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Statement of Problem

You are given a multivariate (non-Gaussian) distribution
(either theoretical or empirical) and asked to construct a set
of multivariate scenarios that contains plausible scenarios
but excludes the “most extreme” scenarios.

I aim to generate some discussion of this question including:
1 Why is this problem interesting?
2 How would you go about it? Using density or depth (half-space,

simplex, other)?
3 Is the computation of the set feasible?
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Financial Risk

The random vector X represents a set of financial risk factors that
effect the profitability of a portfolio or the solvency of a company.
Which possible values of X should we worry about? We can’t
worry about all of them (particularly in high dimensions) and
have to specify the set S of plausible scenarios.
Among the plausible scenarios x ∈ S we might want to examine
the worst possible impact `(x) for some function `. For a portfolio
of assets this might simply be a linear function.
(LSLE - least solvent likely event.)
Related problem. Among a particular set of ruin scenarios
{x : x ∈ R} what is the most plausible way of being ruined?
(MLRE - most likely ruin event.)
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Notation

For any point y ∈ Rd and any directional vector u ∈ Rd \ {0},
consider the closed half space

Hy,u =
{

x ∈ Rd : u′x ≤ u′y
}
,

bounded by the hyperplane through y with normal vector u.
The probability of the half-space is written

PX(Hy,u) = P(u′X ≤ u′y) .

We define an α-quantile function on Rd \ {0} by writing qα(u) for
the α-quantile of the random variable u′X.
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Quantile Depth Set

Let α > 0.5 be fixed. We write our scenario set in two ways:
1

Qα =
⋂
{Hy,u : PX(Hy,u) ≥ α} ,

the intersection of all closed half spaces with probability at least
α;

2

Qα = {x : u′x ≤ qα (u) ,∀u} , (1)

the set of points for which linear combinations are no larger than
the quantile function.
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Relation to Usual Depth Set

Our set differs very slightly from the usual depth set.
Depth at a point x is usally defined to be

depth(x) = inf
u:u 6=0

PX (Hx,u) ,

and the depth set to be

Dα =
{

x ∈ Rd : depth(x) ≥ 1− α
}
,

i.e. points which are at least 1− α deep into the distribution. It may be
shown [Rousseeuw and Ruts, 1999] that

Dα =
⋂
{Hy,u : PX(Hy,u) > α} .

Qα and Dα coincide when X has a density.
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Two Independent Exponentials, Q0.95
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Two Independent Exponentials, Q0.75
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A bivariate Student distribution, Q0.95
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ν = 4, ρ = 0.7
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Commentary on examples

Note how the depth set in the exponential case has a smooth
boundary for α = 0.95. (Supporting hyperplanes in every
direction.)
Note how the depth set in the exponential case has a sharp
corners for α = 0.75. (No supporting hyperplanes in some
directions.)
The depth set for an elliptical distribution is an ellipsoid.
For elliptical distributions both the contours of equal depth and
the contours of equal density are ellipsoidal.
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Literature

Origins of concepts: data depth [Tukey, 1975]; multivariate
analogues of quantiles [Eddy, 1984].
Multivariate trimming:
[Nolan, 1992, Massé and Theodorescu, 1994].
Depth function for population
distributions: [Rousseeuw and Ruts, 1999].
Estimation: [Ruts and Rousseeuw, 1996,
Rousseeuw and Strufy, 1998, Rousseeuw et al., 1999]
Other concepts of depth (such as simplex):
[Liu et al., 1999, Zuo and Serfling, 2000].
Use of concepts in risk analysis: [McNeil and Smith, 2012].
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Coherent Risk Measures, Linear Portfolios

A risk measure % :M 7→ R is said to be coherent on a set of random
variablesM if it satisfies the following axioms for random variables
L ∈M (representing financial losses).
Monotonicity. L1 ≤ L2 ⇒ %(L1) ≤ %(L2) .

Translation invariance. For m ∈ R, %(L + m) = %(L) + m .

Subadditivity. For L1,L2 ∈M, %(L1 + L2) ≤ %(L1) + %(L2) .

Positive homogeneity. For λ ≥ 0, %(λx) = λ%(x) .

Let X be a fixed random vector and define the linear portfolio set:

M =

{
L : L = m + λ′X, m ∈ R,λ ∈ Rd

}
.
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Key Result

Theorem
A risk measure % on the linear portfolio setM is coherent if and only
if it has the representation

%(L) = %(m + λ′X) = sup{m + λ′x : x ∈ S%} (2)

where S% is the scenario set

S% = {x ∈ Rd : u′x ≤ %(u′X),∀u ∈ Rd} .

The scenario set is a closed convex set and we may conclude that,
for given λ, there is a worst case scenario (obtainable by convex
optimization)

xLSLE = arg max{λ′x : x ∈ S%} .
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The Case of VaR

Let us suppose the risk measure % = VaRα for some value α > 0.5.
Then the scenario set S% is as given in (1), i.e.

{x ∈ Rd : u′x ≤ qα(u),∀u ∈ Rd} = Qα .

However VaRα is not a coherent risk measure in general.
It is a coherent risk measure for linear portfolios of
elliptically-distributed risks.
In other cases the relationship (2) must break down.
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The Case of VaR for Elliptical Distributions

Theorem

Suppose that X ∼ Ed (µ,Σ, ψ) (an elliptical distribution centred at µ
with dispersion matrix Σ and type ψ) and letM be the space of linear
portfolios. Then VaRα is coherent onM for α > 0.5.

