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Parametrization of correlation matrix

Parametrization of correlation matrices in terms of partial
correlations

det

 1 ρ12 ρ13

ρ12 1 ρ23

ρ13 ρ23 1

 = (1− ρ2
12)(1− ρ2

13)(1− ρ2
23;1)
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Density of correlations in correlation matrix

Density of correlations - 3D Example

In case d = 3 the joint density f3 of (ρ12, ρ13, ρ23) is

f3(r12, r13, r23) = g12(r12) · g13(r13) · g23(r23;1)× |J3|.

Since ρ23;1 = ρ23−ρ12ρ13√
(1−ρ2

12)(1−ρ2
13)

then

J3 =

 1 0 0
0 1 0
6= 0 6= 0 1√

(1−ρ2
12)(1−ρ2

13)


Hence |J3| = 1√

(1−ρ2
12)(1−ρ2

13)
.

f3(r12, r13, r23) =
g12(r12)√

1− r2
12

· g13(r13)√
1− r2

13

· g23(r23;1).

Consider a density of the form (denoted as Beta(α, α)):

g(u|α) =
1

22α−1B(α, α)
(1− u2)α−1, u ∈ (−1, 1)
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Density of correlations in correlation matrix

3D Example

Taking g12 and g13 to be Beta
(

3
2 ,

3
2

)
and g23 as Beta(1, 1) we get

f3(r12, r13, r23) =

(
1

22B
(

3
2 ,

3
2

))2

· 1

2B(1, 1)
·
[
(1− r2

12)(1− r2
13)(1− r2

23;1)
]0

=
1

25B
(

3
2 ,

3
2

)2 [det{(rij)1≤i,j≤3}]0 =
1

π2/2
.

The normalizing constant π2/2 is the volume of the set of three dimensional
correlation matrices.
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Density of correlations in correlation matrix

Vine partial correlation - 3D
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Density of correlations in correlation matrix

Vine partial correlation - general

For a d dimensional vine

T1 : d − 1 variables Beta
(
d
2 ,

d
2

)
T2 : d − 2 variables Beta

(
d−1

2 , d−1
2

)
...

Tk : d − k variables Beta
(
d−k+1

2 , d−k+1
2

)
...

Td−1 : 1 variable Beta (1, 1)

The volume of the set of d dimensional correlation matrices in
(
d
2

)
dimensional

space is:

2
∑d−1

k=1 k2
d−1∏
k=1

[
B

(
k + 1

2
,
k + 1

2

)]k
.
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Partially specified correlation matrix

Partially specified correlation matrix

Assume that correlations r12 and r13 are known. We want to find density of ρ23.

ρ23 ∈
(
r12r13 −

√
(1− r2

12)(1− r2
13), r12r13 +

√
(1− r2

12)(1− r2
13)

)
.

The density of ρ23 with parameters r12, r13 is

f23(r23|r12, r13) = g23(r23;1)× |J23|

where |J23| = ∂ρ23;1

∂ρ23
= 1√

(1−r2
12)(1−r2

13)
.

Taking g23 to be Beta(1, 1) we get

f23(r23|r12, r13) =
1

2
√

(1− r2
12)(1− r2

13)

which is uniform on the interval(
r12r13 −

√
(1− r2

12)(1− r2
13), r12r13 +

√
(1− r2

12)(1− r2
13)

)
.

2
√

(1− r2
12)(1− r2

13) is the volume of the space of the three dimensional
correlation matrices with fixed (1,2) and (1,3) entries.
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Partially specified correlation matrix

Graphs - Partially specified matrices


1 r12 r13 r14 r15

1 r23 � �
1 � �

1 r45

1



chordal graph m saturated vine
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Partially specified correlation matrix

Chordal Graph - not m-saturated vine
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New parametrization of correlation matrix

New parametrization of correlation matrix

Order variables {1, ..., d}. Let σk be permutation of {1, ..., k − 1}, k = 2, ..., d .

