Joint density of correlations in correlation matrix with chordal sparsity patterns

Dorota Kurowicka

TUD/NTU
May 2013

Outline

- Main results of Joe 2006, Lewandowski et.al 2009

Outline

- Main results of Joe 2006, Lewandowski et.al 2009
- Parametrization of correlation matrices with set of partial correlations

Outline

- Main results of Joe 2006, Lewandowski et.al 2009
- Parametrization of correlation matrices with set of partial correlations
- Uniform distribution of correlations in correlation matrix with chordal sparsity patterns

Outline

- Main results of Joe 2006, Lewandowski et.al 2009
- Parametrization of correlation matrices with set of partial correlations
- Uniform distribution of correlations in correlation matrix with chordal sparsity patterns
- Volume of the set of correlation matrices with chordal sparsity patterns

Parametrization of correlation matrices in terms of partial correlations

Parametrization of correlation matrices in terms of partial correlations

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
1 & \rho_{12} & \rho_{13} \\
\rho_{12} & 1 & \rho_{23} \\
\rho_{13} & \rho_{23} & 1
\end{array}\right]\right)=\left(1-\rho_{12}^{2}\right)\left(1-\rho_{13}^{2}\right)\left(1-\rho_{23 ; 1}^{2}\right)
$$

Density of correlations - 3D Example

In case $d=3$ the joint density f_{3} of $\left(\rho_{12}, \rho_{13}, \rho_{23}\right)$ is

$$
f_{3}\left(r_{12}, r_{13}, r_{23}\right)=g_{12}\left(r_{12}\right) \cdot g_{13}\left(r_{13}\right) \cdot g_{23}\left(r_{23 ; 1}\right) \times\left|J_{3}\right| .
$$

Density of correlations - 3D Example

In case $d=3$ the joint density f_{3} of $\left(\rho_{12}, \rho_{13}, \rho_{23}\right)$ is

$$
f_{3}\left(r_{12}, r_{13}, r_{23}\right)=g_{12}\left(r_{12}\right) \cdot g_{13}\left(r_{13}\right) \cdot g_{23}\left(r_{23 ; 1}\right) \times\left|J_{3}\right| .
$$

Since $\rho_{23 ; 1}=\frac{\rho_{23}-\rho_{12} \rho_{13}}{\sqrt{\left(1-\rho_{12}^{2}\right)\left(1-\rho_{13}^{2}\right)}}$ then

$$
J_{3}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
\neq 0 & \neq 0 & \frac{1}{\sqrt{\left(1-\rho_{12}^{2}\right)\left(1-\rho_{13}^{2}\right)}}
\end{array}\right]
$$

Density of correlations - 3D Example

In case $d=3$ the joint density f_{3} of $\left(\rho_{12}, \rho_{13}, \rho_{23}\right)$ is

$$
f_{3}\left(r_{12}, r_{13}, r_{23}\right)=g_{12}\left(r_{12}\right) \cdot g_{13}\left(r_{13}\right) \cdot g_{23}\left(r_{23 ; 1}\right) \times\left|J_{3}\right| .
$$

Since $\rho_{23 ; 1}=\frac{\rho_{23}-\rho_{12} \rho_{13}}{\sqrt{\left(1-\rho_{12}^{2}\right)\left(1-\rho_{13}^{2}\right)}}$ then

$$
J_{3}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
\neq 0 & \neq 0 & \frac{1}{\sqrt{\left(1-\rho_{12}^{2}\right)\left(1-\rho_{13}^{2}\right)}}
\end{array}\right]
$$

Hence $\left|J_{3}\right|=\frac{1}{\sqrt{\left(1-\rho_{12}^{2}\right)\left(1-\rho_{13}^{2}\right)}}$.

