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Motivation and background

Motivation

While there is a multitude of bivariate copula, the class of
multivariate copulae is still quite restricted.

Hence, if the dependency structures of different pairs of variables in a
multivariate problem are very different, not even the copula approach
will allow for the construction of an appropriate model.

In this talk we will describe an extension to the state-of-the-art theory
of copulas, modelling multivariate data using a so-called pair-copula
construction (PCC).
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Motivation and background

Overview

1 Motivation and background

2 Pair-copula constructions

3 How can we estimate and model select PCCs ?

4 Application: Market risk model for largest Norwegian bank

5 Recent advances for vines

6 Summary and outlook
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Pair-copula constructions

Copula...

Theorem (Sklar 1959)

Sklar’s theorem states that every multivariate distribution F with
marginals F1(x1), ...,Fd (xd ) can be written as:

F (x1, ..., xd ) = C (F1(x1), ...,Fd (xd ))

for some d-dimensional copula C .

Moreover, for an absolutely continuous joint distribution F with strictly
increasing continuous marginal distribution functions F1, ...Fd it holds that

f (x1, ..., xd ) = c(F1(x1), ...,Fd (xd )) ·
[

d∏
i=1

fi (xi )

]

for some d-dimensional copula density c .

4 / 44



Pair-copula constructions

Pair-copula constructions (I)

For two random variables X1 and X2 we have

f (x1|x2) = c12(F1(x1),F2(x2)) · f1(x1)

Further, for three random variables X1, X2 and X3 we have

f (x1|x2, x3) = c13;2(F1|2(x1|x2),F3|2(x3|x2)) · f1|2(x1|x2)

It follows that for every j we have

f (x |v) = cxvj ;v−j (F (x |v−j ),F (vj |v−j )) · f (x |v−j )
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Pair-copula constructions

Pair-copula constructions (II)

By combining the two results

f (x1, . . . xd ) = fd (xd ) · f (xd−1|xd ) · · · f (x1|x2, . . . xd )

and
f (x |v) = cxvj ;v−j (F (x |v−j ),F (vj |v−j )) · f (x |v−j )

we may derive a decomposition of f (x1, . . . xd ) that only consists of
marginal distributions and bivariate copulae.

We denote a such decomposition a pair copula construction (PCC)

Joe (1996) was the first to give a probabilistic construction of multivariate
distribution functions based on pair-copulas, while Aas et al. (2009) were
the first to set the PCC in an inferential context.
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Pair-copula constructions

PCC in three dimensions

A pair-copula construction of a three-dimensional density is given by

f (x1, x2, x3) = f1(x1) · f2(x2) · f3(x3)

· c12(F1(x1),F2(x2)) · c23(F2(x2),F3(x3))

· c13;2(F1|2(x1|x2),F3|2(x3|x2))

Special case: Trivariate normal distribution

If the marginal distributions are standard normal and c12, c23 and c13;2 are
bivariate Gaussian copula densities, the resulting distribution is trivariate
normal.
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Pair-copula constructions

PCC in five dimensions

A possible pair-copula construction of a five-dimensional density is given
by

f (x1, x2, x3, x4, x5)

= f (x1) · f (x2) · f (x3) · f (x4) · f (x5)

· c12 (F (x1),F (x2)) · c23 (F (x2),F (x3)) · c34 (F (x3),F (x4)) · c45 (F (x4),F (x5))

· c13;2 (F (x1|x2),F (x3|x2)) · c24;3 (F (x2|x3),F (x4|x3)) · c35;4 (F (x3|x4),F (x5|x4))

· c14;23 (F (x1|x2, x3),F (x4|x2, x3)) · c25;34 (F (x2|x3, x4),F (x5|x3, x4))

· c15;234 (F (x1|x2, x4, x3),F (x5|x2, x4, x3)) .

There are as many as 480 different such constructions in the five-dimensional

case, 23,040 in the 6-dimensional case and 2,580,480 in the 7-dimensional

case......
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Pair-copula constructions

Regular vines

Hence, for high-dimensional distributions, there are a significant
number of possible pair-copula constructions.