In the elliptical case the scenario set is

Qα = {x : (x− µ)′Σ−1(x− µ) ≤ k2
α}

where kα = VaRα(Y ) and Y ∼ E1(0,1, ψ).
The worst case scenario for a given portfolio is easily computed
(Lagrange multipliers) to be

xLSLE = µ +
Σλ√
λ′Σλ

kα,

and the corresponding loss is

VaRα(m + λ′X) = m + λ′xLSLE = m + λ′µ +
√
λ′Σλkα.
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The Case of VaR for Non-Elliptical Distributions

In the non-elliptical case it may happen that VaRα is not coherent
onM for some value of α. In such situations we may find
portfolio weights λ such that

VaRα(L) = VaRα(m + λ′X) > sup
{

m + λ′x : x ∈ Qα

}
.

Such a situation was shown earlier. It occurs when some lines
bounding half-spaces with probablity α are not supporting
hyperplanes for the set Qα, i.e. they do not touch it.
In such situations we can construct explicit examples to show
that VaRα violates the property of subadditivity.
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Two Independent Exponentials, Q0.65
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Demonstration of Super-Additivity

In previous slide we set α = 0.65 and consider loss L = X1 + X2.
Diagonal line is x1 + x2 = qα(X1 + X2) which obviously intersects
axes at (0,qα(X1 + X2)) and (qα(X1 + X2),0).
Horizontal (vertical) lines are at qα(X1).
We infer

1 x1 + x2 < qα(X1 + X2) in the depth set;
2 sup {x1 + x2 : x ∈ Qα} is a poor lower bound
3 qα(X1 + X2) > qα(X1) + qα(X2) (non-subadditivity of quantile risk

measure)
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Remark: An Upper Bound for VaR

Assume differentiability of quantile function qα and define an
outer scenario set as

Oα = {x : x = ∇qα(u),u 6= 0}

Let ψ(u) = sup{u′x : x ∈ Oα} be the worst scenario in this set.
It can be shown that qα(u) ≤ ψ(u) with equality for all u ∈ Rd if
and only if qα is sub-additive.
This gives the upper bound for VaR:

VaRα(L) = VaRα(m + λ′X) ≤ sup
{

m + λ′x : x ∈ Oα

}
.
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The Case of Expected Shortfall

Consider the expected shortfall risk measure % = ESα, which is
known to be a coherent risk measure given by

ESα(L) =

∫ 1
α

VaRθ(L)dθ
1− α

, α ∈ (0.5,1),

and write eα(u) := ESα(u′X).
Since expected shortfall is a coherent risk measure (irrespective of X)
it must have the stress test representation

ESα(L) = %(m + λ′X) = sup{m + λ′x : x ∈ Eα}

where
Eα := {x : u′x ≤ eα(u),∀u} .
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The Case of ES for Elliptical Distributions

If X ∼ Ed (µ,Σ, ψ) is elliptically distributed then the scenario set is
simply the ellipsoidal set

Eα = {x : (x− µ)′Σ−1(x− µ) ≤ l2α},

where lα = ESα(Y ) and Y ∼ E1(0,1, ψ).
The worst case scenario is given by

xLSLE = µ +
Σλ√
λ′Σλ

lα .
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The Case of ES for Non-Elliptical Distributions
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The set E0.65. Recall that Q0.65 did not have smooth boundary.
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When Can Depth Sets be Computed?

For a given random vector X in Rd (assumed to have a density)
we would like to be able to say whether a point x is in the depth
set Qα. Is it plausible or not?
Equivalently, is it true that

depth(x) = inf
u 6=0

PX (Hx,u) ≥ 1− α ?

It is particularly nice if we can get a parametric equation for Qα.
For elliptical distributions we get ellipsoids.
What about copulas? It seems less easy to compute Qα. An
exception is the independence copula for d = 2 where

Qα =
{

x ∈ R2 : 2 min(x1,1− x1) min(x2,1− x2) ≥ 1− α
}
.

[Rousseeuw and Ruts, 1999]
It seems to be possible to compute the sets for skew-t
distributions (Giorgi 2013).
Generalized hyperbolic distributions?
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Normal Inverse-Gaussian Model
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Figure: Points are changes in yields for 3-year and 10-year government
bonds. A NIG distribution has been fitted and scenario sets calculated.
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Independence Copula, Q0.75
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Figure: Left: Q0.75 for the independence copula; note all hyperplanes
supporting. Right: set transformed to Gaussian scale; note - not a circle!
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Independence Copula, Q0.99
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Figure: Left: Q0.99 for the independence copula. Right: set transformed to
Gaussian scale; note - still not a circle!
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Empirical Estimates of Depth and Depth Contours

Recall that depth(x) = infu 6=0 P(u′X ≤ u′x).
Given data vectors X 1, . . . ,X n we compute

d̂epth(x) = inf
u 6=0

1
n

n∑
i=1

I(u′X i ≤ u′x) .

Exact computation for d = 2 and d = 3 possible. Approximate
algorithms for d > 3 and/or n large [Ruts and Rousseeuw, 1996,
Rousseeuw and Strufy, 1998].
Plot of depth contours often called a
bagplot [Rousseeuw et al., 1999].
R package depth available including function isodepth.
Literature on other empirical depth measures [Liu et al., 1999].
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Non-Parametric Estimation
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Figure: A so-called bagplot.

AJM Multivariate Scenario Sets 32 / 36



,

Introduction
Risk Measures and Scenario Sets

Computational Issues

Computation for Given Distributions
Estimation

NIG Example, Q0.95
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