Density of correlations - 3D Example

In case $d=3$ the joint density f_{3} of $\left(\rho_{12}, \rho_{13}, \rho_{23}\right)$ is

$$
f_{3}\left(r_{12}, r_{13}, r_{23}\right)=g_{12}\left(r_{12}\right) \cdot g_{13}\left(r_{13}\right) \cdot g_{23}\left(r_{23 ; 1}\right) \times\left|J_{3}\right|
$$

Since $\rho_{23 ; 1}=\frac{\rho_{23}-\rho_{12} \rho_{13}}{\sqrt{\left(1-\rho_{12}^{2}\right)\left(1-\rho_{13}^{2}\right)}}$ then

$$
J_{3}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
\neq 0 & \neq 0 & \frac{1}{\sqrt{\left(1-\rho_{12}^{2}\right)\left(1-\rho_{13}^{2}\right)}}
\end{array}\right]
$$

Hence $\left|J_{3}\right|=\frac{1}{\sqrt{\left(1-\rho_{12}^{2}\right)\left(1-\rho_{13}^{2}\right)}}$.

$$
f_{3}\left(r_{12}, r_{13}, r_{23}\right)=\frac{g_{12}\left(r_{12}\right)}{\sqrt{1-r_{12}^{2}}} \cdot \frac{g_{13}\left(r_{13}\right)}{\sqrt{1-r_{13}^{2}}} \cdot g_{23}\left(r_{23 ; 1}\right)
$$

Density of correlations - 3D Example

In case $d=3$ the joint density f_{3} of $\left(\rho_{12}, \rho_{13}, \rho_{23}\right)$ is

$$
f_{3}\left(r_{12}, r_{13}, r_{23}\right)=g_{12}\left(r_{12}\right) \cdot g_{13}\left(r_{13}\right) \cdot g_{23}\left(r_{23 ; 1}\right) \times\left|J_{3}\right|
$$

Since $\rho_{23 ; 1}=\frac{\rho_{23}-\rho_{12} \rho_{13}}{\sqrt{\left(1-\rho_{12}^{2}\right)\left(1-\rho_{13}^{2}\right)}}$ then

$$
J_{3}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
\neq 0 & \neq 0 & \frac{1}{\sqrt{\left(1-\rho_{12}^{2}\right)\left(1-\rho_{13}^{2}\right)}}
\end{array}\right]
$$

Hence $\left|J_{3}\right|=\frac{1}{\sqrt{\left(1-\rho_{12}^{2}\right)\left(1-\rho_{13}^{2}\right)}}$.

$$
f_{3}\left(r_{12}, r_{13}, r_{23}\right)=\frac{g_{12}\left(r_{12}\right)}{\sqrt{1-r_{12}^{2}}} \cdot \frac{g_{13}\left(r_{13}\right)}{\sqrt{1-r_{13}^{2}}} \cdot g_{23}\left(r_{23 ; 1}\right)
$$

Consider a density of the form (denoted as $\operatorname{Beta}(\alpha, \alpha)$):

$$
g(u \mid \alpha)=\frac{1}{2^{2 \alpha-1} B(\alpha, \alpha)}\left(1-u^{2}\right)^{\alpha-1}, u \in(-1,1)
$$

3D Example

Taking g_{12} and g_{13} to be $\operatorname{Beta}\left(\frac{3}{2}, \frac{3}{2}\right)$ and g_{23} as $\operatorname{Beta}(1,1)$ we get

$$
\begin{aligned}
f_{3}\left(r_{12}, r_{13}, r_{23}\right) & =\left(\frac{1}{2^{2} B\left(\frac{3}{2}, \frac{3}{2}\right)}\right)^{2} \cdot \frac{1}{2 B(1,1)} \cdot\left[\left(1-r_{12}^{2}\right)\left(1-r_{13}^{2}\right)\left(1-r_{23 ; 1}^{2}\right)\right]^{0} \\
& =\frac{1}{2^{5} B\left(\frac{3}{2}, \frac{3}{2}\right)^{2}}\left[\operatorname{det}\left\{\left(r_{i j}\right)_{1 \leq i, j \leq 3}\right\}\right]^{0}=\frac{1}{\pi^{2} / 2} .
\end{aligned}
$$

The normalizing constant $\pi^{2} / 2$ is the volume of the set of three dimensional correlation matrices.

Vine partial correlation - 3D

$$
\rho_{12} \sim \operatorname{Beta}(3 / 2,3 / 2) \quad \rho_{13} \sim \operatorname{Beta}(3 / 2,3 / 2)
$$

Vine partial correlation - general

For a d dimensional vine

Vine partial correlation - general

For a dimensional vine

$$
T_{1}: \quad d-1 \text { variables Beta }\left(\frac{d}{2}, \frac{d}{2}\right)
$$

Vine partial correlation - general

For a dimensional vine

$$
\begin{array}{cc}
T_{1}: & d-1 \text { variables } \operatorname{Beta}\left(\frac{d}{2}, \frac{d}{2}\right) \\
T_{2}: & d-2 \text { variables Beta }\left(\frac{d-1}{2}, \frac{d-1}{2}\right)
\end{array}
$$

