

π(ξ) ∝ 1 and G ∼ IWp(m,Λ)

[ in the limiting - objective Bayes - case m→ 0,Λ→ 0]

π(ξ,G) ∝ 1

| G |
p+1

2

The choice of the prior for δ is much more delicate.
One must use a proper prior on δ (or α)

the Jeffreys’ prior is improper

the one-at-the-time reference prior is quite complicated to use
but it is proper and it has the required coverage properties.

a Beta prior (in the δ parametrization) is a good compromise.



Objective priors for δ
Assume that Ω = diag (1, 1)

The Jeffreys’ prior in the α set-up is (up to an approximation)

π(α1, α2) ∝ 1

1 + 2η2(α2
1 + α2

2)

with η = π/2

which is improper. In the δ parametrization, for δ′δ ≤ 1,∣∣∣∣∂α∂δ
∣∣∣∣ =

1√
1− (δ′δ)

π(δ1, δ2) ∝
√

1− δ2
1 − δ2

2

1 + (2η2 − 1)(δ2
1 + δ2

2)



Reference prior

The proper reference prior when α1 is the parameter of interest is

πR(α2 | α1)πR(α1) ∝ (1 + 2η2α2
1)

1/4

(1 + 2η2(α2
1 + α2

2))
3/4

1√
(1 + 2η2α2

1)

exp

(
−1

4

∫
log
(
1 + 2η2(α2

1 + α2
2)
)
πR(α2 | α1)dα2

)



Reference prior 



The final prior for δ

In practice,

the prior must depend on Ω;

set βi = (1 + δi )/2

set βi ’s
iid∼ Beta(.25, .25)

Then

π(δ|Ω) =
1

A(Ω)

p∏
j=1

(
1− δ2

j )−3/4
)

A(Ω) is the normalizing constant, the ellipsoid of acceptable values
for δ.



An example with p = 2

Different shapes of the ellipsoid and an approximation of A(Ω)

A(Ω) ≈ a(1− ρ2)b.
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Bayesian calculation

When full conditional distributions are easy to sample from,
the Bayesian analysis of latent structure models is usually
implemented via Gibbs sampling

In the SNp model, all the parameters have full conditional
distribution which are (more or less..) simple to sample from.

However, if the posterior surface is not sufficiently smooth,
Markov chain based algorithms risk to be trapped into small
portions of the parameter space

On the other hand, the use of simple importance sampling
strategies is complicated by (the crucial!) choice of the
importance density.



A simple example of disastrous Gibbs sampling in the scalar SN
case (ω known)
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Population MonteCarlo algorithm

PMC algorithms can overcome the above problems, still
retaining the efficiency of the full conditional distributions
(Celeux, Marin, Robert (2006, CSDA))

PMC

PMC algorithms are essentially Iterated Sampling Importance
Resampling (Rubin, 1988) algorithms where, at each iteration, a
population of particles is drawn from one (or more than one . . .
proposal density (in this case, the full conditional distributions.)
Then the particles are re-sampled according to a multinomial
scheme with probabilities proportional to the importance weights.



PMC algorithm in detail

Suppose your parameter vector is θ = (θ1, θ2, . . . , θp), π(θ, z|x) is
the un-normalised posterior, and q(θ, z) is the joint proposal
density. For t = 1, . . .T , and i = 1, . . . n,

(a) Select the proposal distribution qit(·)
(b) Generate (θ

(t)
i , z

(t)
i ) ∼ qit(·)

(c) Compute ρ
(t)
i = π(θ

(t)
i |x)/qit(θ

(t)
i ) and normalise weights so

that
∑

i = ρ
(t)
i = 1.

(d) Resample n values from the θ
(t)
i with replacement, using the

weights ρ
(t)
i , to create the posterior sample at iteration t.



Population MonteCarlo algorithm (2)

PMC makes use of the full conditional distributions (a usual
MCMC device) in a MC perspective, avoiding convergence
issues.

The algorithm is replicated several times to guarantee better
exploration of the multimodal posterior surface.

In a sense PMC brings us beyond Importance Sampling and
MCMC methods



Population MonteCarlo algorithm (2)

PMC makes use of the full conditional distributions (a usual
MCMC device) in a MC perspective, avoiding convergence
issues.

The algorithm is replicated several times to guarantee better
exploration of the multimodal posterior surface.

In a sense PMC brings us beyond Importance Sampling and
MCMC methods



Population MonteCarlo algorithm (2)

PMC makes use of the full conditional distributions (a usual
MCMC device) in a MC perspective, avoiding convergence
issues.

The algorithm is replicated several times to guarantee better
exploration of the multimodal posterior surface.

In a sense PMC brings us beyond Importance Sampling and
MCMC methods



Practical Implementation

The practical use of the algorithm is too complicate to be
illustrated in the general p-dimensional case.
From now on we explicitly consider the case p = 2.