For d = 4

1 σ2 = (1), σ3 = (1, 2) and σ4 = (1, 2, 3)

ρ21, ρ32;1, ρ31, ρ43;12, ρ42;1, ρ41 - C-vine

2 σ2 = (1), σ3 = (1, 2) and σ4 = (2, 1, 3)

ρ21, ρ32;1, ρ31, ρ43;12, ρ41;2, ρ42 - D-vine

3 σ2 = (1), σ3 = (2, 1) and σ4 = (3, 1, 2)

ρ21, ρ31;2, ρ32, ρ42;13, ρ41;3, ρ43 - not regular vine
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New parametrization of correlation matrix

New parametrization of correlation matrix

Theorem

Let

Ωσ2:d
= {ρk,σk (k−j);σk (1)...σk (k−j−1) : 1 ≤ j < k ≤ d}}.

There is a one-to-one correspondence between the set of d × d full-rank
correlation matrices and the set of partial correlations in Ωσ2:d

.
Partial correlations in Ωσ2:d

are algebraically independent.
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Distribution correlations in correlation matrix with chordal sparsity

Distribution correlations in correlation matrix with chordal
sparsity

Given a chordal graph G

Order variables according to perfect elimination ordering of G , {1, 2, ..., d}.
Define

σk = (ik1 , ..., i
k
nk , j

k
1 , ..., j

k
k−1−nk )

where
N(k) = {ik1 , ..., iknk} neighbors of k and

N ′(k) = {jk1 , ..., jkk−1−nk} vertices not connected to k in G ({1, ..., k})
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Distribution correlations in correlation matrix with chordal sparsity

Distribution correlations in correlation matrix with chordal
sparsity

Theorem

fG
(
rk,jkt : a ≤ k ≤ d , 1 ≤ t ≤ k − 1− nk

)
=

=

[
D(C1)

d−#C1

u−1∏
i=1

D(Ci+1)
d−#Ci+1

D(Si )d−#Si

]− 1
2

×
d∏

k=a

k−1−nk∏
t=1

gk,jkt (rk,jkt ;N(k),jk1 ,...,j
k
t−1

)(
1− r 2

k,jkt ;N(k),jk1 ,...,j
k
t−1

)(d−1−nk−t)/2

Taking

gk,jkt (rk,jkt ;N(k),jk1 ,...,j
k
t−1

) ∼ Beta

(
d − nk − t + 1

2
,
d − nk − t + 1

2

)
we get uniform distribution over the set of unspecified correlations.
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Volume of the set of correlation matrix with chordal sparsity pattern

Volume of the set of correlation matrices with sparsity
pattern of G

cG =

[
D(C1)d−#C1

u−1∏
i=1

D(Ci+1)d−#Ci+1

D(Si )d−#Si

] 1
2

×
d∏

k=a

k−1−nk∏
t=1

2d−nk−tB

(
d − nk − t + 1

2
,
d − nk − t + 1

2

)
.
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Example

Example

Let G be a tree on d elements. Hence G has d − 1 cliques with two elements
denoted as C1, ...,Cd−1

Then the volume of the set of correlation matrices with tree pattern of specified
correlations is:

cG =

[
d−1∏
i=1

D(Ci )
d−2

] 1
2 d∏
k=3

k−2∏
t=1

2d−1−tB

(
d − t

2
,
d − t

2

)
.

If d = 4 and r12, r23, r34 are specified then the volume is:

(1− r2
12)(1− r2

23)(1− r2
34) · 25 ·B

(
3

2
,

3

2

)2

·B(1, 1) = (1− r2
12)(1− r2

23)(1− r2
34)
π2

2
.
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Conclusions

Conclusions

We found joint distribution of correlations in correlation matrix with chordal
sparsity patterns

As a byproduct to volume of set of correlation matrices with chordal sparsity
patterns has been found

Can this be extended to other than chordal patterns of unspecified
correlations?
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