To help organising them, Bedford and Cooke (2001) introduced
graphical models denoted regular vines (R-vines).

Regular vine (Bedford and Cooke 2002)

A regular vine is a sequence of d − 1 linked trees where:

Tree T1 is a tree on nodes 1 to d .

Tree Tj has d + 1− j nodes and d − j edges.

Edges in tree Tj become nodes in tree Tj+1.

Proximity condition: Two nodes in tree Tj+1 can be joined by an
edge only if the corresponding edges in tree Tj share a node.
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Pair-copula constructions

Example in five dimensions

2

5 1 4

3

1,5 1,4

2,4

3,4 T1

2,4

1,5 1,4

3,4

4,5|1

1,2|4

1,3|4 T2

4,5|1 1,3|4 1,2|4
3,5|14 2,3|14

T3

3,5|14 2,3|14
2,5|134

T4

Density

f = f1 · f2 · f3 · f4
· c14 · c15 · c24 · c34

· c12;4 · c13;4 · c45;1

· c23;14 · c35;14

· c25;134

10 / 44



Pair-copula constructions

Matrix representation

2

5 1 4

3

1,5 1,4

2,4

3,4 T1

2,4

1,5 1,4

3,4

4,5|1

1,2|4

1,3|4 T2

4,5|1 1,3|4 1,2|4
3,5|14 2,3|14

T3

3,5|14 2,3|14
2,5|134

T4

Matrix

Morales-Napoles (2008)
shows how a lower
triangular matrix may be
used to store a regular
vine.

M =


5
2 2
3 3 3
4 1 1 1
1 4 4 4 3


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Pair-copula constructions

Special cases: C and D-vines

C-vine: Each tree has a unique
node connected to d − j edges.

f1234 = f1 · f2 · f3 · f4

· c12 · c13 · c14

· c23;1 · c24;1

· c34;12

Useful for ordering by importance

2 3

1 4

12

13

14
tree 1

13

12 14

23|1

24|1
tree 2

23|1 24|1
34|12

tree 3

D-vine: No node is connected
to more than 2 edges.

f1234 = f1 · f2 · f3 · f4

· c12 · c23 · c34

· c13;2 · c24;3

· c14;23

Useful for temporal ordering of variables

1 2 3 4
12 23 34

tree 1

12 23 34
13|2 24|3

tree 2

13|2 24|3
14|23

tree 3
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Pair-copula constructions

General density expressions

C-vine (Aas et al. 2009)

f (x1, . . . xd ) =

[
d∏

k=1

f (xk )

]
×

d−1∏
j=1

d−j∏
i=1

cj,j+i ;1,...,j−1


D-vine (Aas et al. 2009)

f (x1, . . . xd ) =

[
d∏

k=1

f (xk )

]
×

d−1∏
j=1

d−j∏
i=1

ci,i+j ;i+1,...,i+j−1


Regular vine (Dißmann et al. 2013)

f (x1, ..., xd ) =

[
d∏

k=1

fk (xk )

]
×

 1∏
j=d−1

j+1∏
i=d

cmj,j ,mi,j ;mi+1,j ,...,mn,j


Here, mi,j refers to element (i, j) in the matrix representation of the R-vine.
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Pair-copula constructions

Conditional distribution functions

The conditional distributions needed as copula arguments at level j
are obtained as partial derivatives of the copulae at level j − 1.

This is due to the following result from Joe (1996) stating that under
regularity conditions, we have

F (x |v) =
∂Cxvj ;v−j (F (x |v−j ),F (vj |v−j ))

∂F (vj |v−j )
.
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Pair-copula constructions

Building blocs

The resulting multivariate distribution will be valid even if the
bivariate copulae involved in the pair-copula construction are of
different type.

One may for instance combine the following types of pair-copulae
I Gaussian (no tail dependence)
I Clayton (lower tail dependence)
I Gumbel (upper tail dependence)
I Student (upper and lower tail dependence)
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How can we estimate and model select PCCs ?

How can we estimate and model select PCCs ?