In the PMC approach (and in the presence of latent structure) it is
reasonable to use proposal distributions which resemble the full
conditionals (Celeux, Marin and Robert, CSDA06).
In the (G , ξ, δ)-parametrization, the augmented likelihood is

L(G , ξ, δ; y , z) ∝ 1
|G |n/2 exp(−1

2z
′z)

exp{−1
2

∑n
i=1(yi − ξ − δ|zi |)′G−1(yi − ξ − δ|zi |)}
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Objective Priors when p = 2

π(ξ, δ,G) = π(ξ)π(δ,G)

π(ξ) ∝ 1

π(δ | G) ∝
∏p

j=1

(
1− δ2

j )−3/4
)
IA(G)(δ)

π(G) is such that π(Σ) ∝ (ω2
1,1ω

2
2,2(1− ρ2))−1

where A(G) =
{
δ :
∣∣Σ− δδ′∣∣ > 0

}
which is equivalent to Σ ∼ IW(m = 0,W = 0) and

ω2
11 =

G11

1− δ2
1

; ω2
22 =

G22

1− δ2
2

ω12 = ρ =
G12

ω11ω22
+ δ1δ2



Full conditionals / 1

Then it is easy to derive the full conditional distributions.

The z ′i s are conditionally (on θ) i.i.d. with density

f (zi |y,θ) =

{
N+(mi , v) zi ≥ 0
N−(−mi , v) zi < 0

where
m = v

[
(y − 1n ⊗ ξ)′G−1ψ

]
v =

(
1 +ψ′G−1ψ

)−1



Full conditionals for zi ’s for different values of mi
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Full conditionals / 2

ξ|y, · · · ∼ Np

(
ȳ −ψ ¯|z|, 1

nG
)

ψ|y, · · · ∼ π(ψ|G)ϕp

(
ψ −

∑
i |zi |(yi−ξ)∑

i z
2
i

; G∑
i z

2
i

)
G|y, · · · ∼ π(G) IWp(n + m,W?)

where

W? = W +
n∑

i=1

(yi −ψ|zi | − ξ)(yi −ψ|zi | − ξ)′



PMC-SN Algorithm

0 Initialization: For t = 0, choose
(
θ

(1)
0 , θ

(2)
0 , · · · , θ(M)

0

)
1 For t = 1, · · ·T , and for j = 1, · · · ,M

For i = 1, · · · , n
{ generate z

(j)
i,t from k(· | yi ,θ(j)

t−1) }
Generate θ

(j)
t from π(· | y, z(j)

t )
Compute

n
(j)
t =

1

M

M∑
l=1

π(θ
(j)
t | y, z

(l)
t )

k(z
(l)
t | y, θj

t−1)

d
(j)
t =

1

M

M∑
l=1

k(z
(l)
t | y, θj

t−1)π(θ
(j)
t | y, z

(l)
t )

k(z
(l)
t | y, θl

t−1)

and r
(j)
t = n

(j)
t /d

(j)
t , ρ

(j)
t = r

(j)
t /

∑M
h=1 r

(h)
t

Resample with replacement from
(
θ

(1)
t , θ

(2)
t , · · · , θ(M)

t

)
with

weights equal to
(
ρ

(1)
t , ρ

(2)
t , · · · , ρ(M)

t

)



Model Selection

Typical problem: comparing two nested models:

Normal vs. Skew-Normal

H0 : Y ∼ Np(ξ,Σ) vs. H1 : Y ∼ SNp(ξ,Σ,α)

The main tool in Bayesian inference is the Bayes factor

B01 =
p(y | H0)

p(y | H1)
=

∫
Σ

∫
ξ L0(ξ,Σ; y)π0(ξ,Σ)dξdΣ∫

α

∫
Σ

∫
ξ L1(ξ,Σ,α; y)π1(ξ,Σ,α)dξdΣdα

B01 is well defined with proper priors

Improper priors can be used only for those parameters which
appears on both the models



⇒ π1(α) must be proper.
In this case, p(y | H0) has a closed form expression,

one needs to evaluate p(y | H1) only!
Expressions for p(y | H1) are remarkably simple with PMC.

p(y | H1) ≈
∑T

t=1 Ht

∑N
j=1 ρ̃

(t)
j

N
∑T

t=1 Ht

.

where the ρ̃j ’s are the un-normalised weights, and

Ht = −
N∑
i=1

ρ
(t)
i log(ρ

(t)
i )

is an entropy measure of performance of the t-th iteration of the
algorithm. Ht takes high values when the normalised weights of
the particles in the t-th iteration. are concentrated around 1/N.
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Chib’s Method

Alternatively one use the identity

log p(y | H1) = log p1(y;θ) + log π1(θ)− log π1(θ | y). (1)

which is valid for all θ.
While the first two components of the sum are easy to evaluate,
the last one needs to be estimated using the simulation for the
vector z.

π̂1(θ | y) =
1

M

M∑
j=1

π(θ | y, z(j)) (2)

This method, when applied in the SN model, requires additional
simulations.



