Statistical inference of vine copulas using the R-package VineCopula

Eike Christian Brechmann

brechmann@ma.tum.de

TII

Technische Universität München
May 23, 2013

Available software for vines

In general...

- "Uncertainty analysis with Correlations" (UNICORN, TU Delft) includes some functionality for vines.

In R...

- Packages for bivariate and multivariate copulas (copula, fCopulae, QRM1ib,...).
- Daniel Berg (U Oslo/NR): copulaGOF/CopulaLib.

Available software for vines

In general...

- "Uncertainty analysis with Correlations" (UNICORN, TU Delft) includes some functionality for vines.

In R...

- Packages for bivariate and multivariate copulas (copula, fCopulae, QRM1ib,...).
- Daniel Berg (U Oslo/NR): copulaGOF/CopulaLib.

The R-packages VineCopula and CDVine fill this gap.

Scope of VineCopula

VineCopula provides functions for bivariate analysis...

- graphical tools

■ analytical tools

- selection and estimation of bivariate copulas
- simulation of bivariate copulas
BiCop...

Scope of VineCopula

VineCopula provides functions for bivariate analysis...

- graphical tools
- analytical tools
- selection and estimation of bivariate copulas

■ simulation of bivariate copulas
...and for multivariate analysis using (simplified) regular vine copulas.

- sequential and joint maximum likelihood estimation
- simulation of vine copulas

```
RVine...
```

- model selection
- illustration of vine trees

Scope of VineCopula

VineCopula provides functions for bivariate analysis...

- graphical tools
- analytical tools
- selection and estimation of bivariate copulas

■ simulation of bivariate copulas
...and for multivariate analysis using (simplified) regular vine copulas.

- sequential and joint maximum likelihood estimation
- simulation of vine copulas

```
RVine...
```

- model selection
- illustration of vine trees

General assumption: Data lies in the unit hypercube $[0,1]^{d}$.

The package CDVine

- Functionality for the sub-classes of C- and D-vines.

■ Links to the package VineCopula: C2RVine and D2RVine.

- Vignette:

围 Brechmann \& Schepsmeier (2013). Modeling dependence with C- and D-vine copulas: The R-package CDVine. Journal of Statistical Software 52(3), 1-27.

The building blocks: Bivariate copula families

Each family is denoted by a number to shorten notation ($0=$ indep.).
■ Elliptical copulas:

family $=1$ Gaussian copula
family $=2$ Student's t copula

The building blocks: Bivariate copula families

Each family is denoted by a number to shorten notation ($0=$ indep.).

- Elliptical copulas:

$$
\begin{array}{ll}
\text { family }=1 & \text { Gaussian copula } \\
\text { family }=2 & \text { Student's } t \text { copula }
\end{array}
$$

■ One parameter Archimedean copulas:
family $=3$ Clayton copula
family $=4$ Gumbel copula
family $=5$ Frank copula
family $=6$ Joe copula

The building blocks: Bivariate copula families

Each family is denoted by a number to shorten notation ($0=$ indep.).
■ Elliptical copulas:
family $=1$ Gaussian copula
family $=2$ Student's t copula

- One parameter Archimedean copulas:
family $=3$ Clayton copula
family $=4$ Gumbel copula
family $=5$ Frank copula
family $=6$ Joe copula
- Two parameter Archimedean copulas:
family $=7$ Clayton-Gumbel (BB1) copula
family $=8$ Joe-Gumbel (BB6) copula
family $=9$ Joe-Clayton (BB7) copula
family $=10$ Joe-Frank (BB8) copula

The building blocks: Bivariate copula families

Each family is denoted by a number to shorten notation ($0=$ indep.).
■ Elliptical copulas:
family $=1$ Gaussian copula
family $=2$ Student's t copula

- One parameter Archimedean copulas:
family $=13$ survival Clayton copula
family $=14$ survival Gumbel copula
family $=5 \quad$ Frank copula
family $=16$ survival Joe copula
■ Two parameter Archimedean copulas:
family $=17$ survival BB1 copula
family $=18$ survival BB6 copula
family $=19$ survival BB7 copula
family $=20$ survival BB8 copula

