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Introduction

Statement of Problem

You are given a multivariate (non-Gaussian) distribution
(either theoretical or empirical) and asked to construct a set
of multivariate scenarios that contains plausible scenarios
but excludes the “most extreme” scenarios.
| aim to generate some discussion of this question including:
@ Why is this problem interesting?

@ How would you go about it? Using density or depth (half-space,
simplex, other)?

@ Is the computation of the set feasible?
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Introduction Motivation
Re
Ex

Financial Risk

@ The random vector X represents a set of financial risk factors that
effect the profitability of a portfolio or the solvency of a company.

@ Which possible values of X should we worry about? We can't
worry about all of them (particularly in high dimensions) and
have to specify the set S of plausible scenarios.

@ Among the plausible scenarios x € S we might want to examine
the worst possible impact ¢(x) for some function ¢. For a portfolio
of assets this might simply be a linear function.

(LSLE - least solvent likely event.)

@ Related problem. Among a particular set of ruin scenarios
{x : x € R} what is the most plausible way of being ruined?
(MLRE - most likely ruin event.)
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Introduction Votivation
Revision of Concept of Half-space Depth
Examples

Notation

@ For any pointy € R? and any directional vector u € RY\ {0},
consider the closed half space

Hyu={xeR?: ux <u'y},

bounded by the hyperplane through y with normal vector u.
@ The probability of the half-space is written

Px(Hyu) = P(u'X < u'y).

@ We define an a-quantile function on R9 \ {0} by writing g, (u) for
the a-quantile of the random variable u’X.
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Introduction

Examples

Quantile Depth Set

Let a > 0.5 be fixed. We write our scenario set in two ways:

Q
Qo = [ {Hyu : Px(Hyu) > o},

the intersection of all closed half spaces with probability at least
a;,
(2]
Q. ={x : ux<q,(u),vu} , (1)

the set of points for which linear combinations are no larger than
the quantile function.
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Introduction
of Concept of Half-space Depth

Relation to Usual Depth Set

Our set differs very slightly from the usual depth set.
Depth at a point x is usally defined to be

depth(x) = inf PX(HX,U)v
u:u#0
and the depth set to be
D, = {x eR? : depth(x) > 1 -a},

i.e. points which are at least 1 — « deep into the distribution. It may be
shown [Rousseeuw and Ruts, 1999] that

Do =\ {Hyu : Px(Hyu) > a} .

Q, and D,, coincide when X has a density.
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Introduction

Examples

Two Independent Exponentials, Qg5
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Introduction M
Re ncept of Half-space Depth
Examples

A bivariate Student distribution, Q95
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Introduction

Examples

Commentary on examples

@ Note how the depth set in the exponential case has a smooth
boundary for o = 0.95. (Supporting hyperplanes in every
direction.)

@ Note how the depth set in the exponential case has a sharp
corners for a = 0.75. (No supporting hyperplanes in some
directions.)

@ The depth set for an elliptical distribution is an ellipsoid.

@ For elliptical distributions both the contours of equal depth and
the contours of equal density are ellipsoidal.
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Introduction

Examples

Literature

@ Origins of concepts: data depth [Tukey, 1975]; multivariate
analogues of quantiles [Eddy, 1984].

@ Multivariate trimming:
[Nolan, 1992, Massé and Theodorescu, 1994].

@ Depth function for population
distributions: [Rousseeuw and Ruts, 1999].

@ Estimation: [Ruts and Rousseeuw, 1996,
Rousseeuw and Strufy, 1998, Rousseeuw et al., 1999]

@ Other concepts of depth (such as simplex):
[Liu et al., 1999, Zuo and Serfling, 2000].

@ Use of concepts in risk analysis: [McNeil and Smith, 2012].
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General Results
Risk Measures and Scenario Sets

Coherent Risk Measures, Linear Portfolios

A risk measure p : M — R is said to be coherent on a set of random
variables M if it satisfies the following axioms for random variables
L € M (representing financial losses).

Monotonicity. Ly < Ly = o(L1) < o(L).

Translation invariance. For m € R, o(L + m) = o(L) + m.
Subadditivity. For L1, L € M, o(L1 + Lo) < o(L1) + o(L2) .
Positive homogeneity. For A > 0, o(Ax) = Ao(X) .