Vine partial correlation - general

For a dimensional vine

$$
\begin{array}{cc}
T_{1}: & d-1 \text { variables } \operatorname{Beta}\left(\frac{d}{2}, \frac{d}{2}\right) \\
T_{2}: & d-2 \text { variables Beta }\left(\frac{d-1}{2}, \frac{d-1}{2}\right)
\end{array}
$$

$$
T_{k}: d-k \text { variables Beta }\left(\frac{d-k+1}{2}, \frac{d-k+1}{2}\right)
$$

Vine partial correlation - general

For a dimensional vine

$$
\begin{array}{rc}
T_{1}: & d-1 \text { variables } \operatorname{Beta}\left(\frac{d}{2}, \frac{d}{2}\right) \\
T_{2}: & d-2 \text { variables } \operatorname{Beta}\left(\frac{d-1}{2}, \frac{d-1}{2}\right) \\
\vdots & \\
T_{k}: & d-k \text { variables Beta }\left(\frac{d-k+1}{2}, \frac{d-k+1}{2}\right) \\
\vdots & \\
T_{d-1}: & 1 \text { variable } \operatorname{Beta}(1,1)
\end{array}
$$

Vine partial correlation - general

For a d dimensional vine

$$
\begin{array}{lc}
T_{1}: & d-1 \text { variables } \operatorname{Beta}\left(\frac{d}{2}, \frac{d}{2}\right) \\
T_{2}: & d-2 \text { variables } \operatorname{Beta}\left(\frac{d-1}{2}, \frac{d-1}{2}\right)
\end{array}
$$

$$
T_{k}: \quad d-k \text { variables Beta }\left(\frac{d-k+1}{2}, \frac{d-k+1}{2}\right)
$$

$$
T_{d-1}: \quad 1 \text { variable } \operatorname{Beta}(1,1)
$$

The volume of the set of d dimensional correlation matrices in $\binom{d}{2}$ dimensional space is:

$$
2^{\sum_{k=1}^{d-1} k^{2}} \prod_{k=1}^{d-1}\left[B\left(\frac{k+1}{2}, \frac{k+1}{2}\right)\right]^{k}
$$

Partially specified correlation matrix

Assume that correlations r_{12} and r_{13} are known. We want to find density of ρ_{23}.

Partially specified correlation matrix

Assume that correlations r_{12} and r_{13} are known. We want to find density of ρ_{23}.

$$
\rho_{23} \in\left(r_{12} r_{13}-\sqrt{\left(1-r_{12}^{2}\right)\left(1-r_{13}^{2}\right)}, r_{12} r_{13}+\sqrt{\left(1-r_{12}^{2}\right)\left(1-r_{13}^{2}\right)}\right) .
$$

Partially specified correlation matrix

Assume that correlations r_{12} and r_{13} are known. We want to find density of ρ_{23}.

$$
\rho_{23} \in\left(r_{12} r_{13}-\sqrt{\left(1-r_{12}^{2}\right)\left(1-r_{13}^{2}\right)}, r_{12} r_{13}+\sqrt{\left(1-r_{12}^{2}\right)\left(1-r_{13}^{2}\right)}\right) .
$$

The density of ρ_{23} with parameters r_{12}, r_{13} is

$$
f_{23}\left(r_{23} \mid r_{12}, r_{13}\right)=g_{23}\left(r_{23 ; 1}\right) \times\left|J_{23}\right|
$$

Partially specified correlation matrix

Assume that correlations r_{12} and r_{13} are known. We want to find density of ρ_{23}.

$$
\rho_{23} \in\left(r_{12} r_{13}-\sqrt{\left(1-r_{12}^{2}\right)\left(1-r_{13}^{2}\right)}, r_{12} r_{13}+\sqrt{\left(1-r_{12}^{2}\right)\left(1-r_{13}^{2}\right)}\right) .
$$

The density of ρ_{23} with parameters r_{12}, r_{13} is

$$
f_{23}\left(r_{23} \mid r_{12}, r_{13}\right)=g_{23}\left(r_{23 ; 1}\right) \times\left|J_{23}\right|
$$

where $\left|J_{23}\right|=\frac{\partial \rho_{23,1}}{\partial \rho_{23}}=\frac{1}{\sqrt{\left(1-r_{12}^{2}\right)\left(1-r_{13}^{2}\right)}}$.