The building blocks: Bivariate copula families

Each family is denoted by a number to shorten notation ($0=$ indep.).
■ Elliptical copulas:
family $=1$ Gaussian copula
family $=2$ Student's t copula
■ One parameter Archimedean copulas:
family $=23$ rotated Clayton copula (90 degrees)
family $=24$ rotated Gumbel copula (90 degrees)
family $=5$ Frank copula
family $=26$ rotated Joe copula (90 degrees)

- Two parameter Archimedean copulas:
family $=27$ rotated BB1 copula (90 degrees)
family $=28$ rotated BB6 copula (90 degrees)
family $=29$ rotated BB7 copula (90 degrees)
family $=30$ rotated BB8 copula (90 degrees)

The building blocks: Bivariate copula families

Each family is denoted by a number to shorten notation ($0=$ indep.).
■ Elliptical copulas:
family $=1$ Gaussian copula
family $=2$ Student's t copula
■ One parameter Archimedean copulas:
family $=33$ rotated Clayton copula (270 degrees)
family $=34$ rotated Gumbel copula (270 degrees)
family $=5 \quad$ Frank copula
family $=36$ rotated Joe copula (270 degrees)

- Two parameter Archimedean copulas:
family $=37$ rotated BB1 copula (270 degrees)
family $=38$ rotated BB6 copula (270 degrees)
family $=39$ rotated BB7 copula (270 degrees)
family $=40$ rotated BB8 copula (270 degrees)

The building blocks: Bivariate copula families

Each family is denoted by a number to shorten notation ($0=$ indep.).
■ Elliptical copulas: (parameters: par, par2 (degrees of freedom)) family $=1$ Gaussian copula
family $=2$ Student's t copula
■ One parameter Archimedean copulas: (parameter: par)
family $=33$ rotated Clayton copula (270 degrees)
family $=34$ rotated Gumbel copula (270 degrees)
family $=5 \quad$ Frank copula
family $=36$ rotated Joe copula (270 degrees)
■ Two parameter Archimedean copulas: (parameters: par, par2)
family $=37$ rotated BB1 copula (270 degrees)
family $=38$ rotated BB6 copula (270 degrees)
family $=39$ rotated BB7 copula (270 degrees)
family $=40$ rotated BB8 copula (270 degrees)

The building blocks: Bivariate copula families

Each family is denoted by a number to shorten notation ($0=$ indep.).
■ Elliptical copulas: (parameters: par, par2 (degrees of freedom)) family $=1$ Gaussian copula
family $=2$ Student's t copula
■ One parameter Archimedean copulas: (parameter: par)
family $=33$ rotated Clayton copula (270 degrees)
family $=34$ rotated Gumbel copula (270 degrees)
family $=5 \quad$ Frank copula
family $=36$ rotated Joe copula (270 degrees)
■ Two parameter Archimedean copulas: (parameters: par, par2)
family $=37$ rotated BB1 copula (270 degrees)
family $=38$ rotated BB6 copula (270 degrees)
family $=39$ rotated BB7 copula (270 degrees)
family $=40$ rotated BB8 copula (270 degrees)
Density, distribution \& h-functions: BiCopPDF, BiCopCDF \& BiCopHfunc.

Rotation of copulas

- Rotate Archimedean copulas to capture negative dependence: if $\left(U_{1}, U_{2}\right) \sim C_{90^{\circ}}$, then $\left(1-U_{1}, U_{2}\right) \sim C_{0^{\circ}}$.
- Survival copulas correspond to rotation by 180 degrees.

Rotation of copulas

- Rotate Archimedean copulas to capture negative dependence: if $\left(U_{1}, U_{2}\right) \sim C_{90^{\circ}}$, then $\left(1-U_{1}, U_{2}\right) \sim C_{0^{\circ}}$.
- Survival copulas correspond to rotation by 180 degrees.

Clayton copulas rotated by $0,90,180$ and 270 degrees

> dat0 $=$ BiCopSim($\mathrm{N}=500$, family=3, par=2)
> dat90 = BiCopSim(N=500, family=23, par=-2)
> dat180 = BiCopSim(N=500, family=13, par=2)
> dat270 $=$ BiCopSim($\mathrm{N}=500$, family=33, par=-2)

Two parameter Archimedean copulas

- The BB1 and the BB7 copula can model tail-asymmetric dependence with different non-zero lower and upper tail dependence.
- Density expressions and derivatives are however numerically involved.