Extensions to multivariate skew-t model

Easy, from Dickey’s (1968) representation theorem of a t density
as a scale mixture of normal densities. Let

Z |W ∼ SNp (ψ,Σ,α) , W ∼ χ2
ν/ν

then,
Z ∼ Skew-tν,p(ξ,α,Σ)

with density

f (z) = 2
Γ((ν + p)/2)νν/2

(πν)p/2Γ(ν/2) | Σ |1/2

(
1 +

Q(z)

ν

)−(ν+p)/2

× P

{
Tν+p ≤ α′ω−1(z− ξ)

√
ν + p

ν + Q(z)

}
with

Q(z) = (z−ψ)′Σ−1(z−ψ)



Remarks

The completion idea is used again at a low computational cost

the density of a multivariate Skew-t can be written as the
product of

• a scalar normal density
• a multivariate normal density
• a chi squared density
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Skew-t model

Given n observations from a p-variate Skew-t

yi ∼ Skew-tν,p(ξ, δ,Σ) i = 1, . . . , n

the augmented likelihood is proportional to

L(ξ, δ,Σ, ν; y, z, v) ∝ |Σ|−n/2 exp
(
−1

2z′z
)

exp

{
−1

2

n∑
i=1

vi (yi − ξ − ωδ
|z |√
v

)′Σ−1(yi − ξ − ωδ
|z |√
v

)

}
(ν/2)(nν/2)

(Γ(ν/2))n
(

n∏
i=1

vi )
ν/2−1 exp{−ν/2

n∑
i=1

vi}

with ωj = Σ
1/2
jj , j = 1, . . . , p and ω = diag (ω1, . . . , ωp).



Priors

Same as before . . .

π(ξ, δ,Σ) = π(ξ)π(δ | Σ)π(Σ)π(ν)

π(ξ) ∝ 1

Σ ∼ IWp(→ 0,→ 0)

π(δ | Σ) ∝
∏p

j=1(1− δ2
j )−3/4Iδ(∆)

where ∆ is the region of admissible values of δ|Σ.
ν ∼ Exp(nν)



(ξ,ψ,G , ν) - parametrization


ξ = ξ
ψ = ωδ ⇒
G = Σ− ωδδ′ω
ν = ν


ξ = ξ

δj = (Gjj + ψ2
j )−1/2ψ

Σ = G +ψψ′

ν = ν



Augmented Likelihood Function

yi
iid∼ S-tν,p(ξ,ψ,G) i = 1, . . . , n,

L(ξ, δ,G , ν | y, z, v) ∝ |G |−n/2 exp
{
−1

2z′z
}

exp

{
− 1

2

n∑
i=1

vi (yi − ξ −ψ
|z |√
v

)′G−1(yi − ξ −ψ
|z |√
v

)︸ ︷︷ ︸
ζ

}

(ν/2)(nν/2)

(Γ(ν/2))n
(

n∏
i=1

vi )
ν/2−1 exp{−ν/2

n∑
i=1

vi}

where

ζ = tr

(
G−1

n∑
i=1

vi (yi − ξ −ψ
|z |√
v

)(yi − ξ −ψ
|z |√
v

)′︸ ︷︷ ︸
Λ

)
.



Full conditionals / 1

f (zi | · · · ) =

{
φ+(mi , vθ) zi ≥ 0
φ−(−mi , vθ) zi < 0
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where
vθ = (1 +ψ′G−1ψ)−1

mi =
√
vivθ(ψ′G−1(yi − ξ))



Full conditionals / 2

f (ψ | · · · ) ∝
p∏

j=1

(1− δ2
j )−3/4A(G ) (parte della priori, trascurata)

φp

(
ψ
∣∣∣∑n

i=1 |zi |
√
vi (yi − ξ)∑n

i=1 z
2
i

,
G∑n
i=1 z

2
i

)
Iψ(Ψ)

delta1 de
lta

2

density



Full conditionals / 3

ξ| · · · ∼ Np

(
yv

v̄
−ψ |z|

√
v

v̄
,

1

nv̄
G

)

f (G | · · · ) ∝ π(G )|G |−n/2 exp(−1
2tr(G−1Λ)) =

= π(G ) IW(n − p − 1,Λ)



Full conditionals / 4

f (vi | · · · ) ∝ v
(ν+p−2)/2
i exp

{
−Ai

2 vi − Bi
√
vi

}
or

f (ηi | · · · ) = ην+p−1
i exp

{
−1

2Ai (ηi − A−1
i Bi )

2
}

where ηi =
√
vi ,

Ai = ν + (yi − ξ)′G−1(yi − ξ)
Bi = (yi − ξ)′G−1ψ|zi |.

Both densities can be sampled using a slice sampler. Finally

f (ν| · · · ) ∝ (ν/2)nν/2(Γ(ν/2))−n exp{−gν}

with g = 1
2

∑
i log(vi ) + 1

2v
−1
i + nν .

Geweke (1992) provides an algorithm to sample from this.
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SN2 case: comparison of estimation methods through simulation: 104 samples,

ρ = −.5, ω = (1, 1)′, ψ = (.495, .495)′. It corresponds to α ≈ (7.02, 7.02)′.
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An illustration
240 obsv’n of monthly returns on ABM Industries Inc. and The Boeing

Co. (Oct. ’92 –Oct. 2012)

PMC algorithm (T = 25, n = 3× 104), objective priors
Observed values and estimated density:
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Comparison with ML approach
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