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Outline

@ Main results of Joe 2006, Lewandowski et.al 2009
@ Parametrization of correlation matrices with set of partial correlations

@ Uniform distribution of correlations in correlation matrix with chordal sparsity
patterns

@ Volume of the set of correlation matrices with chordal sparsity patterns

Dorota Kurowicka (TUD/NTU) Joint distribution of correlations



Parametrization of correlation matrix

Parametrization of correlation matrices in terms of partial

correlations

P12 P

p23;1
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Parametrization of correlation matrix

Parametrization of correlation matrices in terms of partial

correlations

P12 P

p23;1
1 pi2 pi3 ) ) )
det p12 1 po3 = (1 - p12)(1 — p13)(1 — p231)
p13 ps 1
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Density of correlations in correlation matrix

Density of correlations - 3D Example

In case d = 3 the joint density f3 of (p12, p13, p23) is

f3(f12, ns, f23) = g12(f12) ’ g13(f13) 'g23(f23;1) X |J3|~
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Density of correlations in correlation matrix

Density of correlations - 3D Example

In case d = 3 the joint density f3 of (p12, p13, p23) is

f3(f12, ns, fza) = g12(f12) ’ g13(f13) 'g23(f23;1) X |J3|~

i — P23 —P12P13
Sinee b = sy e
1 0 0
s=| 0 1 0
#0 #0 L

(1-p3)(1—p3s)
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Density of correlations - 3D Example

In case d = 3 the joint density f3 of (p12, p13, p23) is
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Density of correlations in correlation matrix

Density of correlations - 3D Example

In case d = 3 the joint density f3 of (p12, p13, p23) is

f3(f12, ns, fza) = g12(f12) ’ g13(f13) 'g23(f23;1) X |J3|~

i — P23 —P12P13
Sinee b = sy e
1 0 0
s=| 0 1 0
#0 #0 L

(1-p3)(1—p3s)

1

V(1=p%)(1—p%) "

(N2, 3, n3) =

Hence |J| =

r r
g12( 122 ) g13( 132 -g23(r23;1).
Vi J1-r3
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Density of correlations in correlation matrix

Density of correlations - 3D Example

In case d = 3 the joint density f3 of (p12, p13, p23) is

f3(f12, ns, fza) = g12(f12) ’ g13(r13) 'g23(f23;1) X |J3|~

i — P23 —P12P13
Sinee b = sy e
1 0 0
s=| 0 1 0
#0 #0 L

(1-p3)(1—p3s)

1

V(1=p%)(1—p%) "

(N2, 3, n3) =

Hence |J| =

gi2(n2)  gi3(ns)

. - @3(r3:1)-
Vi-rp 1-r glan)
Consider a density of the form (denoted as Beta(c, a)):
1

g(ula) = m(l —u?)* ue (-1,1)
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Density of correlations in correlation matrix

3D Example

Taking g12 and g3 to be Beta(3,3) and gp3 as Beta(1,1) we get

2
f3(r2, i3, r3) = (221‘3 (137 g)> . 23(11, 1) [(1 =) (1 —r3)(1 - r223;1)]0

1
7%)2 [det{(rj)1<ij<3}]® = 27

The normalizing constant 72 /2 is the volume of the set of three dimensional
correlation matrices.

[y

258 (

Nlw
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Density of correlations in correlation matrix

Vine partial correlation - 3D

P12~Beta(3/2,3/2) P13~Beta(3/2,3/2)

P23:1~Beta(1.1)

12—
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Density of correlations in correlation matrix

Vine partial correlation - general

For a d dimensional vine
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Vine partial correlation - general

For a d dimensional vine

Ty d — 1 variables Beta (%7 %)
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Density of correlations in correlation matrix

Vine partial correlation - general

For a d dimensional vine

Ti: d — 1 variables Beta (%, 9)
1

T d — 2 variables Beta (451, 451)

Joint distribution of correlations
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Density of correlations in correlation matrix

Vine partial correlation - general

For a d dimensional vine

Ty d — 1 variables Beta (%7 %)
1 d—

Ty d — 2 variables Beta (d%v Tl)

Ti: d— k variables Beta (4=5+L, d=kt1)

Joint distribution of correlations
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Density of correlations in correlation matrix

Vine partial correlation - general

For a d dimensional vine
Ty : d — 2 variables Beta (451, 451)
Ti: d— k variables Beta (4=5+L, d=kt1)

Tag-1: 1 variable Beta(1,1)
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Density of correlations in correlation matrix

Vine partial correlation - general

For a d dimensional vine
Ty : d — 2 variables Beta (451, 451)
Ti: d— k variables Beta (4=5+L, d=kt1)

Tag-1: 1 variable Beta(1,1)
The volume of the set of d dimensional correlation matrices in (‘2’) dimensional

space is:
d—1 k
- k+1 k+1
03 i K | I =Y A N N
k=1 1 2 s 2
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Partially specified correlation matrix

Partially specified correlation matrix

Assume that correlations r1» and r13 are known. We want to find density of pos.
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Partially specified correlation matrix

Partially specified correlation matrix

Assume that correlations r1» and r13 are known. We want to find density of pos.