Two parameter Archimedean copulas

- The BB1 and the BB7 copula can model tail-asymmetric dependence with different non-zero lower and upper tail dependence.
- Density expressions and derivatives are however numerically involved.

```
Clayton-Gumbel (BB1) copula
> BiCopPar2Tau(family=7,
+ par=0.25, par2=2.5)
[1] 0.64
> BiCopPar2TailDep(family=7,
+ par=0.25, par2=2.5)
$lower
[1] 0.33
$upper
[1] 0.68
```


Two parameter Archimedean copulas

- The BB1 and the BB7 copula can model tail-asymmetric dependence with different non-zero lower and upper tail dependence.
- Density expressions and derivatives are however numerically involved.

```
Clayton-Gumbel (BB1) copula
> BiCopPar2Tau(family=7,
+ par=0.25, par2=2.5)
[1] 0.64
> BiCopPar2TailDep(family=7,
+ par=0.25, par2=2.5)
$lower
[1] 0.33
$upper
[1] 0.68
```

> BiCopMetaContour (family=7,
$+\quad$ par=0.25, par2=2.5)

Reminder: R-vine copulas

Three components: vine trees, pair copulas, copula parameters
(2)
(5)

(3) T_{1}

Reminder: R-vine copulas

Three components: vine trees, pair copulas, copula parameters

Density

$$
c=c_{14} \cdot c_{15} \cdot c_{24} \cdot c_{34}
$$

Reminder: R-vine copulas

Three components: vine trees, pair copulas, copula parameters

Density

$$
c=c_{14} \cdot c_{15} \cdot c_{24} \cdot c_{34}
$$

$$
3,4 \quad T_{2}
$$

Reminder: R-vine copulas

Three components: vine trees, pair copulas, copula parameters

Density

$$
c=c_{14} \cdot c_{15} \cdot c_{24} \cdot c_{34}
$$

Reminder: R-vine copulas

Three components: vine trees, pair copulas, copula parameters

Density

$$
c=c_{14} \cdot c_{15} \cdot c_{24} \cdot c_{34}
$$

$$
\cdot c_{12 ; 4} \cdot c_{13 ; 4} \cdot c_{45 ; 1}
$$

Reminder: R-vine copulas

Three components: vine trees, pair copulas, copula parameters

$$
\begin{aligned}
c= & c_{14} \cdot c_{15} \cdot c_{24} \cdot c_{34} \\
& \cdot c_{12 ; 4} \cdot c_{13 ; 4} \cdot c_{45 ; 1}
\end{aligned}
$$

Density

1,2|4 T_{3}

Reminder: R-vine copulas

Three components: vine trees, pair copulas, copula parameters

Storing R-vine copulas in matrix notation

Efficient enconding of R-vine models needed for statistical inference.

- Matrix notation by Morales-Nápoles et al. (2010) and Dißmann et al. (2013).

$$
\left(\begin{array}{lllll}
2 & & & & \\
5 & 3 & & & \\
3 & 5 & 4 & & \\
1 & 1 & 5 & 5 & \\
4 & 4 & 1 & 1 & 1
\end{array}\right)
$$

Storing R-vine copulas in matrix notation

Efficient enconding of R-vine models needed for statistical inference.

- Matrix notation by Morales-Nápoles et al. (2010) and Dißmann et al. (2013).
$\left(\begin{array}{lllll}2 & & & & \\ 5 & 3 & & & \\ 3 & 5 & 4 & & \\ 1 & 1 & 5 & 5 & \\ 4 & 4 & 1 & 1 & 1\end{array}\right)$
(1 $\{2,4\},\{3,4\},\{4,1\},\{5,1\}$

Storing R-vine copulas in matrix notation

Efficient enconding of R-vine models needed for statistical inference.

- Matrix notation by Morales-Nápoles et al. (2010) and Dißmann et al. (2013).

$$
\left(\begin{array}{ccccc}
2 & & & & \\
5 & 3 & & & \\
3 & 5 & 4 & & \\
1 & 1 & 5 & 5 & \\
\hline 4 & 4 & 1 & 1 & 1
\end{array}\right)
$$

(1 $\{2,4\},\{3,4\},\{4,1\},\{5,1\}$
2 $\{2,1 \mid 4\},\{3,1 \mid 4\},\{4,5 \mid 1\}$

Storing R-vine copulas in matrix notation

Efficient enconding of R-vine models needed for statistical inference.

