Moment-free measures for the multivariate skew-t distribution

Emanuele Giorgi

Faculty of Health and Medicine

Furness College

CHICAS

Lancaster University

e.giorgi@lancaster.ac.uk

< <p>I I

BIRS, May 20, 2013

Emanuele Giorgi

e.giorgi@lancaster.ac.uk

Lancaster University

Moment-free measures for the multivariate skew-t distribution

Sac

Overview

- 1 Introduction: motivation and preliminary concepts
- 2 Location and kurtosis: the halfspace depth function and derived measures of location and kurtosis
- Quantifying dispersion, structure of dependence and asymmetry: concordance measures, interquartile range and Yule-Bowley index
- 4 Final remarks: open issues and further research

Introduction

▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶

Emanuele Giorgi

e.giorgi@lancaster.ac.uk

Lancaster University

Motivation

The main features of a multivariate probability distribution are:

- location;
- dispersion and structure of dependence;
- asymmetry;
- kurtosis.

Measures are usually based on moments, e.g. Mardia (1970, 1974), Srivastava (1984) and Malkovitch et al. (1973).

Question

How can we summarise the main features of a multivariate distribution if the moments are not defined?

Heavy-tailed distributions

What is a heavy-tailed distribution? No shared answer (Gumbel, 1962; Bryson, 1974; Mantel, 1976).

• Student's t distribution (Student, 1908): $X \sim N(0,1) \perp \chi^2_{
u}$

$$Y=rac{X}{\sqrt{rac{\chi^2_
u}{
u}}}$$
 , $u>0.$

• Slash distribution (Rogers and Tukey, 1972): $X \sim N(0,1) \perp U \sim U(0,1)$

$$Y=rac{X}{U^{1/
u}}$$
 , $u>0.$

Emanuele Giorgi

e.giorgi@lancaster.ac.uk

Skew-t distribution and its canonical form

- Skew-t distribution (Azzalini and Capitanio, 2003): $X\sim {\rm SN}(0,\Omega,\alpha)\perp \chi^2_{\nu}$

$$Y = \xi + \frac{X}{\sqrt{\frac{\chi^2_{\nu}}{\nu}}} \sim \operatorname{ST}(\xi, \Omega, \alpha, \nu), \nu > 0.$$
 (1)

• Canonical skew-t (Capitanio, 2012): $Y^* \sim \operatorname{ST}(0, I, (\alpha_*, 0, \dots, 0)^\top, \nu)$; we write $Y^* \sim \operatorname{CST}(\alpha_*, \nu)$.

Remark: for any $Y \sim ST(\xi, \Omega, \alpha, \nu)$ there is an affine transformation such that $AY + b = Y^*$.

Location and Kurtosis

Emanuele Giorgi

e.giorgi@lancaster.ac.uk

ł Lancaster University

Moment-free measures for the multivariate skew-t distribution

99CP

The halfspace depth function (Tukey, 1975)

Let $X \sim \mathrm{ST}(\xi,\Omega,\alpha,\nu)$; the halfspace depth (HD) of $x \in \mathbb{R}^d$ with respect to the distribution of X is

$$HD_X(x) = \min_{\|u\|=1} P_X(u^\top X < u^\top x)$$
(2)

Some properties (Zuo and Serfling, 2000):

- affine invariance: $\mathrm{HD}_{AX+b}(Ax+b) = \mathrm{HD}_X(x)$ (use the canonical form!);
- convex contours (Small, 1987);
- vanishing at infinity: $\lim_{\|x\| o \infty} \operatorname{HD}_X(x) = 0.$

e.giorgi@lancaster<u>.ac.uk</u>

Example: the uniform distribution

Example: the uniform distribution

Emanuele Giorgi

e.giorgi@lancaster.ac.uk

Lancaster University

Moment-free measures for the multivariate skew-t distribution

Sac

The halfspace median and radial symmetry

The halfpsace median is defined as the global maximum of HD , i.e.

$$M_X = rg\max_{x \in \mathbb{R}^d} \operatorname{HD}_X(x)$$
 (3)

Main properties:

- affine equivariance: $M_{AX+b} = AM_X + b;$
- correspondence with the center of radial symmetry: ${
 m HD}_X(M_X)=1/2$ if and only if

$$(X - M_X) / ||X - M_X|| \stackrel{d}{=} -(X - M_X) / ||X - M_X||,$$

i.e. X is radially symmetric about M_X (Dutta et al., 2011).

ST and its departure from radial symmetry (1)

Let $X \sim \operatorname{CST}(\alpha, \nu)$ and η be its componentwise median.

Emanuele Giorgi

Lancaster University

Moment-free measures for the multivariate skew-t distribution

e.giorgi@lancaster.ac.uk

Sac

ST and its departure from radial symmetry (2)

Theorem (1)

Let $X \sim \operatorname{ST}(\xi,\Omega,lpha,1)$, then X is radially symmetric about

$$M_X = \xi + \omega \delta \tag{4}$$

where $\omega = \operatorname{diag}(\omega_{11}, \ldots, \omega_{dd})^{1/2}$, $\delta = \overline{\Omega} \alpha / (1 + \alpha^{\top} \overline{\Omega} \alpha)^{1/2}$ and $\overline{\Omega} = \omega^{-1} \Omega \omega^{-1}$.

