Perturb symmetry	SN	SEC	Generalize	Statistics	References

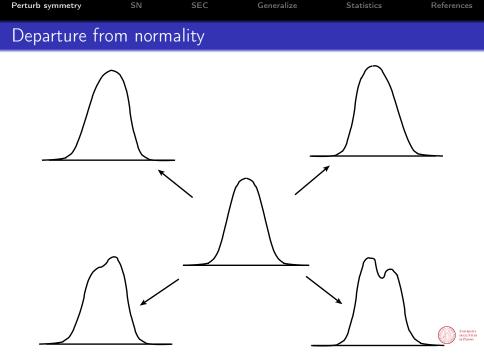
Skew-symmetric distributions in 45' (that is, S^3 =Skew-Symmetric Squeeze)

Adelchi Azzalini

University of Padua, Italy

BIRS at Banff, Canada, May 2013

Perturbation of symmetry: general aspects



Perturb symmetry SN SEC Generalize Statistics References Perturbation of symmetry Statistics Statistics References

- formalize the idea of perturbation of a symmetric 'base density'
- start with dimension d = 1
- 'perturbation' (or 'modulation') of symmetric pdf $f_0(x)$ as

$$f(x) = 2 f_0(x) G_0\{w(x)\}$$

where (1)
$$w(-x) = -w(x)$$
 and
(2) G_0 is continuous cdf, $G_0(-x) = 1 - G_0(x)$

• Proof that integrates to 1, extraordinarily simple: if $T \sim G_0$ and $Z_0 \sim f_0$, independent, then

$$\begin{split} \frac{1}{2} &= & \mathbb{P}\{T - w(Z_0) \leq 0\} = \mathbb{E}\{\mathbb{P}\{T \leq w(x) | Z_0 = x\}\} \\ &= & \int_{\mathbb{R}} G_0\{w(x)\} f_0(x) \, \mathrm{d}x \qquad \text{Qed} \end{split}$$

$$f(x) = 2 f_0(x) \underbrace{\mathcal{G}_0\{w(x)\}}_{\mathcal{G}(x)}$$

then

$$G(x) \ge 0, \qquad G(x) + G(-x) = 1$$

• any G of this form produces a valid pdf

$$f(x) = 2 f_0(x) G(x)$$

- the two forms are essentially equivalent
- if $w(x) \equiv 0$, i.e. $G(x) \equiv \frac{1}{2}$, then $f = f_0$

Perturb symmetry	SN	SEC	Generalize	Statistics	References
Multivariate	version				

$$f(x) = 2 f_0(x) \underbrace{\mathcal{G}_0\{w(x)\}}_{\mathcal{G}(x)} \qquad x \in \mathbb{R}^d$$

•
$$f_0(x) = f_0(-x)$$
 for $x \in \mathbb{R}^d$

- w is real-valued, with w(-x) = -w(x)
- the rest as before

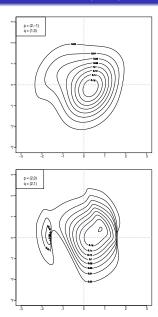
- $f_0(x)$ is the N(0, I_2) density
- G_0 is standard logistic cdf

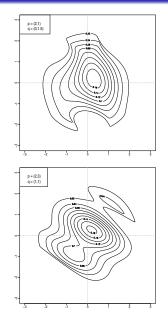
٥

$$w(x) = \frac{\sin(p_1 x_1 + p_2 x_2)}{1 + \cos(q_1 x_1 + q_2 x_2)}, \qquad x = (x_1, x_2) \in \mathbb{R}^2$$

Perturb symmetry SN SEC Generalize Statistics References

Example with d = 2 (ctd)





UNVERTA DOLU STEDE DE PADON

$$f(x) = 2 f_0(x) G_0\{w(x)\} = 2 f_0(x) G(x), \qquad x \in \mathbb{R}^d$$

• If $Z \sim f$, the argument of the proof indicates that

$$Z\stackrel{d}{=} (Z_0|T \leq w(Z_0))$$

also

$$Z = S_{Z_0} Z_0, \qquad S_{Z_0} = \begin{cases} +1 & \text{w.p. } G(Z_0) \\ -1 & \text{w.p. } G(-Z_0) \end{cases}$$

$$Z = S_{Z_0} Z_0, \qquad S_{Z_0} = \begin{cases} +1 & \text{w.p. } G(Z_0) \\ -1 & \text{w.p. } G(-Z_0) \end{cases}$$

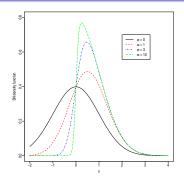
• Corollary: property of perturbation invariance

for any even function
$$t(\cdot) \implies t(Z) \stackrel{d}{=} t(Z_0)$$

- In the example, $\|Z\|^2 \sim \chi_2^2$
- Note: property holds for multi-valued functions $t(\cdot)$

A noteworthy case: the skew-normal distribution

Perturb symmetry SN Generalize Statistics References The skew-normal distribution (SN), case d = 1



• $f(x) = 2 \phi(x) \Phi(\alpha x), \qquad \alpha \in \mathbb{R}$

• $\alpha = 0$ leads back to usual Normal

• if
$$Z \sim SN(\alpha)$$
, then $-Z \sim SN(-\alpha)$

•
$$Z^2 \sim \chi_1^2$$

• 'Normalized' form (no location and scale):

$$f(x) = 2\phi_d(x; \overline{\Omega}) \Phi(\alpha^{\top} x), \qquad x \in \mathbb{R}^d$$