- Matrix notation by Morales-Nápoles et al. (2010) and Dißmann et al. (2013).

$$
\left(\begin{array}{ccccc}
2 & & & & \\
5 & 3 & & & \\
3 & 5 & 4 & & \\
\hline 1 & 1 & 5 & 5 & \\
4 & 4 & 1 & 1 & 1
\end{array}\right)
$$

(1 $\{2,4\},\{3,4\},\{4,1\},\{5,1\}$
$2\{2,1 \mid 4\},\{3,1 \mid 4\},\{4,5 \mid 1\}$
3 $\{2,3 \mid 14\},\{3,5 \mid 14\}$

Storing R-vine copulas in matrix notation

Efficient enconding of R-vine models needed for statistical inference.

- Matrix notation by Morales-Nápoles et al. (2010) and Dißmann et al. (2013).

$$
\left(\begin{array}{ccccc}
2 & & & & \\
5 & 3 & & & \\
\hline 3 & 5 & 4 & & \\
1 & 1 & 5 & 5 & \\
4 & 4 & 1 & 1 & 1
\end{array}\right)
$$

(1) $\{2,4\},\{3,4\},\{4,1\},\{5,1\}$
(2 $\{2,1 \mid 4\},\{3,1 \mid 4\},\{4,5 \mid 1\}$
3 3 $\{2,3 \mid 14\},\{3,5 \mid 14\}$
4 \{2, 5|314\}

R-vine copula and parameter matrices

Copula families and parameters can be stored in associated matrices.

$$
\left(\begin{array}{ccccc}
2 & & & & \\
5 & 3 & & & \\
3 & 5 & 4 & & \\
1 & 1 & 5 & 5 & \\
4 & 4 & 1 & 1 & 1
\end{array}\right) \longrightarrow\left(\begin{array}{cccc}
C_{25 ; 314} & & & \\
C_{23 ; 14} & C_{35 ; 14} & & \\
C_{21 ; 4} & C_{31 ; 4} & C_{45 ; 1} & \\
C_{24} & C_{34} & C_{41} & C_{51}
\end{array}\right)
$$

R-vine matrix objects

An RVineMatrix object contains all required matrices:

```
> Matrix = c(2,5,3,1,4,0,3,5,1,4,0,0,4,5,1,
+ 0,0,0,5,1,0,0,0,0,1)
> Matrix = matrix(Matrix,5,5)
>
> family = c(0,1,3,4,4,0,0,3,4,1,0,0,0,4,1,
+ 0,0,0,0,3,0,0,0,0,0)
> family = matrix(family,5,5)
>
> par = c(0,0.2,0.9,1.5,3.9,0,0,1.1,1.6,0.9,0,0,0,1.9,0.5,
+ 0,0,0,0,4.8,0,0,0,0,0)
> par = matrix(par,5,5)
>
> par2 = matrix(0,5,5)
>
> RVM = RVineMatrix(Matrix=Matrix, family=family, par=par,
+ par2=par2, names=c("V1","V2","V3","V4","V5"))
```


Simulation

> simdat $=$ RVineSim(500, RVM)
$>$ head (simdat)

Simulation

> simdat $=$ RVineSim(500, RVM)
> head(simdat)
V1 V2 V3 V4 V5
$\begin{array}{lllllllll}{[1,]} & 0.51 & 0.24 & 0.42 & 0.33 & 0.45\end{array}$
$\begin{array}{lllllllll}{[2,]} & 0.23 & 0.14 & 0.16 & 0.12 & 0.20\end{array}$
$\begin{array}{lllllllll}{[3,]} & 0.65 & 0.38 & 0.46 & 0.29 & 0.70\end{array}$
$\begin{array}{lllllllllll}{[4,]} & 0.43 & 0.18 & 0.08 & 0.08 & 0.26\end{array}$
$\begin{array}{llllllll}{[5,]} & 0.86 & 0.86 & 0.85 & 0.86 & 0.87\end{array}$
$[6] \quad 0.71 \quad 0.71 \quad 0.80 \quad 0.68 \quad$,

Example

- Daily log returns of 15 major German stocks.

■ Observed from January 2005 to August 2009 (1158 observations).

- Time series are filtered using $\operatorname{GARCH}(1,1)$ with Student's t innovations.
- Data set of standardized residuals transformed to $[0,1]$.

Load into workspace:
> data(daxreturns)
Now: selection of trees, pair copulas and parameters in inverse order.

