Intro	MEV	Metric	PAM	Spectral	Conclusions

Heavy rainfall modeling in high dimensions

Philippe Naveau naveau@lsce.ipsl.fr Laboratoire des Sciences du Climat et l'Environnement (LSCE) Gif-sur-Yvette, France joint work with A. Sabourin, E. Bernard, M. Vrac and O. Mestre

FP7-ACQWA, GIS-PEPER, MIRACLE & ANR-McSim, MOPERA

22 mai 2013

Intro MEV	Metric	PAM	Spectral	Conclusions

Our game plan to handle extremes from this big rainfall dataset

	Spatial scale					
	Large (country)	Local (region)				
Problem	Dimension reduction	Spectral density				
		in moderate dimension				
Data	Weekly maxima	Heavy hourly rainfall				
	of hourly precipitation	excesses				
Method	Clustering algorithms	Mixture of				
	for maxima	Dirichlet				

Without imposing a given parametric structure

Intro	MEV	Metric	PAM	Spectral	Conclusions

Clustering of maxima (joint work with E. Bernard, M. Vrac and O. Mestre)

Task 1

Clustering 92 grid points into around 10-20 climatologically homogeneous groups wrt spatial dependence

Intro	MEV	Metric	PAM	Spectral	Conclusions
Clusterings					

Challenges

- Comparing apples and oranges
- An average of maxima (centroid of a cluster) is not a maximum
- variances have to be finite
- Difficult interpretation of clusters

Questions

- How to find an appropriate metric for maxima?
- How to create cluster centroids that are maxima?

Intro	MEV	Metric	PAM	Spectral	Conclusions
A centra	al question (ass	suming that $\mathbb{P}[M]$	$[(x) < v] = \mathbb{P}$	$M(y) < u] = \exp(4$	-1/u))

$\mathbb{P}\left[M(x) < u, M(y) < v\right] = ??$

Intro	MEV	Metric	PAM	Spectral	Conclusions

Max-stable vector (de Haan, Resnick, and others)

Suppose M(x) and M(y) have unit Fréchet margins, we have under mild conditions

$$-\log \mathbb{P}\left[M(x) < u, M(y) < v\right] = 2\int_0^1 \max\left(\frac{w}{u}, \frac{1-w}{v}\right) dH(w)$$

where H(.) a distribution function on [0, 1] such that $\int_0^1 w \, dH(w) = 0.5$.

Intro	MEV	Metric	PAM	Spectral	Conclusions
$\theta = Extrem$	nal coefficie	nt			

$$\mathbb{P}\left[M(x) < u, M(y) < u\right] = \left(\mathbb{P}\left[M(x) < u\right]\right)^{\theta}$$

Interpretation

- Independence $\Rightarrow \theta = 2$
- $\blacksquare M(x) = M(y) \Rightarrow \theta = 1$
- Similar to correlation coefficients for Gaussian but ...
- No characterization of the full bivariate dependence

Intro	MEV	Metric	PAM	Spectral	Conclusions

A L1 marginal free distance (Cooley, Poncet and N., 2005, N. and al., 2007)

$$d(x,y) = \frac{1}{2}\mathbb{E}\left|F_{y}(M(y)) - F_{x}(M(x))\right|$$

Intro	MEV	Metric	PAM	Spectral	Conclusions

A L1 marginal free distance (Cooley, Poncet and N., 2005, N. and al., 2007)

$$d(x,y) = \frac{1}{2}\mathbb{E}\left|F_{y}(M(y)) - F_{x}(M(x))\right|$$

If M(x) and M(y) bivariate GEV, then extremal coefficient $= \frac{1 + 2d(x, y)}{1 - 2d(x, y)}$

Intro	MEV	Metric	PAM	Spectral	Conclusions
Clusterings					

Questions

- How to find an appropriate metric for maxima?
- How to create cluster centroids that are maxima?

Intro	MEV	Metric	PAM	Spectral	Conclusions

Partitioning Around Medoids (PAM) (Kaufman, L. and Rousseeuw, P.J. (1987))

Intro	MEV	Metric	PAM	Spectral	Conclusions

PAM : Choose K initial mediods

Intro	MEV	Metric	PAM	Spectral	Conclusions

PAM : Assign each point to each closest mediod

Intro	MEV	Metric	PAM	Spectral	Conclusions

PAM : Recompute each mediod as the gravity center of each cluster

Intro	MEV	Metric	PAM	Spectral	Conclusions

PAM : continue if a mediod has been moved

Intro	MEV	Metric	PAM	Spectral	Conclusions

PAM : Assign each point to each closest mediod

Intro	MEV	Metric	PAM	Spectral	Conclusions

PAM : Recompute each mediod as the gravity center of each cluster

Intro	MEV	Metric	PAM	Spectral	Conclusions

Summary on clustering of maxima

- Classical clustering algorithms (kmeans) are not in compliance with EVT
- Madogram provides a convenient distance that is marginal free and very fast to compute
- PAM applied with mado preserves maxima and gives interpretable results
- R package available on my web site