▲□▶▲圖▶▲臺▶▲臺▶ / 臺 / のへで

Emanuele Giorgi

e.giorgi@lancaster.ac.uk

Lancaster University

ST and its departure from radial symmetry (3)

Theorem (2)

Let $X \sim \mathrm{ST}(\xi,\Omega,\alpha,\nu)$, then HD is maximized along the direction $\omega\delta$ at

$$M_X = \xi + \frac{m_*}{\delta_*} \omega \delta, \tag{5}$$

where $m_* = \arg \max_{x \in \mathbb{R}} \operatorname{HD}_{X^*}((x, 0, \dots, 0)^{\top}),$ $X^* \sim \operatorname{CST}(\alpha_*, \nu), \delta^* = \alpha_*/(1 + \alpha_*^2)^{1/2}$ and $\alpha_* = (\alpha^{\top} \overline{\Omega} \alpha)^{1/2}.$

▲□▶▲舂▶▲差▶▲差▶ 差 めへで

Emanuele Giorgi

e.giorgi@lancaster.ac.uk

Lancaster University

A multivariate measure of kurtosis based on HD (1)

Wang and Serfling (2005) introduce the following measure of multivariate kurtosis:

$$\kappa_X(p) = \frac{V_X\left(\frac{1}{2} - \frac{p}{2}\right) + V_X\left(\frac{1}{2} + \frac{p}{2}\right) - 2V_X\left(\frac{1}{2}\right)}{V_X\left(\frac{1}{2} + \frac{p}{2}\right) - V_X\left(\frac{1}{2} - \frac{p}{2}\right)}, \, p \in [0, 1), \quad (6)$$

where $V_X(r)$ is the volume of the region

$$C_r = \{x \in \mathbb{R}^d : \operatorname{HD}_X(x) \ge c_r\}$$

and $c_r \in (0, 1/2)$ is such that $P_X(C_r) = r$.

Remark: κ_X is affine invariant (use the canonical form!).

▲母→▲臣→▲臣→ 臣 めるの

Emanuele Giorgi

e.giorgi@lancaster.ac.uk

Moment-free measures for the multivariate skew-t distribution

A multivariate measure of kurtosis based on HD (2)

$$k_{\mathrm{X}} = rac{\mathrm{volume}(A) - \mathrm{volume}(B)}{\mathrm{volume}(A) + \mathrm{volume}(B)} \in (-1, 1)$$

- $k_{\!X}=0\Rightarrow$ uniform distribution
- $k_{\!X}>0 \Rightarrow$ peaked distribution
- $k_X < 0 \Rightarrow$ bowl-shaped distribution

・

Emanuele Giorgi

e.giorgi@lancaster.ac.uk

Lancaster University

The HD contours of the ST distribution (1)

 $\mathbf{X} \sim \mathbf{CST}(\alpha, \nu)$

 $\alpha = 10, \nu = 2$

Emanuele Giorgi

e.giorgi@lancaster.ac.uk

Lancaster University

The HD contours of the ST distribution (2)

Theorem (3)

Let $X \sim \text{CST}_d(\alpha, 1)$. Then the r-th HD contour is circular with center $(s(r), 0, \dots, 0)^\top$ and radius t(r), where

$$\mathbf{s}(r) = rac{lpha}{\sqrt{1+lpha^2}} \sec\left\{ \left(rac{1}{2} - r\right) \pi
ight\}$$

and
 $t(r) = \tan\left\{ \left(rac{1}{2} - r\right) \pi
ight\}.$

Emanuele Giorgi

e.giorgi@lancaster.ac.uk

\$

Lancaster University

Example: bivariate Skew-Cauchy

 $X \sim \text{CST}(\alpha, 1)$

Emanuele Giorgi

e.giorgi@lancaster.ac.uk

Lancaster University

Moment-free measures for the multivariate skew-t distribution

596

Quantifying dispersion, dependence and asymmetry (some proposals)

Emanuele Giorgi

e.giorgi@lancaster.ac.uk

Lancaster University

+ □ > < ⊕ > < ⊕ >

Moment-free measures for the multivariate skew-t distribution

99CP

Concordance measures and interquartile range

A surrogate of the covariance function for the (i,j)-th pair of components can be defined as follows

$$c_{ij} = IQ_i IQ_j r_{ij}, \tag{7}$$

where IQ_i is the interquartile range for the *i*-th component and r_{ij} is a concordance measure, such as Kendall's τ and Spearman's ρ .

Advantage:

• Equivariant under marginal linear transformation.

Disadvantages:

- The resulting scatter matrix is not affine equivariant.
- Computational issues for low values of $\nu_{,}$

Yule-Bowley's index of asymmetry

Let F_X^{-1} be the quantile function of the random variable X. The Yule (1911) - Bowley (1920) index is

$$b_{\mathrm{X}} = rac{F^{-1}(3/4) + F^{-1}(1/4) - 2F^{-1}(1/2)}{F^{-1}(3/4) - F^{-1}(1/4)} \in (-1, 1)$$

- $b_{\scriptscriptstyle X} > 0 \Rightarrow$ right-skewness
- $b_X = 0 \Rightarrow$ symmetry
- $b_X < 0 \Rightarrow$ left-skewness

Advantage

• Simple to interpret and compute.

Disadvantage

• Marginal measure of asymmetry.

e.giorgi@lancaster.ac.uk

Lancaster University

Final remarks

Emanuele Giorgi

e.giorgi@lancaster.ac.uk

Lancaster University

Further research

Need for further research on:

- approximate methods for computing the multivariate measure of kurtosis proposed by Wang and Serfling (2005);
- efficient computation of concordance measures;
- other vector-valued measures of asymmetry;
- the behaviour of the measures of skewness, dispersion and dependence under non-singular linear transformations.

Thanks for the attention

Emanuele Giorgi

e.giorgi@lancaster.ac.uk

Lancaster University

+□ +

Moment-free measures for the multivariate skew-t distribution

99CP