Let X be a fixed random vector and define the linear portfolio set:

M:{L:L:erXX, meR,AeRd}.
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Risk Measures and Scenario Sets

Key Result

Theorem

A risk measure o on the linear portfolio set M is coherent if and only
if it has the representation

o(L) = o(m+ X'X) =sup{m+ XN'x:x € S,} 2)

where S, is the scenario set

S, ={xeR?:u'x < p(u'X),Yu € R} .

The scenario set is a closed convex set and we may conclude that,
for given A, there is a worst case scenario (obtainable by convex
optimization)

X sie = argmax{A'x : x € S,}.
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Risk Measures and Scenario Sets

The Case of VaR

Let us suppose the risk measure ¢ = VaR,, for some value « > 0.5.
Then the scenario set S, is as given in (1), i.e.

{x e R?: u'x < g,(u),vu e R} = Q,.

@ However VaR, is not a coherent risk measure in general.

@ Itis a coherent risk measure for linear portfolios of
elliptically-distributed risks.

@ In other cases the relationship (2) must break down.
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Risk Measures and Scenario Sets

Suppose that X ~ E4(p, X, ) (an elliptical distribution centred at n
with dispersion matrix ¥ and type ) and let M be the space of linear
portfolios. Then VaR,, is coherent on M for a > 0.5.

In the elliptical case the scenario set is
Qu = {x: (x— p)= " (x - p) < K2}

where k, = VaR,(Y)and Y ~ E{(0,1,%).
The worst case scenario for a given portfolio is easily computed
(Lagrange multipliers) to be

X + 22 K,
LSLE = M + ————=Ka,
VA'ZX
and the corresponding loss is
VaRa(m + A/X) =m+ )‘IXLSLE =m+ A/N + V }\/ZAka.
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Risk Measures and Scenario Sets

The Case of VaR for Non-Elliptical Distributions

@ In the non-elliptical case it may happen that VaR,, is not coherent
on M for some value of «. In such situations we may find
portfolio weights A such that

VaR, (L) = VaRa(m+ X'X) >sup {m+X'x:x€ Q,} .

@ Such a situation was shown earlier. It occurs when some lines
bounding half-spaces with probablity « are not supporting
hyperplanes for the set Q,, i.e. they do not touch it.

@ In such situations we can construct explicit examples to show
that VaR,, violates the property of subadditivity.
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Two Independent Exponentials, Q65
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Risk Measures and Scenario Sets

Demonstration of Super-Additivity

@ In previous slide we set « = 0.65 and consider loss L = Xj + Xs.
@ Diagonal line is xy + X2 = q. (X1 + X2) which obviously intersects
axes at (0, g, (X1 + X2)) and (g.(X1 + X2),0).
@ Horizontal (vertical) lines are at g, (X1).
@ We infer
@ xi + X2 < ga (X1 + Xz) in the depth set;
Q@ sup{xi +x : x € Q.} is a poor lower bound
Q 9.(Xi +X2) > gu(X1) + gu(X2) (non-subadditivity of quantile risk
measure)
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Risk Measures and Scenario Sets

Remark: An Upper Bound for VaR

@ Assume differentiability of quantile function q,, and define an
outer scenario set as

Oo ={x : Xx=Vqa(u),u 0}

@ Lety(u) =sup{u’x : x € O,} be the worst scenario in this set.

@ It can be shown that g, (u) < +(u) with equality for all u € R if
and only if q,, is sub-additive.

@ This gives the upper bound for VaR:

VaR, (L) = VaRa(m+ X'X) <sup{m+X'x:x€ O,} .
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Risk

Risk Measures and Scenario Sets Ca sk
Case of Expected Shortfall

The Case of Expected Shortfall

Consider the expected shortfall risk measure ¢ = ES,, which is
known to be a coherent risk measure given by

[ vaRy(L)de

11—«

ES.(L) , ac(05,1),

and write e, (u) := ES, (u’X).
Since expected shortfall is a coherent risk measure (irrespective of X)
it must have the stress test representation

ES.(L) = o(m+ X'X) =sup{m+X'x:x € E,}

where
E,:={x : ux<e,(u),vu}.