A first look at the data

Parameter estimation I

- Sequential estimation (based on BiCopEst)

■ either using bivariate inversion of Kendall's τ :
> RVineSeqEst(data, RVM, method="itau")

- or bivariate maximum likelihood estimation:
> RVineSeqEst(data, RVM, method="mle")
- Very fast, since only bivariate estimation.
- Provides good starting values for joint maximum likelihood estimation.

Parameter estimation II

■ Maximum likelihood estimation of all parameters jointly (log-likelihood computation: RVineLogLik).
> RVineMLE(data, RVM, start, start2, maxit, + grad, hessian, se)

Starting values can be calculated using s Analytical gradient can be used for numerical optimization (see RVinecrad)

Parameter estimation II

■ Maximum likelihood estimation of all parameters jointly (log-likelihood computation: RVineLogLik).
> RVineMLE(data, RVM, start=0, start2=0, maxit,

+ grad, hessian, se)
- Starting values can be calculated using sequential estimation.

Analytical gradient can be used for numerical optimization
(see RVineGrad)
(see RVineStdError and RVineHessian).

Parameter estimation II

■ Maximum likelihood estimation of all parameters jointly (log-likelihood computation: RVineLogLik).
> RVineMLE(data, RVM, start, start2, maxit,
$+\quad$ grad=TRUE, hessian, se)

- Starting values can be calculated using sequential estimation.
- Analytical gradient can be used for numerical optimization (see RVineGrad).
(see RVineStdError and RVineHessian).

Parameter estimation II

■ Maximum likelihood estimation of all parameters jointly (log-likelihood computation: RVineLogLik).
> RVineMLE(data, RVM, start, start2, maxit, + grad, hessian=TRUE, se=TRUE)

- Starting values can be calculated using sequential estimation.
- Analytical gradient can be used for numerical optimization (see RVineGrad).
- Standard errors can be computed based on the analytical Hessian (see RVineStdError and RVineHessian).

Parameter estimation III

```
> mle = RVineMLE(data=daxreturns[,1:5], RVM, start=0, start2=0,
+ grad=TRUE, hessian=TRUE, se=TRUE)
```


Parameter estimation III

```
> mle = RVineMLE(data=daxreturns[,1:5], RVM, start=0, start2=0,
+ grad=TRUE, hessian=TRUE, se=TRUE)
```

> mle\$RVM\$par
[,1] [,2] [,3] [,4] [,5]
$[1] \quad 0.000 .0000 .000 .00 \quad$,
$[2] \quad 0.14 \quad 0.000 \quad 0.00 \quad 0.00 \quad$,
$[3] \quad 0.700 .079 \quad 0.00 \quad 0.00 \quad$,
$\left[\begin{array}{llllll}{[4,]} & 1.30 & 1.206 & 1.42 & 0.00 & 0\end{array}\right.$
$[5] \quad 1.42 \quad 0.366 \quad 0.520 .99 \quad$,

Parameter estimation III

```
> mle = RVineMLE(data=daxreturns[,1:5], RVM, start=0, start2=0,
+ grad=TRUE, hessian=TRUE, se=TRUE)
```

> mle\$RVM\$par
[,1] [,2] [,3] [,4] [,5]
$[1] \quad 0.00 \quad 0.0000 .00 \quad 0.00 \quad$,
$[2] \quad 0.14 \quad 0.000 \quad 0.00 \quad 0.00 \quad$,
$[3] \quad 0.70 \quad 0.079 \quad 0.00 \quad 0.00 \quad$,
$\left[\begin{array}{llllll}{[4,]} & 1.30 & 1.206 & 1.42 & 0.00 & 0\end{array}\right.$
$[5] \quad 1.42 \quad 0.366 \quad 0.520 .99 \quad$,
> mle\$se
$[, 1] \quad[, 2] \quad[, 3] \quad[, 4] \quad[, 5]$
$[1] \quad 0.0000 .0000 .0000 .000 \quad$,
$[2] \quad 0.0290 .0000 .0000 .000 \quad$,
[3,] $0.0590 .0370 .000 \quad 0.000 \quad 0$
$[4] \quad 0.031 \quad 0.028 \quad 0.036 \quad 0.000 \quad$,
$[5] \quad 0.0320 .0240 .0200 .059 \quad$,

Pair copula selection

- Manually using tools for bivariate analysis (e.g., contour plots or goodness-of-fit tests: BiCopMetaContour, BiCopGofTest,...). BiCopSelect (bivariate) or RVineCopSelect (multivariate).