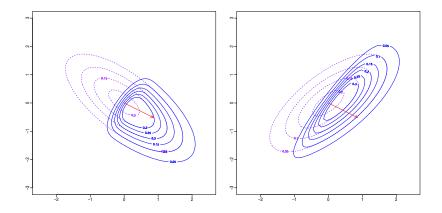
for some correlation matrix $\bar{\Omega}$ and shape $\alpha \in \mathbb{R}^d$

• MGF: for an appropriate $\delta = \delta(\alpha, \overline{\Omega})$,

$$M(t) = 2 \exp(\frac{1}{2}t^{\top}\bar{\Omega}t) \Phi(\delta^{\top}t)$$

- distribution of a quadratic form $Z^{\top}AZ$ as for $N_d(0, \overline{\Omega})$
- for practical work, add location and scale: $Y = \xi + \omega Z$, where $\xi \in \mathbb{R}^d$ and $\omega = \operatorname{diag}(\omega_1, \dots, \omega_d) > 0$

Perturb symmetry	SN	SEC	Generalize	Statistics	References
Multivariate	SN dens	sity			



Perturb symmetry SN SEC Generalize Statistics References Stochastic representations of SN

 \bullet representation by conditioning: can transform $({\it Z}_0,{\it T})$ into

$$\begin{pmatrix} Z_0 \\ Z_1 \end{pmatrix} \sim N_{d+1} \left(0, \begin{pmatrix} \bar{\Omega} & \delta \\ \delta^\top & 1 \end{pmatrix} \right)$$

and set

$$Z\stackrel{d}{=} (Z_0|Z_1>0)$$

• additive representation: another manipulation leads to

$$Z = \left(I_d - \operatorname{diag}(\delta)^2\right)^{1/2} U_0 + \delta |U_1|$$

for independent $\mathit{U}_0 \sim \mathrm{N}_d$ and $\mathit{U}_1 \sim \mathrm{N}(0,1)$

• representation via maxima/minima

Adjustable tails and skew-elliptical distributions

$$f(x) = 2 f_0(x) \underbrace{\mathcal{G}_0\{w(x)\}}_{\mathcal{G}(x)} \qquad x \in \mathbb{R}^d$$

- the mechanism can make tails thinner, but not thicker
- to handle heavy tails, start from base f_0 with heavy tails
- even better consider f_0 with adjustable tails

 \bullet Elliptically contoured (EC) densities: for a suitable $g(\cdot),$

$$f_0(x) = rac{k_d}{\det(ar\Omega)^{1/2}} g(x^ op ar\Omega^{-1} x), \qquad x \in \mathbb{R}^d$$

denoted $EC_d(0, \bar{\Omega}, g)$

• A natural option for perturbation is

$$f(x) = 2 f_0(x) G(x)$$

• ... but consider instead

$$\begin{pmatrix} Z_0 \\ Z_1 \end{pmatrix} \sim \textit{EC}_{d+1} \left(0, \begin{pmatrix} \bar{\Omega} & \delta \\ \delta^\top & 1 \end{pmatrix}, g \right)$$

followed by

$$Z \stackrel{d}{=} (Z_0 | Z_1 > 0),$$
 called SEC

• the distribution of Z is of type f(x). Note: not vice versa

• Multivariate Student's t: genesis is

 U/\sqrt{V}

where $U \sim \mathrm{N}_d$ and $V \sim \chi^2_{
u} /
u$ are independent

• Multivariate skew-t:

$$Z' = Z/\sqrt{V}$$

where $Z \sim SN_d$ with shape α

• It is equivalent to start from $Y \sim SEC_{d+1}$ of Student's *t* type, and consider

$$Z' = (Y_{1:d} | Y_{d+1} > 0)$$

 $\bullet\,$ Here α regulates skewness, ν regulates tail thickness

Perturb symmetry	SN	SEC	Generalize	Statistics	References
Further gener	alizatic	ons			

Further generalizations

- 'extended' form: non-odd w(x),
- e.g. in SN case $w(x) = \alpha_0 + \alpha^\top x$,
- normalizing constant no longer 2, must be computed afresh for any case
- property of perturbation invariance vanishes
- in some cases, subject-matter motivation

Perturb symmetry SN SEC Generalize Statistics References Multiple latent variables/constraints

• start from (d+m)-dimensional variate (Z_0, Z_1) and consider $Z \stackrel{d}{=} (Z_0 | Z_1 \in C), \qquad C \subset \mathbb{R}^m$

density is

$$f(x) = f_0(x) \frac{\mathbb{P}\{Z_1 \in C | Z_0 = x\}}{\mathbb{P}\{Z_1 \in C\}}$$

- special focus on case where f_0 is symmetric
- extremely general in principle, but computation of the two probabilities often problematic
- beware of overparameterization

Perturb symmetry	SN	SEC	Generalize	Statistics	References
Statistical as	pects				

Statistical aspects

- as a broad rule, the statistical side is less smooth than the probability side
- some formal issues (with proposed solutions)
- less formal but equally important issues
- Note: these are aspects with space for improvement, it does not mean we are helpless

- refer to parameter set (ξ, ω, α) or alike, for simplicity
- for SN (and some other cases) Info matrix singular at α = 0; can be tackled via appropriate re-parameterization; proposals exist, but not unique
- for finite samples, P{MLE(α) = ∞} > 0 can be avoided by penalized likelihood and/or prior; proposals exist, but not unique

- what is the 'optimal' parameterization for inference? hassle-free *and* meaningful
- highly flexible distributions can be constructed: how much flexible can we be in practice? how to combine flexibility with meaningful parameterization?

- M. G. Genton (2004), edited book
- A. Azzalini (2005, SJS) review paper + discussion with MGG
- A. Azzalini & A. Capitanio, forthcoming book