AM Multivariate Scenario Sets 23/36



Risk

Risk Measures and Scenario Sets ( isk
Case of Expected Shortfall

The Case of ES for Elliptical Distributions

If X ~ Eq(p, X, ) is elliptically distributed then the scenario set is
simply the ellipsoidal set

Eo={X: (x—p)T '(x—p) <P},
where I, = ES,(Y)and Y ~ E{(0,1,%).
The worst case scenario is given by

A
AT

by -

X SLE = K +
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Risk

Risk Measures and Scenario Sets Ca at-Ris
Case of Expected Shortfall

The Case of ES for Non-Elliptical Distributions
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The set Ey 5. Recall that Qp ¢5 did not have smooth boundary.
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Computational Issues
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Computation for Given Distributions

N Estimation
Computational Issues N

When Can Depth Sets be Computed?

@ For a given random vector X in R? (assumed to have a density)
we would like to be able to say whether a point x is in the depth
set Q,. Is it plausible or not?

@ Equivalently, is it true that

depth(x) = l',% Px(Hxu)>1—a ?

@ ltis particularly nice if we can get a parametric equation for Q,.

@ For elliptical distributions we get ellipsoids.

@ What about copulas? It seems less easy to compute Q.. An
exception is the independence copula for d = 2 where

Q, = {XERZ : 2min(x1,1 7X1)min(X2,1 7X2) >1 7&} .

[Rousseeuw and Ruts, 1999]

@ It seems to be possible to compute the sets for skew-t
distributions (Giorgi 2013).

@ Generalized hyperbolic distributions?
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Computation for Given Distributions
Estimation

Computational Issues

Normal Inverse-Gaussian Model
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Figure: Points are changes in yields for 3-year and 10-year government
bonds. A NIG distribution has been fitted and scenario sets calculated.
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Computation for Given Distributions
Estimation

Computational Issues

Independence Copula, Qp 75
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Figure: Left: Qu.75 for the independence copula; note all hyperplanes
supporting. Right: set transformed to Gaussian scale; note - not a circle!

AM Multivariate Scenario Sets

29/36



Computation for Given Distributions

N Estimation
Computational Issues !

Independence Copula, Qp.g9

e
o

0.8

0.6

u2

x2
o
I

02
I

ul X1

Figure: Left: Qo 99 for the independence copula. Right: set transformed to
Gaussian scale; note - still not a circle!
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Computational Issues

Empirical Estimates of Depth and Depth Contours

@ Recall that depth(x) = infyzo P(U'X < U'x).
@ Given data vectors Xi,..., X, we compute

— 1
depth(x) = llll;]:) - S UX; < u'x).
i=1

@ Exact computation for d = 2 and d = 3 possible. Approximate
algorithms for d > 3 and/or n large [Ruts and Rousseeuw, 1996,
Rousseeuw and Strufy, 1998].

@ Plot of depth contours often called a
bagplot [Rousseeuw et al., 1999].

@ R package depth available including function isodepth.
@ Literature on other empirical depth measures [Liu et al., 1999].
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mputa
Estimation

Computational Issues

Non-Parametric Estimation

car data Chambers/Hastie 1992
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Figure: A so-called bagplot.
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N Estimation
Computational Issues stato

NIG Example, Qy.95
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Computation for Given Distributions

N Estimation
Computational Issues stato

References

[§ Eddy, W. (1984).
Set-valued orderings for bivariate data.
In Ambartzumian, R. and Weil, W., editors, Stochastic Geometry,
Geometric Statistics, Stereology (Proceedings of an
Oberwohlfach Conference in 1983), pages 79-90. Teubner-Texte
fir Mathematik 56, Leipzig.

@ Liu, R., Parelius, J., and Singh, K. (1999).
Multivariate analysis by data depth: descriptive statistics,
graphics and inference (with discussion).
Annals of Statistics, 27(3):783—-858.

[1 Massé and Theodorescu (1994).
Halfplane trimming for bivariate distributions.
Journal of Multivariate Analysis, 48:188-202.

AM Multivariate Scenario Sets 34/36



Computation for Given Distributions

N Estimation
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