Intro	MEV	Metric	PAM	Spectral	Conclusions

Our game plan to handle extremes from this rainfall dataset

	Spatia	al scale
	Large (country)	Local (region)
Problem	Dimension reduction	Spectral density in moderate dimension
Data	Weekly maxima of hourly precipitation	Heavy hourly rainfall excesses
Method	Clustering algorithms for maxima	Mixture of Dirichlet

Intro	MEV	Metric	PAM	Spectral	Conclusions

Bayesian Dirichlet mixture model for multivariate excesses (joint work with A. Sabourin)

Meteo-France data

Wet hourly events at the regional scale (temporally declustered) of moderate dimensions (from 2 to 5)

Task 2

Assessing the dependence among rainfall excesses

Intro	MEV	Metric	PAM	Spectral	Conclusions

Focusing on the "Lyon" cluster

|--|

ions

Defining radius and angular points

Example with d = 3 and $\mathbf{X} = (X_1, X_2, X_3)$ such that $\mathbf{P}(X_i < x) = e^{\frac{-1}{x}}$

Simplex
$$\mathbf{S}_3 = \{ \mathbf{w} = (w_1, w_2, w_3) : \sum_{i=1}^3 w_i = 1, w_i \ge 0 \}.$$

Intro	MEV	Metric	PAM	Spectral	Conclusions

Mathematical constraints on the distribution of the angular points H

$$\mathbf{P}(\mathbf{W}\in B, R>r) \underset{r\to\infty}{\sim} \frac{1}{r} H(B)$$

Features of *H*

H can be non-parametric

The gravity center of *H* has to be centered on the simplex

$$\forall i \in \{1, \ldots, d\}, \ \int_{\mathbf{S}_d} w_i \, \mathrm{d} \mathbf{H}(\mathbf{w}) = \frac{1}{d}$$

Intro	MEV	Metric	PAM	Spectral	Conclusions

A few references on Bayesian non-parametric and semi-parametric spectral inference

A. Sabourin and P. Naveau. Bayesian Drichlet mixture model for multivariate extremes. CSDA, 2013, in press.

P.J. Green.

Reversible jump Markov chain Monte Carlo computation and Bayesian model determination.

Biometrika, 82(4):711, 1995.

Roberts, G.O. and Rosenthal, J.S.

Harris recurrence of Metropolis-within-Gibbs and trans-dimensional Markov chains

The Annals of Applied Probability, 16, 4, 2123 :2139, 2006.

But this one is not centered !!

Intro	MEV	Metric	PAM	Spectral	Conclusions

Mixture of Dirichlet distribution

Boldi and Davision, 2007

$$h_{(\boldsymbol{\mu},\mathbf{p},\boldsymbol{\nu})}(\mathbf{w}) = \sum_{m=1}^{k} p_m \operatorname{diri}(\mathbf{w} \mid \boldsymbol{\mu}_{\cdot,m}, \nu_m)$$

with $\boldsymbol{\mu} = \boldsymbol{\mu}_{\cdot,1:k}, \, \boldsymbol{\nu} = \nu_{1:k}, \, \boldsymbol{p} = \boldsymbol{\rho}_{1:k}$

Intro	MEV	Metric	PAM	Spectral	Conclusions

Mixture of Dirichlet distribution

Boldi and Davision, 2007

$$h_{(\boldsymbol{\mu},\mathbf{p},\boldsymbol{\nu})}(\mathbf{w}) = \sum_{m=1}^{k} p_m \operatorname{diri}(\mathbf{w} \mid \boldsymbol{\mu}_{\cdot,m}, \nu_m)$$

with $\boldsymbol{\mu}=\boldsymbol{\mu}_{\cdot,1:k},$ $\boldsymbol{\nu}=
u_{1:k},$ $\mathbf{p}=\boldsymbol{p}_{1:k}$

Constraint on (μ, p)

$$p_1 \mu_{.,1} + \cdots + p_k \mu_{.,k} = \left(\frac{1}{d}, \ldots, \frac{1}{d}\right)$$

Intro	MEV	Metric	PAM	Spectral	Conclusions

Inference of Dirichlet density mixtures

Boldi and Davison (2007)

Prior of $[\mu|p]$ defined on the set

$$p_1 \mu_{.,1} + \cdots + p_k \mu_{.,k} = (\frac{1}{d}, \ldots, \frac{1}{d})$$

- Sequential inference : first \mathbf{p} , then μ one coordinate after the other
- skewed, not interpretable, slow sampling
- Difficult inference in dimension > 3