Three problems: (Czado et al. (2013))

1 How to estimate the pair copula parameters for a given vine tree
structure and the pair copula families for each edge?

2 How to select the pair copula families and estimate the corresponding
parameters for a given vine tree structure?

3 How to select and estimate all components of a regular vine?
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How can we estimate and model select PCCs ?

Problem 1: Parameter estimation for given tree
structure and copula families

Sequential estimation:
I Parameters are sequentially estimated starting from the top tree until

the last (Aas et al. (2009), Czado et al. (2012)).
I Asymptotic theory available (Hobæk Haff (2012),Hobæk Haff (2013)),

however standard error estimates are difficult to compute.
I Can be used as starting values for maximum likelihood.

Maximum likelihood estimation:
I Asymptotically efficient under regularity conditions, estimated standard

errors numerically challenging (Stoeber and Schepsmeier (2012))
I Uncertainty in value-at-risk (high quantiles) is difficult to assess.

Bayesian estimation:
I Posterior is tractable using Markov Chain Monte Carlo (Min and Czado

(2011) for D-vines and Gruber (2011) for R-vines)
I Prior beliefs can be incorporated and credible intervals allow to assess

uncertainty for all quantities.
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How can we estimate and model select PCCs ?

How does sequential and ML estimation work ?
Parameters: Θ = (θ12, θ23, θ13;2)
Copula observations: {(u1t , u2t , u3t), t = 1, · · · ,T}
Sequential estimates:

Estimate θ12 from {(u1t , u2t), t = 1, · · · ,T}
Estimate θ23 from {(u2t , u3t), t = 1, · · · ,T}.
Define pseudo observations

û1|2t := F (u1t |u2t , θ̂12) and û3|2t := F (u2t |u3t , θ̂23)

Finally estimate θ13;2 from {(û1|2t , û3|2t), t = 1, · · · ,T}.

Maximum likelihood

L(Θ|x) =
T∑

t=1

[log c12(u1t , u2t |θ12) + log c23(u2t , u3t |θ23)

+ log c13;2(F (u1t |u2t , θ12),F (u2t |u3t , θ23)|θ13;2)]
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How can we estimate and model select PCCs ?

Problem 2: Joint estimation of pair copula families
and parameters

Classical approach:
I Restrict to a set of bivariate pair copula families and use AIC or Vuong

test to select family
I Check for truncation possibilities (Brechmann et al. (2012)) by using

independence copulas in higher trees

Bayesian approach:
I Reversible jump (RJ) MCMC (Min and Czado (2011))
I MCMC with model indicators (Smith et al. (2010)) choosing between

an independence copula and a fixed copula family.

Only one more problem to go ...

sequential treewise approach
(see Dißmann et al. (2013))
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How can we estimate and model select PCCs ?

How does this treewise selection of R-vines work?

Idea: Capture strong pairwise dependencies first
For Tree ` = 1, . . . , d − 1

1 Calculate an empirical dependence measure δ̂jk|D for all variable pairs
{jk|D} (→ edge weights: Kendall’s τ , tail dependence coefficients)
allowed by the proximity condition (D is empty for Tree 1).

2 Select the tree on all nodes that maximizes the sum of absolute
empirical dependencies (→ maximum spanning tree)
Choose independence copula if possible.

3 For each selected edge {j , k} ({j , k}|D ) in Tree 1 (in Tree ` > 1),
select a copula and estimate the corresponding parameter(s).

4 Then transform to pseudo observations Fj |k∪D(uij |ui ,k∪D , θ̂j ,k;D) and

Fk|j∪D(uik |ui ,j∪D , θ̂j ,k;D), i = 1, ..., n.
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How can we estimate and model select PCCs ?

How does this look like for Tree 1?

(1) Pairwise dependencies. (2) Maximum dependence tree.

Czado, Jeske, and Hofmann (2013) compare sequential selection strategies
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How can we estimate and model select PCCs ?

Sequential Bayesian model selection of regular vine
copulas (Gruber and Czado 2013)

Tree by tree selection to reduce search space

Reversible jump MCMC to select tree, pair copulas and parameters
jointly

dynamic barrier payouts based on basket of 9 Dow Jones stocks
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Application: Market risk model for largest Norwegian bank

Market risk model for largest Norwegian bank, DNB:

19 financial variables that constitute the market portfolio of DNB.

