
Banff Workshop

May, 2013

Nonparametric mixtures based on
Skew-Normal Distributions

An application to density estimation

Rosangela H. Loschi (UFMG)

joint work with

Caroline C. Vieira (UFES)

Denise Duarte (UFMG)

Financial support:CNPq, CAPES, FAPEMIG



Motivation and Goals

To build more flexible models for density estimation.

• We consider Bayesian nonparametric models

∗ Dirichlet Process mixture (DPM) of continuous distributions
(Ferguson, 1973).

• We extend Escobar and West(1995)’s model

∗ By mixing more flexible parametric distributions;

∗ By using a more flexible mixing measure.

• We consider the skew-normal family of distributions (Azzalini,
1985).

• We analyze the eruption duration time of Old Faithful Geyser
data set.



Dirichlet Process Mixture of Distributions

A random mixture of distribution is defined as

FG(y) =

∫
f(y|θ)dG(θ)

− f(y|θ), θ ∈ Θ, is the sample distribution

− θ ∼ G and G is a random measure on Θ.

The DPM model is represented hierarchically as

Yi|θi
ind∼ f(·|θi), θi|G

iid∼ G, i = 1, . . . , n, G|α,G0 ∼ DP (α,G0),

− G0 = E(G) is the center measure over Θ

− α ∈ R+ controls the concentration of the prior for G about G0.

− α is the precision parameter.



• Other approaches: Polya tree (Lavine, 1994), Bernestein
Polynomials (Petrone, 1999), for discrete distributions (Canale
and Dunson, 2011).

• Discrete mixtures of skewed distributions (Liu et al, 2007,
Cabral et al (2008).

• References on Bayesian Non-parametric: Müller and Quintana
(2004), Walker (2005), Dey, Müller and Sinha (1998).



Dirichlet Process Mixture of Distributions

The idea behind DPM of distributions is that of clustering the θs.

• If G ∼ DP (α,G0), there is a positive probability of identical θi’s
which is due to the discreteness of G.

• Thus, for θ = (θ1, . . . , θn) we have

θi | θ(−i) ∼
α

α+ n− 1
G0(θi) +

1

α+ n− 1

n∑
j=1,j ̸=i

δθj (θi),

where δθj (θi) is a unit point mass at θi = θj .

For details see Ferguson(1973) and Antoniak(1974).



Escobar & West model for density estimation
(DPMN-N)

They consider

• a DPM of normal distribution;

• A conjugate prior distribution as the center measure G0,

that is

Yj |µj , σ
2
j

ind∼ N(µj , σ
2
j ), (µj , σ

2
j )

iid∼ G, j = 1, . . . , n, G|α,G0 ∼ DP (α,G0),

and the center measure G0 for θj = (µj , σ
2
j ) is

µj |σ2
j

ind∼ N(m, τσ2
j ), σ2

j
iid∼ IG(s/2, S/2),

where m is a real number, τ > 0 and s and S are non negative
numbers.



DPM of Skew-Normal (DPMSN)

We consider

• a DPM of skew-normal distribution (Azzalini, 1985), that is

Yj |µj , σ
2
j , λj

ind∼ SN(µj , σ
2
j , λj),

(µj , σ
2
j , λj)

iid∼ G, j = 1, . . . , n, G|α,G0 ∼ DP (α,G0),

• A conjugate prior distribution as the center measure G0, that is,
the center measure G0 for θj = (µj , σ

2
j , λj) is

µj |σ2
j

ind∼ N(m, τσ2
j ), σ2

j
iid∼ IG(s/2, S/2), λj

iid∼ N(ε, ζ2),

where m and ε are real numbers, τ > 0 and s, S and ζ are non
negative numbers.



The full conditional distributions

Under these assumptions, it follows that

(i) the fcd of µ∗
i , given σ∗2

i , λ∗
i and y(i), is

f(µ∗
i |σ∗2

i , λ∗
i ,y(i)) ∝ ϕ(µ∗

i ;M
∗, V ∗)Φni(µ

∗
iλ

∗
i + y∗

i ); (1)

(ii) the fcd of σ∗2
i , given µ∗

i , λ∗
i and y(i), is

f(σ∗2
i |µ∗

i , λ
∗
i ,y(i)) ∝ Φni (λ

∗
iZi) IG

(
σ∗2
i ;

ni + s+ 1

2
, (2)