Partially specified correlation matrix

Assume that correlations r_{12} and r_{13} are known. We want to find density of ρ_{23}.

$$
\rho_{23} \in\left(r_{12} r_{13}-\sqrt{\left(1-r_{12}^{2}\right)\left(1-r_{13}^{2}\right)}, r_{12} r_{13}+\sqrt{\left(1-r_{12}^{2}\right)\left(1-r_{13}^{2}\right)}\right) .
$$

The density of ρ_{23} with parameters r_{12}, r_{13} is

$$
f_{23}\left(r_{23} \mid r_{12}, r_{13}\right)=g_{23}\left(r_{23 ; 1}\right) \times\left|J_{23}\right|
$$

where $\left|J_{23}\right|=\frac{\partial \rho_{23,1}}{\partial \rho_{23}}=\frac{1}{\sqrt{\left(1-r_{12}^{2}\right)\left(1-r_{13}^{2}\right)}}$.
Taking g_{23} to be $\operatorname{Beta}(1,1)$ we get

$$
f_{23}\left(r_{23} \mid r_{12}, r_{13}\right)=\frac{1}{2 \sqrt{\left(1-r_{12}^{2}\right)\left(1-r_{13}^{2}\right)}}
$$

Partially specified correlation matrix

Assume that correlations r_{12} and r_{13} are known. We want to find density of ρ_{23}.

$$
\rho_{23} \in\left(r_{12} r_{13}-\sqrt{\left(1-r_{12}^{2}\right)\left(1-r_{13}^{2}\right)}, r_{12} r_{13}+\sqrt{\left(1-r_{12}^{2}\right)\left(1-r_{13}^{2}\right)}\right) .
$$

The density of ρ_{23} with parameters r_{12}, r_{13} is

$$
f_{23}\left(r_{23} \mid r_{12}, r_{13}\right)=g_{23}\left(r_{23 ; 1}\right) \times\left|J_{23}\right|
$$

where $\left|J_{23}\right|=\frac{\partial \rho_{23,1}}{\partial \rho_{23}}=\frac{1}{\sqrt{\left(1-r_{12}^{2}\right)\left(1-r_{13}^{2}\right)}}$.
Taking g_{23} to be $\operatorname{Beta}(1,1)$ we get

$$
f_{23}\left(r_{23} \mid r_{12}, r_{13}\right)=\frac{1}{2 \sqrt{\left(1-r_{12}^{2}\right)\left(1-r_{13}^{2}\right)}}
$$

which is uniform on the interval

$$
\left(r_{12} r_{13}-\sqrt{\left(1-r_{12}^{2}\right)\left(1-r_{13}^{2}\right)}, r_{12} r_{13}+\sqrt{\left(1-r_{12}^{2}\right)\left(1-r_{13}^{2}\right)}\right) .
$$

Partially specified correlation matrix

Assume that correlations r_{12} and r_{13} are known. We want to find density of ρ_{23}.

$$
\rho_{23} \in\left(r_{12} r_{13}-\sqrt{\left(1-r_{12}^{2}\right)\left(1-r_{13}^{2}\right)}, r_{12} r_{13}+\sqrt{\left(1-r_{12}^{2}\right)\left(1-r_{13}^{2}\right)}\right) .
$$

The density of ρ_{23} with parameters r_{12}, r_{13} is

$$
f_{23}\left(r_{23} \mid r_{12}, r_{13}\right)=g_{23}\left(r_{23 ; 1}\right) \times\left|J_{23}\right|
$$

where $\left|J_{23}\right|=\frac{\partial \rho_{23,1}}{\partial \rho_{23}}=\frac{1}{\sqrt{\left(1-r_{12}^{2}\right)\left(1-r_{13}^{2}\right)}}$.
Taking g_{23} to be $\operatorname{Beta}(1,1)$ we get

$$
f_{23}\left(r_{23} \mid r_{12}, r_{13}\right)=\frac{1}{2 \sqrt{\left(1-r_{12}^{2}\right)\left(1-r_{13}^{2}\right)}}
$$

which is uniform on the interval

$$
\left(r_{12} r_{13}-\sqrt{\left(1-r_{12}^{2}\right)\left(1-r_{13}^{2}\right)}, r_{12} r_{13}+\sqrt{\left(1-r_{12}^{2}\right)\left(1-r_{13}^{2}\right)}\right) .
$$

$2 \sqrt{\left(1-r_{12}^{2}\right)\left(1-r_{13}^{2}\right)}$ is the volume of the space of the three dimensional correlation matrices with fixed $(1,2)$ and $(1,3)$ entries.