Daily log returns from March 2003 to March 2008 (1107 obs.) are
used.

ID description ID description
V1 Norwegian Financial Index V12 5-year US Government Rate
V2 USD-NOK exchange rate V13 Norwegian bond index (BRIX)
V3 EURO-NOK exchange rate V14 Citigroup World Government
V4 YEN-NOK exchange rate Bond Index (WGBI)
V5 GBP-NOK exchange rate V15 Norwegian 6-year Swap Rate
V7 3-month Norwegian Inter V16 ST2X - Government Bond Index

Bank Offered Rate (fix modified duration of 0.5 years)
V8 Norwegian 5-year Swap Rate V17 Morgan Stanley World Index (MSCI)
V9 3-month Euro Interbank V18 OSEBX - Oslo Stock Exchange

Offered Rate main index
V10 5-year German Government Rate V19 Oslo Stock Exchange Real Estate Index
V11 3-month US Libor Rate V20 S&P Hedge Fund Index
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Application: Market risk model for largest Norwegian bank

Modelling procedure :

Fit appropriate ARMA-GARCH models for log-return time series.

Fit an R-vine as well as a multivariate Student-t copula for
comparison to standardized residuals

Pair-copulas are selected from a range of 11 bivariate families using
AIC: Independence copula, Gaussian, t, Clayton, rotated Clayton (90),
Gumbel, rotated Gumbel (90), Frank, Joe, Clayton-Gumbel (BB1),
Joe-Clayton (BB7).
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Application: Market risk model for largest Norwegian bank

First tree of R-vine:

EUR3M

USD3M

NIBOR3M

Pengem.

Gov. bonds.

NIBOR5Y

HTM

Hedgefond

Int. stocks

No. stocks

FINX

Real estate

GBPEUR
YEN

USD

Int. bonds

USD5Y

EUR5Y
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Application: Market risk model for largest Norwegian bank

Results:

Copula Log No. of AIC
likelihood param.

R-vine 6390.75 92 -12597.50
Student-t 6324.98 172 -12305.96

Number of parameters:

Note that the number of parameters to be estimated for a 19-dimensional
R-vine usually is at least d(d-1)/2. The reason why the number in the
table is 92 and not 171 is that a large amount of the pair-copulae in this
R-vine are identified as the independence copula, using the bivariate
independence test based on Kendall’s tau as described in Genest and Favre
(2007) .
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Application: Market risk model for largest Norwegian bank

Truncation(I):

The number of parameters in an R-vine grows quadratically with the
dimension.

Hence, it would be useful to be able to reduce the model complexity.

In Brechmann et al. (2012) we have studied the problem of
determining whether an R-vine may be truncated.

By a truncated R-vine at level K , we mean an R-vine with all
pair-copulae with conditioning set larger than or equal to K set to
independence copulae.

We fit one tree at a time and use the likelihood ratio test of Vuong
(1989) to determine whether an additional tree provides a significant
gain in the model fit.
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Application: Market risk model for largest Norwegian bank

Results:

Copula Log No. of AIC
likelihood param.

R-vine 6390.75 92 -12597.50
Student-t 6324.98 172 -12305.96
6-level R-vine 6274.47 77 -12394.94
4-level R-vine 6234.05 68 -12332.10

Conclusion:

We conclude from this that the most important dependencies in this data
set are actually captured in the first four to six trees, meaning that the
corresponding R-vine copula may be truncated at level 6, or even at level
4, depending on the desired level of parsimonity (and of course at the
expense of accuracy).
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Recent advances for vines

Recent advances for vines

Simplified and non simplified vines

Time varying regular vines

Discrete and discrete/continuous vines

Non Gaussian DAG’s using pair copula constructions

Vines with non parametric pair copulas: Haff and Segers (2013),
Kauermann and Schellhase (2013)

Acceleration of MCMC algorithms: Schmidl et al. (2013)
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Recent advances for vines

Simplified and non-simplified vines

Simplifying assumption

Pair copulas depend on their conditioning value only through their
conditional distributions (Haff, Aas, and Frigessi 2010)

