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KAUST

New graduate-level university located 50 miles north of Jeddah

On the Red Sea

Western style campus (14 miles2) and encourages cultural
diversity

First classes in Fall 2009

About 900 students & 120 faculty (will grow to 2000 & 220)

More at: www.kaust.edu.sa

Partnership with TAMU through IAMCS

Recruting students, postdocs and faculty in statistics

Current President of CalTech will be next KAUST President
in Fall 2013



KAUST: located in Thuwal



KAUST: campus



KAUST: main buildings



KAUST: the Beacon



KAUST: the Beacon & sunset



KAUST: on the Red Sea



KAUST: on the Red Sea



KAUST: whale sharks project



Motivation

Many parametric copula models available in the literature

Mikosch (2006): How does one choose a copula?

Often choose copula models that are mathematically
convenient rather than useful for the data at hand

Goodness-of-fit tests for copulas

We aim at testing the structure of copulas



Specific Tests

Jaworski (2010): test for associativity structure based on
asymptotic distribution of pointwise copula estimator

Bücher, Dette, and Volgushev (2011): test for extreme-value
dependence

Bücher, Dette, and Volgushev (2012): test for associativity
and Archimedeanity

Genest, Nešlehová, and Quessy (2012): test for bivariate
symmetry

We propose a unified framework for testing a variety of
assumptions commonly made for the structure of copulas,
including symmetry, radial symmetry, joint symmetry,
associativity and Archimedeanity, and max-stability

Our test is nonparametric and based on the asymptotic
distribution of the empirical copula process



Copula structures

Symmetry: C (u1, u2)− C (u2, u1) = 0

Radial symmetry:
C (u1, u2)− C (1− u1, 1− u2) + 1− u1 − u2 = 0

Joint symmetry: C (u1, u2) + C (u1, 1− u2)− u1 = 0 and
C (u1, u2) + C (1− u1, u2)− u2 = 0

Archimedean: Cφ(u1, . . . , ud) = φ[−1]{φ(u1) + · · ·+ φ(ud)}
Archimedean copulas are symmetric and associative, i.e., for
d = 2, C (u1, u2) = C (u2, u1) and
C{C (u1, u2), u3} = C{u1,C (u2, u3)}
Archimedean copula is characterized by an associative copula
with C (u, u) < u

Max-stable: C (u1, . . . , ud)− C r (u
1/r
1 , . . . , u

1/r
d ) = 0, for any

r > 0
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Asymptotics

u = (u1, . . . , ud)T and Λ a set of user-chosen points in [0, 1]d

of cardinality c

Xi = (X1i , . . . ,Xdi )
T, i = 1, . . . , n with corresponding

Ûi = (Û1i , . . . , Ûdi )
T, where Ûki = 1

n

∑n
j=1 I (Xkj ≤ Xki ) for

k = 1, . . . , d

Dn(u) = 1
n

∑n
i=1

∏d
k=1 I (Ûki ≤ uk)

√
n{D̂n(u)− C (u)} d−→ UC (u)−

∑d
k=1

∂C(u)
∂uk

UC (1, uk , 1)

where UC (u) is a d-dimensional pinned C -Brownian sheet, i.e.
a centered Gaussian random field with
cov{UC (ui ),U

C (uj)} = C (ui ∧ uj)− C (ui )C (uj)
√
n(Ĥn −H)

d−→ Nc(0,Π) as n→∞, where

Πij = C(ui ∧ uj )− C(ui )C(uj )−
∑d

k=1
∂C(uj )

∂ukj

[
C{ui ∧ (1, ukj , 1)} − ukjC(ui )

]
−
∑d

k=1
∂C(ui )
∂uki

[
C{uj ∧ (1, uki , 1)} − ukiC(uj )

]
+
∑d

m=1

∑d
n=1

∂C(ui )
∂umi

∂C(uj )

∂unj

[
C{(1, umi , 1) ∧ (1, unj , 1)} − umiunj

]



Test Statistics

Af(G) = 0 for a contrast matrix A and f = (f1, . . . , fs)T

TS1 = n{Af(Ĝn)}T(ABTΣBAT)−1{Af(Ĝn)}
B is defined as Bij = ∂fj/∂Gi , i = 1, . . . , c , j = 1, . . . , s

TS2 = n{Af(Ĥn)}T(ABTΠBAT)−1{Af(Ĥn)}

Due to the asymptotic normality of Ĝn and Ĥn, TS1
d−→ χ2

q

and TS2
d−→ χ2

q asymptotically, where q is the row rank of A



Simulations

Evaluate our testing procedures for various structures of
copulas

symmetry, radial symmetry, joint symmetry, associativity, and
max-stability

Compare our method to other tests that have been developed
for assessing particular structures

Symmetry test – Genest et al. (2012),
Associativity test – Bücher et al. (2012)
Max-stability test – Bücher et al. (2011)

Settings: 1,000 replicates, with unknown marginals, nominal level
of all tests is 5%



Symmetry test

How to convert a symmetric copula to asymmetric?