Graphs - Partially specified matrices

$$
\left[\begin{array}{ccccc}
1 & r_{12} & r_{13} & r_{14} & r_{15} \\
& 1 & r_{23} & \square & \square \\
& & 1 & \square & \square \\
& & & 1 & r_{45} \\
& & & & 1
\end{array}\right]
$$

Graphs - Partially specified matrices

$$
\left[\begin{array}{ccccc}
1 & r_{12} & r_{13} & r_{14} & r_{15} \\
& 1 & r_{23} & \square & \square \\
& & 1 & \square & \square \\
& & & 1 & r_{45} \\
& & & & 1
\end{array}\right]
$$

Graphs - Partially specified matrices

$$
\left[\begin{array}{ccccc}
1 & r_{12} & r_{13} & r_{14} & r_{15} \\
& 1 & r_{23} & \square & \square \\
& & 1 & \square & \square \\
& & & 1 & r_{45} \\
& & & & 1
\end{array}\right]
$$

Graphs - Partially specified matrices

$$
\left[\begin{array}{ccccc}
1 & r_{12} & r_{13} & r_{14} & r_{15} \\
& 1 & r_{23} & \square & \square \\
& & 1 & \square & \square \\
& & & 1 & r_{45} \\
& & & & 1
\end{array}\right]
$$

chordal graph

m saturated vine

Chordal Graph - not m-saturated vine

New parametrization of correlation matrix

Order variables $\{1, \ldots, d\}$. Let σ_{k} be permutation of $\{1, \ldots, k-1\}, k=2, \ldots, d$.

New parametrization of correlation matrix

Order variables $\{1, \ldots, d\}$. Let σ_{k} be permutation of $\{1, \ldots, k-1\}, k=2, \ldots, d$. For $d=4$
(1) $\sigma_{2}=(1), \sigma_{3}=(1,2)$ and $\sigma_{4}=(1,2,3)$

$$
\rho_{21}, \rho_{32 ; 1}, \rho_{31}, \rho_{43 ; 12}, \rho_{42 ; 1}, \rho_{41}
$$

New parametrization of correlation matrix

Order variables $\{1, \ldots, d\}$. Let σ_{k} be permutation of $\{1, \ldots, k-1\}, k=2, \ldots, d$. For $d=4$
(1) $\sigma_{2}=(1), \sigma_{3}=(1,2)$ and $\sigma_{4}=(1,2,3)$

$$
\rho_{21}, \rho_{32 ; 1}, \rho_{31}, \rho_{43 ; 12}, \rho_{42 ; 1}, \rho_{41}-\mathrm{C}-\mathrm{vine}
$$

New parametrization of correlation matrix

Order variables $\{1, \ldots, d\}$. Let σ_{k} be permutation of $\{1, \ldots, k-1\}, k=2, \ldots, d$. For $d=4$
(1) $\sigma_{2}=(1), \sigma_{3}=(1,2)$ and $\sigma_{4}=(1,2,3)$

$$
\rho_{21}, \rho_{32 ; 1}, \rho_{31}, \rho_{43 ; 12}, \rho_{42 ; 1}, \rho_{41}-\mathrm{C}-\mathrm{vine}
$$

(2) $\sigma_{2}=(1), \sigma_{3}=(1,2)$ and $\sigma_{4}=(2,1,3)$

$$
\rho_{21}, \rho_{32 ; 1}, \rho_{31}, \rho_{43 ; 12}, \rho_{41 ; 2}, \rho_{42}
$$

New parametrization of correlation matrix

Order variables $\{1, \ldots, d\}$. Let σ_{k} be permutation of $\{1, \ldots, k-1\}, k=2, \ldots, d$. For $d=4$
(1) $\sigma_{2}=(1), \sigma_{3}=(1,2)$ and $\sigma_{4}=(1,2,3)$

$$
\rho_{21}, \rho_{32 ; 1}, \rho_{31}, \rho_{43 ; 12}, \rho_{42 ; 1}, \rho_{41}-\mathrm{C}-\mathrm{vine}
$$