P23 € <f12f13 - \/(1 — )1 = rf3), mans + \/(1 —rp)(1— f123)> :

Dorota Kurowicka (TUD/NTU) Joint distribution of correlations



Partially specified correlation matrix

Partially specified correlation matrix

Assume that correlations r1» and r13 are known. We want to find density of pos.

pa3 € <f12f13 - \/(1 — )1 = ris). nans + \/(1 —rp)(1 - f123)> :
The density of pp3 with parameters ri», 113 is

f3(rs|r2, n3) = g3(rs31) x ||
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Partially specified correlation matrix

Partially specified correlation matrix

Assume that correlations r1» and r13 are known. We want to find density of pos.

pa3 € <f12f13 - \/(1 — )1 = ris). nans + \/(1 —rp)(1 - f123)> :
The density of pp3 with parameters ri», 113 is

f3(rs|r2, n3) = g3(rs31) x ||

_ Opasn __

1
where | 3| = 25 = e
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Partially specified correlation matrix

Partially specified correlation matrix

Assume that correlations r1» and r13 are known. We want to find density of pos.

pa3 € <f12f13 - \/(1 — )1 = ris). nans + \/(1 —rp)(1 - f123)> :
The density of pp3 with parameters ri», 113 is

fo3(r3ln2, n3) = go3(rs;1) X | 3|
_ Opasa _ 1 )
Opz (1) (1-r)
Taking g»3 to be Beta(1l,1) we get

where | 3|

1
2\/(1 — i) (1= ri3)

fas(r3ln2, n3) =
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Partially specified correlation matrix

Partially specified correlation matrix

Assume that correlations r1» and r13 are known. We want to find density of pos.

pa3 € <f12f13 - \/(1 — )1 = ris). nans + \/(1 —rp)(1 - f123)> :
The density of pp3 with parameters ri», 113 is

fo3(r3ln2, n3) = go3(rs;1) X | 3|
— 9p23a — 1 )
Opz (1) (1-r)
Taking g»3 to be Beta(1l,1) we get

where | 3|

1
2\/(1 — i) (1= ri3)

fas(r3ln2, n3) =

which is uniform on the interval

<f12’13 - \/ 1= rd)(1—rf3), nans + \/ 1-rd)(1- f123)> :
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Partially specified correlation matrix

Partially specified correlation matrix

Assume that correlations r1» and r13 are known. We want to find density of pos.

pa3 € <f12f13 - \/(1 — )1 = ris). nans + \/(1 —rp)(1 - f123)> :
The density of pp3 with parameters ri», 113 is

f3(rs|r2, n3) = g3(rs31) x ||

_ Opasa _ 1 )
Ops  \f1-rg)(1-rE)
Taking g»3 to be Beta(1l,1) we get

where | 3|

1
2\/(1 — i) (1= ri3)

fas(r3ln2, n3) =

which is uniform on the interval
<I’12f13 — \/ 1-— r12 I’13) non3 + \/ 1-— I’12)(1 — I’123)> .

2y/(1 = rZ)(1 — r%) is the volume of the space of the three dimensional
correlation matrices with fixed (1,2) and (1,3) entries.
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Partially specified correlation matrix

Graphs - Partially specified matrices

1 rno n3 rna ns
1 3 O Od

1 O 0O
1 s
1
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Graphs - Partially specified matrices

1 rno n3 rna ns
1 3 O Od

1 O 0O
1 s
1
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Partially specified correlation matrix

Graphs - Partially specified matrices

1 rno n3 rna ns
1 3 O Od
1 O O
1 s
1
™ T2 T4 Tss
O 6 0 06 6
Iis2 Pt Iise
oo 00
P3412 Pasii4
G
'
chordal graph

m saturated vine
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Partially specified correlation matrix

Chordal Graph - not m-saturated vine
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New parametrization of correlation matrix

New parametrization of correlation matrix

Order variables {1, ..., d}. Let o be permutation of {1,....k—1}, k=2, ....d.
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New parametrization of correlation matrix

Order variables {1, ..., d}. Let o be permutation of {1,....k—1}, k=2, ....d.
For d =4

Q@ o2=(1),05=(1,2) and 04 = (1,2,3)

P21, P32;1, P31, P43;12, P42;1, P41
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New parametrization of correlation matrix

New parametrization of correlation matrix

Order variables {1, ..., d}. Let o be permutation of {1,....k—1}, k=2, ....d.
For d =4

Q@ o2=(1),05=(1,2) and 04 = (1,2,3)

P21, P32:1, P31, Pa3:12, P41, pa1 - C-vine

Q o,=(1),03=(1,2) and 04 = (2,1,3)

P21, P32;1, P31, P43;12, P41;2, P42
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New parametrization of correlation matrix

New parametrization of correlation matrix

Order variables {1, ..., d}. Let o be permutation of {1,....k—1}, k=2, ....d.
For d =4

Q@ o2=(1),05=(1,2) and 04 = (1,2,3)

P21, P32:1, P31, Pa3:12, P41, pa1 - C-vine

Q o,=(1),03=(1,2) and 04 = (2,1,3)