Following Genest et al. (2012) (GNQ), an asymmetric version
of a copula, C (u1, u2), can be defined at all (u1, u2) ∈ [0, 1]2

by Khoudraji’s device (Khoudraji, 1985):
Kδ(u1, u2) = uδ1C (u1−δ

1 , u2), for δ ∈ (0, 1)

Khoudraji’s device provides little asymmetry for
Kendall’s τ ≤ 1/2, and the maximum asymmetry occurs
around δ = 1/2



Symmetry test

Table: Sizes and powers of the test of symmetry in the same setting as
Genest et al. (2012)

Clayton Gaussian Gumbel
n n n

δ τ 250 500 1000 250 500 1000 250 500 1000

S .25 0.154 0.098 0.078 0.164 0.096 0.063 0.154 0.112 0.075
I 0 0.5 0.076 0.057 0.037 0.069 0.047 0.039 0.068 0.053 0.056
Z .75 0.013 0.003 0.008 0.009 0.005 0.001 0.002 0.004 0.005
E 0 0∗ 0.160 0.104 0.075 — — — — — —

0.5 0.251 0.299 0.607 0.174 0.222 0.349 0.200 0.262 0.477
1
4

0.7 0.813 0.990 1.000 0.495 0.865 1.000 0.610 0.929 0.999
P 0.9 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
O 0.5 0.344 0.381 0.616 0.323 0.434 0.739 0.460 0.689 0.958
W 1

2
0.7 0.835 0.997 1.000 0.892 0.997 1.000 0.971 1.000 1.000

E 0.9 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
R 0.5 0.235 0.189 0.230 0.322 0.378 0.634 0.474 0.670 0.940

3
4

0.7 0.423 0.572 0.882 0.726 0.945 0.999 0.839 0.997 1.000
0.9 0.938 0.999 1.000 0.995 1.000 1.000 0.990 1.000 1.000

∗This indicates the sizes for the independent copula Π (δ = τ = 0)



Symmetry test

Remarks:

Under small and moderate τ , the sizes converge to the
nominal value as the sample size increases

With large τ , the sizes are somewhat below the nominal level

All the powers increase as the sample size increases

Compared to GNQ, some of our powers at small sample sizes
are not as good as their powers, but our powers with large
sample sizes are superior to theirs



Radial and joint symmetry test

Table: Sizes and powers of the test of radial and joint symmetry

Radial Joint
τ n=250 n=500 n = 103 n=250 n=500 n = 103

Π 0 0.057 0.067 0.058 Size 0.077 0.083 0.063
1/4 S 0.066 0.072 0.065 0.995 1.000 1.000

Frank 1/2 I 0.080 0.073 0.056 1.000 1.000 1.000
3/4 Z 0.027 0.038 0.049 1.000 1.000 1.000
1/4 E 0.088 0.064 0.050 P 0.989 1.000 1.000

Gaussian 1/2 0.091 0.058 0.056 O 1.000 1.000 1.000
3/4 0.026 0.045 0.031 W 1.000 1.000 1.000
1/4 P 0.372 0.624 0.930 E 0.993 1.000 1.000

Clayton 1/2 O 0.801 0.983 1.000 R 1.000 1.000 1.000
3/4 W 0.861 0.999 1.000 1.000 1.000 1.000
1/4 E 0.118 0.164 0.307 0.882 0.996 1.000

Gumbel 1/2 R 0.216 0.358 0.681 1.000 1.000 1.000
3/4 0.178 0.378 0.754 1.000 1.000 1.000

(1) Sizes are close to 5% for all different τ even at small sample sizes, and

powers increase as the sample sizes increase (2) Powers corresponding to joint

symmetry are much higher than those for radial symmetry, because joint

symmetry is more stringent than radial symmetry



Associativity test

Table: Sizes and powers of the test of associativity in the same setting as
Bücher et al. (2012)(hereafter BDV12). Nominal levels are 5% and 10%

n =200 n =500 n =1000
τ 5% 10% 5% 10% 5% 10%

Clayton 1/3 0.073 0.131 0.096 0.159 0.089 0.154
Clayton 2/3 0.019 0.042 0.038 0.066 0.032 0.076
Gumbel 1/3 0.056 0.104 0.093 0.170 0.101 0.181

SIZE Gumbel 2/3 0.015 0.032 0.012 0.038 0.029 0.055
OrdinalA 1/3 0.012 0.023 0.022 0.034 0.027 0.059
OrdinalA 2/3 0.009 0.018 0.022 0.039 0.019 0.037
OrdinalB 1/3 0.013 0.025 0.014 0.025 0.017 0.042
OrdinalB 2/3 0.013 0.023 0.011 0.029 0.016 0.033

t(df=1) 1/3 0.570 0.701 0.976 0.988 1.000 1.000
POWER t(df=1) 2/3 0.166 0.260 0.658 0.773 0.986 0.994

Aneglog 1/4 0.130 0.205 0.121 0.198 0.135 0.221
Aneglog 1/2 0.435 0.555 0.718 0.797 0.901 0.942



Associativity test

Remarks:

The overall pattern of our results is very similar to BDV12

In all cases but two, the sizes tend to be smaller than the
nominal sizes, which is not detrimental and is similar to that
in BDV12