(2) $\sigma_{2}=(1), \sigma_{3}=(1,2)$ and $\sigma_{4}=(2,1,3)$

$$
\rho_{21}, \rho_{32 ; 1}, \rho_{31}, \rho_{43 ; 12}, \rho_{41 ; 2}, \rho_{42}-\mathrm{D}-\text { vine }
$$

New parametrization of correlation matrix

Order variables $\{1, \ldots, d\}$. Let σ_{k} be permutation of $\{1, \ldots, k-1\}, k=2, \ldots, d$. For $d=4$
(1) $\sigma_{2}=(1), \sigma_{3}=(1,2)$ and $\sigma_{4}=(1,2,3)$

```
\rho21, 的2;1},\mp@subsup{\rho}{31}{},\mp@subsup{\rho}{43;12}{},\mp@subsup{\rho}{42;1}{},\mp@subsup{\rho}{41}{}-\textrm{C}\mathrm{ -vine
```

(2) $\sigma_{2}=(1), \sigma_{3}=(1,2)$ and $\sigma_{4}=(2,1,3)$

$$
\rho_{21}, \rho_{32 ; 1}, \rho_{31}, \rho_{43 ; 12}, \rho_{41 ; 2}, \rho_{42}-\mathrm{D}-\mathrm{vine}
$$

(3) $\sigma_{2}=(1), \sigma_{3}=(2,1)$ and $\sigma_{4}=(3,1,2)$
$\rho_{21}, \rho_{31 ; 2}, \rho_{32}, \rho_{42 ; 13}, \rho_{41 ; 3}, \rho_{43}-$ not regular vine

New parametrization of correlation matrix

Theorem

Let

$$
\left.\Omega_{\sigma_{2: d}}=\left\{\rho_{k, \sigma_{k}(k-j) ; \sigma_{k}(1) \ldots \sigma_{k}(k-j-1)}: 1 \leq j<k \leq d\right\}\right\} .
$$

There is a one-to-one correspondence between the set of $d \times d$ full-rank correlation matrices and the set of partial correlations in $\Omega_{\sigma_{2, d}}$. Partial correlations in $\Omega_{\sigma_{2: d}}$ are algebraically independent.

Distribution correlations in correlation matrix with chordal sparsity

- Given a chordal graph G

Distribution correlations in correlation matrix with chordal sparsity

- Given a chordal graph G
- Order variables according to perfect elimination ordering of $G,\{1,2, \ldots, d\}$.

Distribution correlations in correlation matrix with chordal sparsity

- Given a chordal graph G
- Order variables according to perfect elimination ordering of $G,\{1,2, \ldots, d\}$.
- Define

$$
\sigma_{k}=\left(i_{1}^{k}, \ldots, i_{n_{k}}^{k}, j_{1}^{k}, \ldots, j_{k-1-n_{k}}^{k}\right)
$$

where
$N(k)=\left\{i_{1}^{k}, \ldots, i_{n_{k}}^{k}\right\}$ neighbors of k and
$N^{\prime}(k)=\left\{j_{1}^{k}, \ldots, j_{k-1-n_{k}}^{k}\right\}$ vertices not connected to k in $G(\{1, \ldots, k\})$

Distribution correlations in correlation matrix with chordal sparsity

Theorem

$$
\begin{gathered}
f_{G}\left(r_{k, j j_{t}}: a \leq k \leq d, 1 \leq t \leq k-1-n_{k}\right)= \\
=\left[D\left(C_{1}\right)^{d-\# c_{1}} \prod_{i=1}^{u-1} \frac{D\left(C_{i+1}\right)^{d-\# c_{i+1}}}{D\left(S_{i}\right)^{d-\# S_{i}}}\right]^{-\frac{1}{2}} \times \prod_{k=a}^{d} \prod_{t=1}^{k-1-n_{k}} \frac{g_{k, j_{t}^{k}}\left(r_{k, j_{i}^{k} ; N(k), j_{1}^{k}, \ldots, j_{t-1}^{k}}\right)}{\left(1-r_{k, j_{t}^{k} ; N(k), j_{1}^{k}, \ldots, j_{t-1}^{k}}^{k}\right)^{\left(d-1-n_{k}-t\right) / 2}}
\end{gathered}
$$