1

2

[
S +

1

τ
(µ∗

i −m)2 +

ni∑
k=1

(yk − y(i))
2 + ni(µ

∗
i − y(i))

2

])
;

(iii) the fcd of λ∗
i , given µ∗

i , σ∗2
i and y(i), is

f(λ∗
i |µ∗

i , σ
∗2
i ,y(i)) ∝ ϕ(λ∗

i ; ε, ζ
2)Φni (λ

∗
iZi) , (3)



where

M∗ = (m+ τniy(i))(1 + τni)
−1,

V ∗ = τσ∗2
i (1 + τni)

−1,

λ∗
i =

−λ∗
i

σ∗
i

1ni ,

y∗
i =

λ∗
i

σ∗
i

y(i),

Zi = (y(i) − µ∗
i 1ni

)
1

σ∗
i

.



Stochastic Representations

Let W and Ui be two real random variables.

(i) Assume that, given y(i), σ∗2
i and λ∗

i , W and Ui are
independent with W ∼ N(M∗, V ∗(1 + V ∗λ∗λ∗T

i )−1) and
Ui ∼ LTNni(0, Ini + V ∗λ∗T

i λ∗
i ;−M∗λ∗

i − y∗
i ). Then,

µ∗
i |σ∗2

i , λ∗
i ,y(i)

d
= W + [V ∗λ∗

iU
T
i ][1 + V ∗λ∗

iλ
∗T
i ]−1.

(ii) Assume that, given y(i), σ∗2
i and µ∗

i , W and Ui are
independent with W ∼ N(ε, ζ2/(1 + ζ2ZiZ

T
i )) and

Ui ∼ LTNni(0, Ini + ζ2ZT
i Zi;−εZi). Then,

λ∗
i |µ∗

i , σ
∗2
i ,y(i)

d
= W + [ζ2ZiU

T
i ][1 + ζ2ZiZ

T
i ]

−1

.

• This result extends some previous ones by Arellano-Valle et al.(2012).



DPM of normal with Skewed G0 (DPMN-SN)

We consider

• a DPM of normal distribution that is

Yj |µj , σ
2
j

ind∼ N(µj , σ
2
j ), (µj , σ

2
j )

iid∼ G, j = 1, . . . , n, G|α,G0 ∼ DP (α,G0),

• The center measure G0 for θj = (µj , σ
2
j ) is

µj |σ2
j , λ

ind∼ SN(m, τσ2
j , λ), σ2

j
iid∼ IG(s/2, S/2), λ ∼ N(ε, ζ2),

where m and ε are real numbers, τ > 0 and s, S and ζ are non
negative numbers.

• If we assume λ ∼ N(0, ζ2)⇒ µj |σ2
j

ind∼ N(m, τσ2
j )

• We have Escobar and West’s model (DPMN-N).



The full conditional distributions

Under this assumptions, for all i = 1, . . . , k, it follows that

(i) the fcd of µ∗
i , given σ∗2

i , λ and y(i), is

f(µ∗
i |σ∗2

i , λ,y(i)) ∝ ϕ(µ∗
i ;M

∗
i , V

∗
i ) Φ(λ

∗
i (µ

∗
i −m)); (4)

(ii) the fcd of σ∗2
i , given µ∗

i , λ and y(i), is

f(σ∗2
i |µ∗

i , λ,y(i)) ∝ Φ(λZ∗
i ) IG

(
σ∗2
i ;

ni + s+ 1

2
, (5)

1

2

[
S +

(µ∗
i −m)2

τ
+

ni∑
k=1

(yk − y(i))
2 + ni(µ

∗
i − y(i))

2

])
;



(iii) the fcd of λ, given µ∗
i , σ∗2

i and y(i), is

f(λ|µ∗
i , σ

∗2
i ,y(i)) ∝ ϕ(λ; ε, ζ2)Φk

(
λ(µ∗ −m1k); (τσ

∗2
i )−1/2Ik

)
,

(6)

where µ∗ is the vector formed by the k different components of the
vector µ, M∗

i = (m+ τniy(i))(1 + τni)
−1, V ∗

i = τσ∗2
i (1 + τni)

−1,
λ∗
i = −λ(τσ∗2

i )−1/2, and Z∗
i = (µ∗

i −m)(τσ∗2
i )−1/2.



Stochastic Representations

Let W , Ui and U be real random quantities.