Intro	MEV	Metric	PAM	Spectral	Conclusions

Inference of Dirichlet density mixtures

How to build priors for (p, μ) such that

$$p_1 \mu_{.,1} + \cdots + p_k \mu_{.,k} = (\frac{1}{d}, \ldots, \frac{1}{d})$$

Intro	MEV	Metric	PAM	Spectral	Conclusions
New paramet	risation		Ex : <i>k</i> = 4 a	and $d = 3$	

 γ_m : "Equilibrium" centers built from $\mu_{.,m+1},\ldots,\mu_{.,k}$.

$$\gamma_m = \sum_{j=m+1}^k \frac{p_j}{p_{m+1} + \cdots + p_k} \mu_{..j}$$

Intro	MEV	Metric	PAM	Spectral	Conclusions
New param	etrisation		Ex : <i>k</i> = 4	and $d = 3$	

$$\mu_{.,1}, e_1 \quad \Rightarrow \gamma_1 : \frac{\overline{\gamma_0 \gamma_1}}{\overline{\gamma_0 l_1}} = e_1;$$

 $\Rightarrow p_1$

Intro	MEV	Metric	PAM	Spectral	Conclusions
New param	etrisation		Ex : <i>k</i> = 4	and $d = 3$	

$$egin{aligned} \mu_{.,2}, \, \mathbf{e}_2 & \Rightarrow \gamma_2 : rac{\overline{\gamma_1 \, \gamma_2}}{\overline{\gamma_1 \, l_2}} = \mathbf{e}_2 \ ; \ & \Rightarrow \mathbf{p}_2 \end{aligned}$$

Intro	MEV	Metric	PAM	Spectral	Conclusions
New param	etrisation		Ex : <i>k</i> = 4	and $d = 3$	

$$\mu_{.,3}, e_3 \quad \Rightarrow \gamma_3 : \frac{\overline{\gamma_2 \gamma_3}}{\overline{\gamma_2 l_3}} = e_3; \quad \mu_{.,4} = \gamma_3.$$

 $\Rightarrow p_3, p_4$

Intro	MEV	Metric	PAM	Spectral	Conclusions
New param	etrisation		Ex : <i>k</i> = 4	and $d = 3$	

Parametrisation of *h* with $\theta = (\mu_{.,1:k-1}, \mathbf{e}_{1:k-1}, \nu_{1:k})$

 $(\mu_{.,1:k-1}, e_{1:k-1})$ gives $(\mu_{.,1:k}, p_{1:k})$

Intro	MEV	Metric	PAM	Spectral	Conclusions
Unconstraine	ed Bayesian m	odeling for			
$\Theta = \coprod_{k=1}^{\infty} \Theta_k$	$\Theta_k = \left\{ (\mathbf{S}_d)^k \right\}$	$^{k-1} imes [0,1)^{k-1} imes$	$(0,\infty]^{k-1}$		

Prior

 $k \sim \text{Truncated geometric}$ $\mu_{.,m} | (\mu_{.,1:m-1}, e_{1:m-1}) \sim \text{Dirichlet}$ $e_m | (\mu_{.,1:m}, e_{1:m-1}) \sim \text{Beta}$ $\nu_m \sim \log N$

Posterior sampling : MCMC reversible jumps

Boldi and Davison (2012)

Our approach

Figure 5: Convergence monitoring with five-dimensional data in the original DM model (left panel) and in the re-parametrized v with four parallel chains in each model. Grey lines: Evolution of $\langle g, h_{\theta,(\bar{n})} \rangle$. Black, solid lines: cumulative mean. Dashed line

Intro	MEV	Metric	PAM	Spectral	Conclusions

Simulation example with d = 5 and k = 3

 $T_2 = 150\,10^3$, $T_1 = 50\,10^3$.

Stations 68, 70, 1

w2

Intro	MEV	Metric	PAM	Spectral	Conclusions

Take home messages

Conclusions

- Clustering of weekly maxima with PAM is fast and gives spatially coherent structures
- Bayesian semi-parametric mixture can handle moderate dimensions and provide credibility intervals

Statistical challenges

- Moving away from bivariate (extremal coefficient) to truly multivariate based clustering algorithms (with Vine ?)
- Moving from semi-parametric to truly parametric spectral models in high dimension (with uncertainty estimates)
- Handling asymptotically independence in geophysical data

References

- Bernard, E., et al.. Clustering of maxima : Spatial dependencies among heavy rainfall in france. Journal of Climate, 2013, [**R** package].
- Sabourin, A., Naveau, P. Dirichlet Mixture model for multivariate extremes. To appear in Computational Statistics and Data Analysis. [**R package**].
- Naveau P. et al., Modeling Pairwise Dependence of Maxima in Space. Biometrika, (2009)

Different results from different Monte Carlo chains?