Since our test still relies on the asymptotic distribution of the
test statistic, it is more powerful with large samples

The test for the other component of Archimedeanity,
C (u, u) < u versus C (u, u) = u, completely follows the
testing procedure in BDV12



Max-stability test

Table: Sizes and powers of the test of max-stability in the same setting
as Bücher et al. (2011). Nominal levels are 5% and 10%

n =200 n =500 n =1000
τ 5% 10% 5% 10% 5% 10%

S Π 0 0.099 0.166 0.069 0.121 0.045 0.100
I 0.25 0.109 0.172 0.067 0.124 0.053 0.093
Z Gumbel 0.5 0.092 0.152 0.048 0.107 0.046 0.094
E 0.75 0.023 0.056 0.023 0.038 0.038 0.058

0.25 0.603 0.709 0.954 0.976 1.000 1.000
Clayton 0.5 0.947 0.969 1.000 1.000 1.000 1.000

P 0.75 0.926 0.960 1.000 1.000 1.000 1.000
O 0.25 0.191 0.289 0.308 0.435 0.708 0.810
W Frank 0.5 0.260 0.391 0.625 0.743 0.975 0.989
E 0.75 0.228 0.344 0.657 0.786 0.987 0.995
R 0.25 0.176 0.268 0.219 0.317 0.402 0.528

Gaussian 0.5 0.165 0.243 0.303 0.435 0.685 0.795
0.75 0.048 0.107 0.177 0.253 0.438 0.557



Max-stability test

Remarks:

Although the sizes of our test are somewhat off for n = 200,
they appear to converge to their corresponding nominal levels
when n becomes larger

The powers increase dramatically as the sample size increases,
particularly if the powers begin with low values with small
sample sizes

The powers of our test with small sample sizes are not
impressive compared to Bücher et al. (2011), but they
become satisfactory with large samples due to the asymptotic
characteristics of the test statistics



The size of Λ

The choice of testing points in the set Λ can introduce
uncertainty to the testing results

In general, a larger number of testing points leads to greater
power, but excessively many testing points can destroy the
size of the test

Data adaptive testing points procedure

A primitive design of testing points: grid expanded by an
equally spaced sequence in [0,1]
Choose only the testing points that anchor in a region of data
abundance, while abandon the ones in areas of data scarcity
Particularly important when the data concentrate in a certain
area



The size of Λ: an example of DATP

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

u1

u 2

Figure: Illustration of data adaptive testing points (DATP) in the
max-stability test: solid points and diamonds are primitive testing points,
diamonds are testing points after applying DATP (Clayton, n = 200)

The powers are 0.807 (0.926) at level 5% and 0.864 (0.960) at
level 10% with Primitive testing points (DATP)



Applications: Nutritional Habits Survey Data

Collected by the U.S. Department of Agriculture in 1985 as
part of a survey on nutritional habits of n = 737 women with
ages ranging from 25 to 50 years

Five variables of daily intakes were measured: calcium (in
mg), iron (in mg), protein (in g), vitamin A (in µg), and
vitamin C (in mg)

Genest et al. (2012) used a Cramér-von Mises statistic to test
for bivariate symmetry of the pairwise copulas



Applications: Nutritional Habits Survey Data

Table: P-values of test of symmetric copula structure on pairs of variables

Variable Calcium Iron Protein Vitamin A Vitamin C

Calcium 0.061 0.013 0.002 0.591
Iron 0.766 0.025 0.086

Protein 0.254 0.123
Vitamin A 0.813

The general pattern of our p-values is similar to the one found
by Genest et al. (2012)

However, our test does not reject a symmetric copula
structure at a 5% level for the pairs (Calcium, Iron), (protein,
vitamin A) and (iron, vitamin C), although the p-value for the
test on (Calcium, Iron) is really on the boundary

Our conclusion on these three pairs also remains the same
when different sets of testing points are used



Applications: S&P 500 and DAX Return Data

396 observations of two major stock indices during 2009 and
2010: the US American S&P 500 and the German DAX
The goal is to identify the underlying copula structure in order
to propose a suitable parametric copula model for the
dependence of those two indices
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Figure: Scatter plot of normal scores for S&P 500 and DAX returns



Applications: S&P 500 and DAX Return Data

P-values of our tests of: symmetry (0.172), radial symmetry
(0.082), joint symmetry (0.000), max-stability (0.009), and
associativity (0.113)

The results suggest that, at the 5% level, symmetry, radial
symmetry, and associativity of the copula structures cannot be
rejected. The Archimedeanity test based on Bücher et al.
(2012) also fails to reject this property even at the 10% level

Only Frank Copula has those three structures

Our method provides guidance for selecting a parametric
copula model. e.g., the Student’s t copula, is symmetric and
radially symmetric, but not Archimedean, and thus is screened
out
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Discussion and open problems

Unified framework to test structure of copulas

Implement bootstrap procedure for those tests

Asymptotics under dependence

Applications to time series and spatial statistics

Other interesting structures

Extension to vine copulas

Marc G. Genton marc.genton@kaust.edu.sa stsda.kaust.edu.sa Nonparametric Identification of Copula Structures
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