(i) Assume that, given y(i), σ∗2
i and λ, W and Ui are independent

with W ∼ N(M∗, V ∗
i [1 + V ∗

i (λ
∗
i )

2]−1) and
Ui ∼ LTN1(0, 1 + V ∗

i (λ
∗
i )

2;−λ∗
i (M

∗ −m)). Then,

µ∗
i |σ∗2

i , λ,y(i)
d
= W + [V ∗

i λ
∗
iUi][1 + V ∗

i (λ
∗
i )

2]−1.

(ii) Assume that, given y(i), σ∗2
i and µ∗

i , W and Ui are
independent with W ∼ N(ε, ζ2[1 + ζ2ZµZ

T
µ ]

−1) and
U ∼ LTNk(0, Ik + ζ2ZT

µZµ;−εZµ; ), where
Zµ = [µ∗ −m1k][τ(σi)

2]−1/2. Then,

λ|µ∗
i , σ

∗2
i ,y(i)

d
= W + [ζ2ZµU

T ][1 + ζ2ZµZ
T
µ ]

−1

.



Simulated Study: Model comparison

Prior Specifications

• µj | σ2
j ∼ N(ȳ, 5σ2

j )

• σ2
j ∼ IG(3, 8)→ E(σ2

j ) = 4 and V (σ2
j ) = 16

• λj ∼ N(0, 100)← DPMSN

• λ ∼ N(100, 1)← DPMN-SN

For the MCMC

• Final sample size+10,000

• Burn-in = 190,000

• lag=1

Data are generated of both symmetric and asymmetric
distributions.



DPMN-N versus DPMSN

Tabela 1: Integrated mean square error

Scenario Model DPMSN DPMN-N

1 Y ∼ 0.4N(0, 1) + 0.6N(5, 1) 3.93× 10−4 1.69× 10−4

2 Y ∼ t5(0, 1.5) 5.65× 10−5 5.73× 10−5

3 Y ∼ Exp(3) 4.63× 10−2 9.50× 10−2

4 Y ∼ 0.6SN(−1, 1, 5) 0.29× 10−3 1.20× 10−3

+0.4SN(6, 2,−20)



Generated data, the true density (dotdashed (black) line) and estimates using the DPMSN
(dashed (blue) line) and DPMN-N (solid (red) line), Scenarios 1 to 4 in (a), (b), (c) and (d).
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DPMN-N versus DPMSN

In summary,

• Scenario 1: DPMN-N and DPMSN provide similar estimates
for the first component of the mixture. DPMN-N works better to
identify the second mode location and DPMSN do better to
estimate its height.

• Scenario 2: DPMN-N and DPMSN are comparable.

• Scenarios 3 and 4: DPMSN has better performance. DPMN-N
fails in estimating the tails of the distributions and the location
and heights of the modes.



DPMN-N versus DPMN-SN versus DPMSN

Generated data, the true density (dotdashed (black) line) and the estimates using the DPMSN
(dashed (blue) line), DPMN-SN (dotted (red) line) and DPMN-N (solid (green) line) for
Scenarios 1 (a) and 3 (b).
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DPMN-N versus DPMN-SN versus DPMSN

In summary,

• Scenario 1: DPMN-SN capture the asymmetry of the
distribution but not its bimodality.

• Scenario 3: DPMN-N and DPMN-SN works in a similar way.
That is expected only if λ ∼ N(0, V ).



Old Faithful Geyser data set

Data: the eruption duration time of the geyser (107 observations)
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Eruption duration time data and the density estimates: DPMSN (dashed (blue) line) and
DPMN-N using MacEachern and Müller’s (solid (black) line) and Escobar and West’s (dotted
(red) line) algorithms.



Final Comments

In summary,

• DPMSN was better to estimate asymmetric distribution;

• DPMSN was comparable to DPMN-N in scenarios that favors
the DPMN-N;

• Computational procedures are expensive, mainly, under
skewness;

• We can use the stochastic representation or the
Metropolis-Hastings algorithm to sample from the f.c.d..



Challenges...

• To estimate multivariate distributions;

• To improve the performance of the computational procedures

∗ Particle learning filtering (Is it possible?)

∗ INLA← under Gaussian structures use to works well.

• Is the estimated curve a good approximation for the true one?
← Bayesian hypothesis tests.

Thank you!!