Stations 68, 70, 42

Intro	MEV	Metric	PAM	Spectral	Conclusions

Applying the kmeans algorithm to maxima (15 clusters)

Intro	MEV	Metric	PAM	Spectral	Conclusions

Extension for the asymptotically independent case (Ramos and Ledford) Guillou et al, 2012

 $\eta\text{-Madogram}$

$$\nu(\eta) = \frac{1}{2} \mathbb{E} \left[\left| F_{\eta}(M_X^{*1/\eta}) - F_{\eta}(M_Y^{*1/\eta}) \right| \right] \\ = \frac{1}{2} \mathbb{E} \left[|F(M_X^*) - F(M_Y^*)| \right]$$

where F_{η} (resp. F) is the df of $M_X^{*1/\eta}$ and $M_Y^{*1/\eta}$ (resp. of M_X^* and M_Y^*)

$$\nu(\eta) = \frac{V_{\eta}(1,1)/V_{\eta}(1,\infty)}{1+V_{\eta}(1,1)/V_{\eta}(1,\infty)} - \frac{1}{2}$$

Intro	MEV	Metric	PAM	Spectral	Conclusions

Extension for the asymptotically independent case (Ramos and Ledford) Guillou et al, 2012

Estimation of the η -madogram

 \widehat{F}_X , resp. \widehat{F}_Y , be the empirical df of $M^*_{X_i}$, resp. $M^*_{Y_i}$

$$\widehat{\nu}(\eta) = \frac{1}{2N} \sum_{i=1}^{N} \left| \widehat{F}_X(M_{X_i}^*) - \widehat{F}_Y(M_{Y_i}^*) \right|$$

Theorem 1. Let $\left(M^*_{X_i}, M^*_{Y_i}\right)$ be a sample of N bivariate vectors such that

$$\left(\frac{M_{X_i}^*}{b_n}, \frac{M_{Y_i}^*}{b_n}\right)$$

converges in distribution to a bivariate extreme value distribution with an $\eta-{\rm extremal}$ function. Then as $n\to\infty$ and $N\to\infty$

$$\sqrt{N}\Big(\widehat{\nu}(\eta) - \frac{1}{2}\mathbb{E}|F(M_X^*) - F(M_Y^*)|\Big) \xrightarrow{d} \int_{[0,1]^2} N_C(u,v) dJ(u,v)$$

Intro	MEV	Metric	PAM	Spectral	Conclusions
Guillou et al,	2012				

Dependence function V_{η}

 $R_{\varepsilon} = \{(x, y) : x > \varepsilon, y > \varepsilon\}$

 $M_{\bullet,n,\varepsilon}$ componentwise maxima such that (X_i, Y_i) occur within $R_{\varepsilon b_n}$

$$\lim_{\varepsilon \to 0} \lim_{n \to \infty} \mathbb{P}\left[\frac{M_{X,n,\varepsilon}}{b_n} \le x, \frac{M_{Y,n,\varepsilon}}{b_n} \le y\right] = G_\eta(x,y) = \exp\left[-V_\eta(x,y)\right]$$

$$V_{\eta}(x,y) = \eta \int_{0}^{1} \left[\max\left(\frac{\omega}{x}, \frac{1-\omega}{y}\right) \right]^{\frac{1}{\eta}} dH_{\eta}(\omega)$$

 $\Rightarrow V_{\eta}$ homogeneous of order $-1/\eta$: $V_{\eta}(tx, ty) = t^{-1/\eta}V_{\eta}(x, y)$

 $\Rightarrow G_{\eta}$ max-stable: $G_{\eta}^{n}(n^{\eta}u, n^{\eta}v) = G(x, y)$

Intro	MEV	Metric	PAM	Spectral	Conclusions
Guillo	u et al, 2012				
	η -Madogram (c	cont'd)			
	V_η symmetric	\Rightarrow extremal co	befficient θ :		
			$V_{2}(1, 1)$		

$$1 \le \theta := \frac{V_{\eta}(1,1)}{V_{\eta}(1,+\infty)} \le 2$$

 \Rightarrow independence ($\theta \rightarrow 2$) between the marginal distributions \Rightarrow dependence ($\theta = 1$)

$$\nu(\eta) = \frac{\theta}{1+\theta} - \frac{1}{2}$$

Intro	MEV	Metric	PAM	Spectral	Conclusions

The scale and shape GEV parameters

Intro	MEV	Metric	PAM	Spectral	Conclusions

Simulated points with true density

Predictive density