Pair copula selection

- Manually using tools for bivariate analysis (e.g., contour plots or goodness-of-fit tests: BiCopMetaContour, BiCopGofTest,...).
- Automatically using AIC or BIC from a set of copula families: BiCopSelect (bivariate) or RVineCopSelect (multivariate).

Pair copula selection

■ Manually using tools for bivariate analysis (e.g., contour plots or goodness-of-fit tests: BiCopMetaContour, BiCopGofTest,...).

- Automatically using AIC or BIC from a set of copula families: BiCopSelect (bivariate) or RVineCopSelect (multivariate).

```
> cops = RVineCopSelect(data=daxreturns[,1:5], familyset=NA,
    Matrix=Matrix, selectioncrit="AIC",
    indeptest=FALSE, level=0.05)
```


Pair copula selection

- Manually using tools for bivariate analysis (e.g., contour plots or goodness-of-fit tests: BiCopMetaContour, BiCopGofTest,...).
- Automatically using AIC or BIC from a set of copula families: BiCopSelect (bivariate) or RVineCopSelect (multivariate).

```
> cops = RVineCopSelect(data=daxreturns[,1:5], familyset=NA,
+ Matrix=Matrix, selectioncrit="AIC",
+ indeptest=FALSE, level=0.05)
```

> cops\$family

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$	$[, 5]$
$[1]$,	0	0	0	0	0
$[2]$,	5	0	0	0	0
$[3]$,	2	5	0	0	0
$[4]$,	2	20	2	0	0
$[5]$,	17	2	14	20	0

Vine tree selection I

■ Sequential tree-by-tree selection according to Dißmann et al. (2013):
1 Select maximum spanning tree (respecting the proximity condition) in terms of the absolute empirical pairwise Kendall's τ values.
2 Select and estimate pair copulas of the tree.
3 Compute transformed observations using h-functions and go back to Step 1.

Vine tree selection I

■ Sequential tree-by-tree selection according to Dißmann et al. (2013):
1 Select maximum spanning tree (respecting the proximity condition) in terms of the absolute empirical pairwise Kendall's τ values.
2 Select and estimate pair copulas of the tree.
3 Compute transformed observations using h-functions and go back to Step 1.
> RVineStructureSelect(data, familyset, type,

+ selectioncrit, indeptest,
+ level, trunclevel)

Vine tree selection I

■ Sequential tree-by-tree selection according to Dißmann et al. (2013):
1 Select maximum spanning tree (respecting the proximity condition) in terms of the absolute empirical pairwise Kendall's τ values.
2 Select and estimate pair copulas of the tree.
3 Compute transformed observations using h-functions and go back to Step 1.
> RVineStructureSelect(data, familyset, type="RVine",

+ selectioncrit, indeptest,
+ level, trunclevel)
- R- and C-vine copulas can be selected.

Vine tree selection I

■ Sequential tree-by-tree selection according to Dißmann et al. (2013):
1 Select maximum spanning tree (respecting the proximity condition) in terms of the absolute empirical pairwise Kendall's τ values.
2 Select and estimate pair copulas of the tree.
3 Compute transformed observations using h-functions and go back to Step 1.
> RVineStructureSelect(data, familyset, type,

+ selectioncrit, indeptest,
+ level, trunclevel=2)
- R- and C-vine copulas can be selected.
- The vine copula can be truncated to reduce the model complexity.

Vine tree selection II

```
> rvm = RVineStructureSelect(data=daxreturns)
```


Vine tree selection II

> rvm = RVineStructureSelect(data=daxreturns)