Simplified vine copulas:
I multivariate Gauss copula
I multivariate t-copula only one arising from arising from scale mixture of

normals (Stöber et al. 2012)
I multivariate Clayton is the only one among the Archimedean copulas

(Stöber et al. 2012)

Non-simplified vines:
I Acar et al. (2012) use a smoothing approach to deal with non

simplified vines in 3 dimensions based on Acar et al. (2011).
I Occurs when considering one factor models: Xj = Z0 + Xj for

j = 1, ..., d .
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Recent advances for vines

Effects of simplifying assumption

Trivariate extension of FGM copula (Stöber 2013)
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Recent advances for vines

Violation of simplifying assumption might indicate
time varying dependence

Conditional Kendalls τ rank correlation between the USD/EUR and
USD/CAD return exchange rate conditional on USD/GBP being in a given
decile of the distribution
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The boxplots are obtained using a non-parametric bootstrap. The analysis
in Stöber and Czado (2013) shows that data has time varying dependence.
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Recent advances for vines

Time varying regular vines

AR(1) copula dynamics
I Bayesian bivariate analysis: Almeida and Czado (2011)
I Multivariate analysis: Almeida et al. (2012)

Regime switching
I C-vine, copula parameters only, EM: Chollete et al. (2008)
I R-vine and copula parameter switches, EM, MCMC:

Stöber and Czado (2013)
I Marginal and copula switches: Stöber (2013)
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Recent advances for vines

Smoothed probabilities of being in non-Gaussian
regime
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Recent advances for vines

PCC based network models

Bayesian belief networks: They were first considered by Hanea
et al. (2006).

Pair-copula Bayesian networks (PCBN)
I Bauer et al. (2012) used a PCC construction to build Non Gaussian

DAG models.
I Bauer (2013) and Bauer and Czado (2012) give general algorithms to

estimate PCBN and provides a PC algorithm to construct network.
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Recent advances for vines

Discrete and discrete/continuous vines

Discrete vines Panagiotelis et al. (2012) construct an efficient PCC
using D-vines based on the distribution function
Discrete/continuous vines Stöber et al. (2012) and Stöber (2013)
extend to cover discrete/continuous variables and allow for regular
vines
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I dashed (diabetes, no hypertension)
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Recent advances for vines

Selected Applications

Financial risk management:
I Euro Stoxx 50 (Brechmann and Czado 2012)
I Systemic risk simulation (Brechmann et al. 2013)
I Operational risk: (Brechmann et al. 2013)
I Multivariate options: (Gruber and Czado 2013)
I Realized volatility: (Vaz de Melo Mendes and Accioly 2013)

Hydrology: (Gräler et al. 2013)

Data mining: (Lopez-Paz et al. 2013)

Health: comorbidity (Stöber et al. 2012)

Environmental Science:(Gräler and Pebesma 2011) (Pachali 2011)
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Summary and outlook

What have we learned?

Standard multivariate copulas are less flexible, while PCC’s such as
C-, D- and R-vines are much more flexible.

Sequential and MLE parameter estimation of C-, D- and R-vines are
available in R packages CDVine and VineCopula.

Sequential and full Bayesian estimation and Bayesian model selection
of vine trees and copula families for regular vines available, but need
further testing and development

Pair copula constructions can be extended to mixed continuous and
discrete data.

Vine copulas are useful for financial risk management
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Summary and outlook

What needs to be done?

Non-parametric pair copulas, spatial vines, vines for data mining

More applications in finance, insurance ...

Vine resource page:
www-m4.ma.tum.de/forschung/vine-copula-models

Vine workshop book: Kurowicka and Joe (2011)

Next vine workshop: Jan. 3/4 2014, Peking, China (?)

Thanks to our collaborators (A. Frigessi, I. Hobæk Haff, A. Min, E.
Brechmann, C. Almeida, A. Bauer, T. Klein, M. Hofmann, H. Manner, C.
Bernard, J. Dißmann, H. Joe, A. Panagiotelis, M. Smith, J. Stöber, U.
Schepsmeier, D. Kurowicka, L. Gruber, N. Krämer...)
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