Distribution correlations in correlation matrix with chordal sparsity

Theorem

$$
\begin{gathered}
f_{G}\left(r_{k, j_{t}^{k}}: a \leq k \leq d, 1 \leq t \leq k-1-n_{k}\right)= \\
\left.=\left[D\left(C_{1}\right)^{d-\# c_{1}} \prod_{i=1}^{\mu-1} \frac{D\left(C_{i+1}\right)^{d-\# c_{i+1}}}{D\left(S_{i}\right)^{d-\# S_{i}}}\right]^{-\frac{1}{2}} \times \prod_{k=a}^{d} \prod_{t=1}^{k-1-n_{k}} \frac{g_{k, j_{t}^{k}}\left(r_{k, j_{k}^{k} ; N(k), j_{1}^{k}}^{k}, \ldots, j_{t-1}^{k}\right)}{\left(1-r_{k, j_{t}^{k} ; N(k), j_{1}^{k}, \ldots, j, j_{t-1}^{k}}^{\left(d-1-n_{k}-t\right) / 2}\right.}\right)^{d .2}
\end{gathered}
$$

Taking

$$
g_{k, j_{t}^{k}}\left(r_{k, j_{t}^{k} ; N(k), j_{1}^{k}, \ldots, j_{t-1}^{k}}\right) \sim \operatorname{Beta}\left(\frac{d-n_{k}-t+1}{2}, \frac{d-n_{k}-t+1}{2}\right)
$$

we get uniform distribution over the set of unspecified correlations.

Volume of the set of correlation matrices with sparsity pattern of G

$$
\begin{aligned}
c_{G}= & {\left[D\left(C_{1}\right)^{d-\# C_{1}} \prod_{i=1}^{u-1} \frac{D\left(C_{i+1}\right)^{d-\# c_{i+1}}}{D\left(S_{i}\right)^{d-\# S_{i}}}\right]^{\frac{1}{2}} } \\
& \times \prod_{k=a}^{d} \prod_{t=1}^{k-1-n_{k}} 2^{d-n_{k}-t} B\left(\frac{d-n_{k}-t+1}{2}, \frac{d-n_{k}-t+1}{2}\right) .
\end{aligned}
$$

Example

Let G be a tree on d elements. Hence G has $d-1$ cliques with two elements denoted as C_{1}, \ldots, C_{d-1}

Example

Let G be a tree on d elements. Hence G has $d-1$ cliques with two elements denoted as C_{1}, \ldots, C_{d-1}
Then the volume of the set of correlation matrices with tree pattern of specified correlations is:

$$
c_{G}=\left[\prod_{i=1}^{d-1} D\left(C_{i}\right)^{d-2}\right]^{\frac{1}{2}} \prod_{k=3}^{d} \prod_{t=1}^{k-2} 2^{d-1-t} B\left(\frac{d-t}{2}, \frac{d-t}{2}\right) .
$$

Example

Let G be a tree on d elements. Hence G has $d-1$ cliques with two elements denoted as C_{1}, \ldots, C_{d-1}
Then the volume of the set of correlation matrices with tree pattern of specified correlations is:

$$
c_{G}=\left[\prod_{i=1}^{d-1} D\left(C_{i}\right)^{d-2}\right]^{\frac{1}{2}} \prod_{k=3}^{d} \prod_{t=1}^{k-2} 2^{d-1-t} B\left(\frac{d-t}{2}, \frac{d-t}{2}\right)
$$

If $d=4$ and r_{12}, r_{23}, r_{34} are specified then the volume is:
$\left(1-r_{12}^{2}\right)\left(1-r_{23}^{2}\right)\left(1-r_{34}^{2}\right) \cdot 2^{5} \cdot B\left(\frac{3}{2}, \frac{3}{2}\right)^{2} \cdot B(1,1)=\left(1-r_{12}^{2}\right)\left(1-r_{23}^{2}\right)\left(1-r_{34}^{2}\right) \frac{\pi^{2}}{2}$.

Conclusions

- We found joint distribution of correlations in correlation matrix with chordal sparsity patterns

Conclusions

- We found joint distribution of correlations in correlation matrix with chordal sparsity patterns
- As a byproduct to volume of set of correlation matrices with chordal sparsity patterns has been found

Conclusions

- We found joint distribution of correlations in correlation matrix with chordal sparsity patterns
- As a byproduct to volume of set of correlation matrices with chordal sparsity patterns has been found
- Can this be extended to other than chordal patterns of unspecified correlations?