	[,1]	[,2]	[,3]	[,4]	[,5]	[,6]	[,7]	[,8]	[,9]	[,10]	[,11]	[,12]	[,13]	[,14]	[,15]
[1,]	15	0	0	0	0	0	0	0	0	0	0	0	0	0	0
[2,]	11	4	0	0	0	0	0	0	0	0	0	0	0	0	0
[3,]	9	11	3	0	0	0	0	0	0	0	0	0	0	0	0
[4,]	7	9	11	11	0	0	0	0	0	0	0	0	0	0	0
[5,]	13	7	9	12	9	0	0	0	0	0	0	0	0	0	0
[6,]	3	13	7	8	12	7	0	0	0	0	0	0	0	0	0
[7,]	12	3	13	10	8	12	13	0	0	0	0	0	0	0	0
[8,]	8	12	5	5	10	8	12	5	0	0	0	0	0	0	0
[9,]	10	8	1	2	5	10	8	12	1	0	0	0	0	0	0
[10,]	2	10	12	13	2	5	10	8	12	12	0	0	0	0	0
[11,]	1	2	8	9	13	2	5	10	8	10	8	0	0	0	0
[12,]	14	1	6	7	1	13	2	2	10	6	10	10	0	0	0
[13,]	6	14	14	14	14	1	14	1	2	14	6	6	2	0	0
[14,]	4	6	10	6	6	14	6	14	14	2	14	14	6	14	0
[15,]	5	5	2	1	7	6	1	6	6	8	2	2	14	6	6

Illustrating R-vine copula models

Selected R-vine trees:
> RVineTreePlot(data=NULL, RVM=rvm, tree=1,
$+$
edge.labels=c("family", "theotau"))

Illustrating R-vine copula models

Selected R-vine trees:
> RVineTreePlot(data=NULL, RVM=rvm, tree=1,

+ edge.labels=c("family","theotau"))

Tree 1

Illustrating R-vine copula models

Selected R-vine trees:

```
> RVineTreePlot(data=NULL, RVM=rvm, tree=2,
+ edge.labels=FALSE)
```

Tree 2

Discrimination among vine copula models I

- AIC and BIC: RVineAIC and RVineBIC.

■ Tests by Vuong (1989) and by Clarke (2007) for non-nested comparisons of two R-vine models RVM1 and RVM2:
> RVineVuongTest(data, RVM1, RVM2)
> RVineClarkeTest(data, RVM1, RVM2)

Discrimination among vine copula models II

■ Select a C-vine copula for comparison:
> cvm = RVineStructureSelect(daxreturns, type="CVine")

$>$ RVineVuongTest(daxreturns, rvm, cvm)

\$statistic
[1] 0.27
\$statistic.Akaike
[1] 0.068
\$statistic. Schwarz
$\lceil 1\rceil-0.44$

Discrimination among vine copula models II

- Select a C-vine copula for comparison:
> cvm = RVineStructureSelect(daxreturns, type="CVine")
- Compare the models in terms of AIC values and the Vuong test:
> c(RVineAIC(daxreturns,rvm)\$AIC, RVineAIC(daxreturns, cvm)\$AIC)
[1] -9808.44-9804.42
> RVineVuongTest(daxreturns, rvm, cvm)
\$statistic
[1] 0.27
\$statistic.Akaike
[1] 0.068
\$statistic.Schwarz
[1] -0.44
...
- The models are essentially indistinguishable.

Outlook

Current projects and plans:

- Move code from C to C++.

■ Parallelize numerical maximum likelihood estimation.

- Implement asymmetric copulas (Tawn).

■ Bayesian estimation and model selection.

Outlook

Current projects and plans:

- Move code from C to C++.

■ Parallelize numerical maximum likelihood estimation.

- Implement asymmetric copulas (Tawn).
- Bayesian estimation and model selection.

Thank you to my package coauthors: Ulf Schepsmeier \& Jakob Stöber

Bibliography

Brechmann, E. C. and C. Czado (2013).
Risk management with high-dimensional vine copulas: An analysis of the Euro Stoxx 50 .
Statistics \& Risk Modeling, forthcoming.
Brechmann, E. C. and U. Schepsmeier (2013).
Modeling dependence with C- and D-vine copulas: The R-package CDVine. Journal of Statistical Software 52(3), 1-27.

Clarke, K. A. (2007).
A simple distribution-free test for nonnested model selection.
Political Analysis 15(3), 347-363.
Dißmann, J., E. C. Brechmann, C. Czado, and D. Kurowicka (2013).
Selecting and estimating regular vine copulae and application to financial returns.
Computational Statistics \& Data Analysis 59(1), 52-69.
Morales-Nápoles, O., R. M. Cooke, and D. Kurowicka (2010).
About the number of vines and regular vines on n nodes.
Working paper.
Vuong, Q. H. (1989).
Ratio tests for model selection and non-nested hypotheses.
Econometrica 57(2), 307-333.

Thank you very much for your attention!

Visit: http://cran.r-project.org/web/packages/VineCopula/