P21, P32:1, P31, Pa3:12, P4a1:2, Pa2 - D-vine
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New parametrization of correlation matrix

New parametrization of correlation matrix

Order variables {1, ..., d}. Let o be permutation of {1,....k—1}, k=2, ....d.
For d =4

Q@ o2=(1),05=(1,2) and 04 = (1,2,3)

P21, P32:1, P31, Pa3:12, P41, pa1 - C-vine

Q o,=(1),03=(1,2) and 04 = (2,1,3)

P21, P32:1, P31, Pa3:12, P4a1:2, Pa2 - D-vine

Q@ o,=(1),03=(2,1)and 04 = (3,1,2)

P21, P31:2, P32, P42:13, P41;3, Pa3 - Not regular vine
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New parametrization of correlation matrix

New parametrization of correlation matrix

Theorem
Let

Q = A{Pk,op(k=j)ion(l)...on(k—j—1) 1 < j < k < d}}.

02:d

There is a one-to-one correspondence between the set of d x d full-rank
correlation matrices and the set of partial correlations in €
Partial correlations in ), are algebraically independent.

02:d "
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Distribution correlations in correlation matrix with chordal sparsity

Distribution correlations in correlation matrix with chordal

sparsity

@ Given a chordal graph G
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Distribution correlations in correlation matrix with chordal sparsity

Distribution correlations in correlation matrix with chordal

sparsity

@ Given a chordal graph G

@ Order variables according to perfect elimination ordering of G, {1,2,...,d}.
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Distribution correlations in correlation matrix with chordal sparsity

Distribution correlations in correlation matrix with chordal

sparsity

@ Given a chordal graph G

@ Order variables according to perfect elimination ordering of G, {1,2,...,d}.
@ Define
Ot = (i wory s I 1 J 1 n,)
where
N(k) = {if, ...,ik } neighbors of k and
N'(k) = {jf', -1 J&_1_n, } vertices not connected to k in G({1,..., k})
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Distribution correlations in correlation matrix with chordal sparsity

Distribution correlations in correlation matrix with chordal

sparsity

Theorem
f(;(rk,jtk:agkgd,lgtgk—l—nk):
1 -3 4 k—1-n ( )
u— . \d—#Cin Tk 8y ikl ik. ko k
_ d—#c 7T D(Cipa)* 75 et e jlani) g gt
= D(Cl) H D(S,-)d_#si 2 H H (d—1—ny—t)/2
i=1 k=a t=1 1
< k,th:N(k),jf,..',jtk_l)
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Distribution correlations in correlation matrix with chordal sparsity

Distribution correlations in correlation matrix with chordal

sparsity
Theorem
fo(npia<k<d1<t<k-1-n)=
1
u—1 4G 172 d k=l w(r, 5
_ D(Cl )d #Cir1 gk’ftk(rlif;N(k)xlk""ka7 )
_ d—#C 1 1001
= [D(G) ! 11 W X E H (d—1—ng—t)/2
<1 k,Jf:N(k)anv--'Jzk—1)
Taking
d—nc—t+1 d—ng—t+1
8t (Thjanh) gt ...t ) ~ Beta ( 2 ’ 2

we get uniform distribution over the set of unspecified correlations.

Joint distribution of correlations
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Volume of the set of correlation matrix with chordal sparsity pattern

Volume of the set of correlation matrices with sparsity

pattern of G

u—1 %

B D(C. )d*#Ciﬂ
_ d—#C it+1

c = |D(G) 11 D(S;)d—#5

i=1

dk—l—nk
o d—n—t+1 d—n,—t+1
d—ng—t
><|| Il 297k B( > , > >

k=a t=1
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Example

Example

Let G be a tree on d elements. Hence G has d — 1 cliques with two elements
denoted as Cy, ..., Cy_1
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Example

Example

Let G be a tree on d elements. Hence G has d — 1 cliques with two elements
denoted as Cy, ..., Cy_1

Then the volume of the set of correlation matrices with tree pattern of specified
correlations is:

d—1 % d k-2 d— d—
o= | Toter| T2 e (595",

k=3 t=1
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Example

Example

Let G be a tree on d elements. Hence G has d — 1 cliques with two elements
denoted as Cy, ..., Cy_1

Then the volume of the set of correlation matrices with tree pattern of specified
correlations is:

d—1 % d k-2 d— d—
o= |Tloter=| T (4 45).

k=3 t=1

If d =4 and ri5, 3, r34 are specified then the volume is:

33 2

2
(- )= B)-3)2 8 (3.5) BuD == A A -3
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Conclusions

Conclusions

@ We found joint distribution of correlations in correlation matrix with chordal
sparsity patterns
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Conclusions

Conclusions

@ We found joint distribution of correlations in correlation matrix with chordal
sparsity patterns

@ As a byproduct to volume of set of correlation matrices with chordal sparsity
patterns has been found
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Conclusions

Conclusions

@ We found joint distribution of correlations in correlation matrix with chordal
sparsity patterns

@ As a byproduct to volume of set of correlation matrices with chordal sparsity
patterns has been found

@ Can this be extended to other than chordal patterns of unspecified
correlations?
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