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Motivation and Goals

To build more flexible models for density estimation.

e We consider Bayesian nonparametric models
x Dirichlet Process mixture (DPM) of continuous distributions
(Ferguson, 1973).
e We extend Escobar and West(1995)’s model
x By mixing more flexible parametric distributions;
* By using a more flexible mixing measure.

e We consider the skew-normal family of distributions (Azzalini,
1985).

e We analyze the eruption duration time of Old Faithful Geyser
data set.



Dirichlet Process Mixture of Distributions

A random mixture of distribution is defined as
Foly) = | 710)dG(®)

— f(y|0), 6 € O, is the sample distribution
— 6 ~ G and G is a random measure on O.

The DPM model is represented hierarchically as

vi0; % f10,), 61GE G, i=1,....,n, Gla,Gy~ DP(a,Gy),
— Gy = E(G) is the center measure over ©

— « € R* controls the concentration of the prior for G about Gy.

— « is the precision parameter.



e Other approaches: Polya tree (Lavine, 1994), Bernestein

Polynomials (Petrone, 1999), for discrete distributions (Canale
and Dunson, 2011).

e Discrete mixtures of skewed distributions (Liu et al, 2007,
Cabral et al (2008).

e References on Bayesian Non-parametric: Muller and Quintana
(2004), Walker (2005), Dey, Muller and Sinha (1998).



Dirichlet Process Mixture of Distributions

The idea behind DPM of distributions is that of clustering the 6s.

e If G~ DP(a,Gy), there is a positive probability of identical 6;’s
which is due to the discreteness of G.

e Thus, for 0 = (64,...,0,) we have

Q 1 &
0; | 9(_7;) ~ Go(0;) + e Z 59j (6;),

0
1
atn =T,

where dg.(0;) is a unit point mass at ¢; = 0;.

For details see Ferguson(1973) and Antoniak(1974).



Escobar & West model for density estimation
(DPMN-N)

They consider
e a DPM of normal distribution;

e A conjugate prior distribution as the center measure G,

that is

2 ind 2 2\ ttd .
Yj|,uj,aj ~ N(,uj,aj), (,uj,aj) ~G,j=1,....,n, Gla,Gy~ DP(a,Gp),
and the center measure Gy for ; = (u;,07) is

uilo? " N(m,ro?), o2 CIG(s/2,5/2).

where m is a real number, 7 > 0 and s and S are non negative
numbers.



DPM of Skew-Normal (DPMSN)

We consider

e a DPM of skew-normal distribution (Azzalini, 1985), that is

nd
}/j|,uj70'32‘7)\j '~ SN(/Lj,O‘?,)\j),

(,uj,a?,)\j) i G,j=1,...,n, Gla,Gy~ DP(a,Gy),

e A conjugate prior distribution as the center measure Gy, that is,
the center measure Gy for 0; = (p;,07, A;) is
12d

ind 1id
Iuj’JjQ' ~ (m,TOJZ-), 032 ™~ IG(S/Q,S/Q), )‘j ™~ N(57C2)7

where m and ¢ are real numbers, = > 0 and s, .S and ¢ are non
negative numbers.



The full conditional distributions

Under these assumptions, it follows that

(i) the fcd of u¥, given o2, A¥ and Y (i), IS
Fei o2 X0 yay) o< d(pls M5 V), (i A, +y7); (1)

(i) the fcd of o2, given uf, A¥ and y;), is

* * * >|< >|< n2+8—|—1
1 1
9 S+ - (Mz —m) +Z ykz_y(z)) + ni (p; y(z)) ;
k=1

(iii) the fcd of A, given uf, 072 and y;y, is

FOGIE, 0%,y ) < (A5 €,C7) Oy (NFZy), (3)



where




Stochastic Representations

Let W and U, be two real random variables.

(i) Assume that, given y(;), o> and X}, W and U; are

independent with W ~ N (M*, V*(1 4+ V*X*A:)~1) and
U; ~ LTN,, (0,1, +V*XT X5 —M*Xr —y¥). Then,

pior2 Ny S W+ [VESUTL + VAT

(i) Assume that, given y(;), 0% and pf, W and U; are
independent with W ~ N (e, ¢?/(1 + ¢?Z;ZT)) and
U, ~ LTNnZ (0, Inz + CQZ?ZZ, —€Z7;). Then,

N, oi2 y i £ W+ [CPZ,UT)[1 + ¢?2,27)!

e This result extends some previous ones by Arellano-Valle et al.(2012).



DPM of normal with Skewed G, (DPMN-SN)

We consider
e a DPM of normal distribution that is

Yilus, 03 ™ N, 08), (5,02 G, j=1,...,n, Gla,Go~ DP(a,Go),
e The center measure G for 6; = (uj,af.) is

wilo2 A SN(m, o2, ), 02 K IG(s/2,5/2), A~ N(e, (),

where m and ¢ are real numbers, = > 0 and s, S and ¢ are non
negative numbers.

o If we assume A ~ N(0,(?) = p;lo? '~ " N(m, T07)

e We have Escobar and West’s model (DPMN-N).



The full conditional distributions

Under this assumptions, forall i =1, ..., k, it follows that

(i) the fcd of 1}, given o7%, A and y;), is
Fuiloi?, Ny ay) o< o(pss M VE) SN (uy —m));  (4)
(i) the fcd of o2, given pf, Aand y;, is

2, n; +s+1
2 Y

FoPlni N yw) @(AZ*)IG(

1

2

()



(iii) the fcd of A, given v, 0% and y,), is

T, 072,y () o (A2, C) @ (A" = miy); (roy?)~H21)
(6)
where u* is the vector formed by the k different components of the
vector p, M = (m + 0y ) (1 +1ni) =1, Vi = 1072(1 + n4) 7,
A = —A(ro7?) 72, and Zf = (uf —m)(r07%) 2.



Stochastic Representations

Let W, U; and U be real random quantities.

(i) Assume that, given y(;), o> and A\, W and U; are independent
with W ~ N(M*, V*[1 + V*(A5)?]~1) and
U; ~ LTN1(0,1+ V*(A)?; =X (M* —m)). Then,

Wio2 Ny W+ VAU + Vi)~

(i) Assume that, given y(;), 0% and pf, W and U; are
independent with W ~ N (e, (*[1 + ¢*Z,Z/]~") and
U ~ LTN(0,1I, + ¢*°Z)Z,; —¢Z,;), where
Z, = [pu* — m1g][r(0;)%] /2. Then,

>k k d —
)“HianQ,Y(z‘) =W + [C2ZMUT][1+C2ZMZZ] !



Simulated Study: Model comparison

Prior Specifications
o 1y | 0%~ N(7,507)
e 07 ~IG(3,8) = E(07) =4and V(s7) = 16
e )\, ~ N(0,100) < DPMSN
e \~ N(100,1) + DPMN-SN
For the MCMC
e Final sample size+10,000
e Burn-in = 190,000
o lag=1

Data are generated of both symmetric and asymmetric
distributions.



DPMN-N versus DPMSN

Tabela 1: Integrated mean square error

Scenario Model DPMSN DPMN-N
1 Y ~0.4N(0,1) +0.6N(5,1) 3.93x107* 1.69 x 10~
2 Y ~ t5(0,1.5) 5.65 x 107>  5.73 x107°
3 Y ~ Exp(3) 4.63 x 1072 9.50 x 1072
4 Y ~0.65N(-1,1,5) 0.29 x 1073 1.20 x 1073

+0.4SN (6,2, —20)




Generated data, the true density (dotdashed (black) line) and estimates using the DPMSN
(dashed (blue) line) and DPMN-N (solid (red) line), Scenarios 1 to 4 in (a), (b), (c) and (d).
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DPMN-N versus DPMSN

In summary,

e Scenario 1: DPMN-N and DPMSN provide similar estimates
for the first component of the mixture. DPMN-N works better to
identify the second mode location and DPMSN do better to
estimate its height.

e Scenario 2: DPMN-N and DPMSN are comparable.

e Scenarios 3 and 4: DPMSN has better performance. DPMN-N
fails in estimating the tails of the distributions and the location
and heights of the modes.



DPMN-N versus DPMN-SN versus DPMSN

Generated data, the true density (dotdashed (black) line) and the estimates using the DPMSN
(dashed (blue) line), DPMN-SN (dotted (red) line) and DPMN-N (solid (green) line) for
Scenarios 1 (a) and 3 (b).
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DPMN-N versus DPMN-SN versus DPMSN

In summary,

e Scenario 1: DPMN-SN capture the asymmetry of the
distribution but not its bimodality.

e Scenario 3: DPMN-N and DPMN-SN works in a similar way.
That is expected only if A ~ N(0,V).



Old Faithful Geyser data set

Data: the eruption duration time of the geyser (107 observations)
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Eruption duration time data and the density estimates: DPMSN (dashed (blue) line) and
DPMN-N using MacEachern and Mdller’s (solid (black) line) and Escobar and West'’s (dotted
(red) line) algorithms.



Final Comments

In summary,
e DPMSN was better to estimate asymmetric distribution;

e DPMSN was comparable to DPMN-N in scenarios that favors
the DPMN-N;

e Computational procedures are expensive, mainly, under
skewness;

e We can use the stochastic representation or the
Metropolis-Hastings algorithm to sample from the f.c.d..



Challenges...

e To estimate multivariate distributions;

e [o improve the performance of the computational procedures
x Particle learning filtering (Is it possible?)

+ INLA < under Gaussian structures use to works well.

e Is the estimated curve a good approximation for the true one?
+ Bayesian hypothesis tests.

Thank you!!



