
Coherent structure identification using flow map
composition and spectral interpolation

Clancy Rowley

Joint work with S. Brunton, M. Luchtenburg, and M. Williams

Princeton University

BIRS: Uncovering Transport Barriers in Geophysical Flows
September 23, 2013

Outline

Two simple ideas

Computing FTLE fields

Uncertainty quantification and Perron-Frobenius

Approximating Koopman eigenfunctions using DMD

Acknowledgments

I Steve Brunton (U. Washington)
I Finite-time Lyapunov exponents

I Mark Luchtenburg (Princeton)
I Uncertainty quantification
I Perron-Frobenius

I Matt Williams (Princeton)
I Koopman eigenfunctions via Dynamic Mode Decomposition

Outline

Two simple ideas

Computing FTLE fields

Uncertainty quantification and Perron-Frobenius

Approximating Koopman eigenfunctions using DMD

Goal

I Efficient, accurate representation of nonlinear maps
I Example: double gyre

t = 0 t = 2

Simple deformation

t = 10

Complex deformation

Two simple ideas

I Flow map composition
I Represent a long-time flow map as a composition of short-time flow

maps
I Each short-time flow map should be relatively easy to describe

I Spectral interpolation

I Expand each short-time flow map in terms of orthogonal functions
(e.g., Legendre polynomials)

I Can determine coefficients from values at collocation points

Two simple ideas

I Flow map composition
I Represent a long-time flow map as a composition of short-time flow

maps
I Each short-time flow map should be relatively easy to describe

I Spectral interpolation
I Expand each short-time flow map in terms of orthogonal functions

(e.g., Legendre polynomials)
I Can determine coefficients from values at collocation points

Flow map composition: example

Consider the logistic map
xk+1 = f (xk)

f (x) = 4x(1− x)

f 2(x) = 16x(1− x)(1− 2x)2

f 3(x) = −214x8 + · · ·
f 4(x) = −230x16 + · · ·

f k(x) = −cx2k
+ · · ·

x
1

1

I Degree of polynomial increases exponentially in the number of
compositions

I Leads to complex long-time map, though short-time map is simple

Flow map composition: example

Consider the logistic map
xk+1 = f (xk)

f (x) = 4x(1− x)

f 2(x) = 16x(1− x)(1− 2x)2

f 3(x) = −214x8 + · · ·
f 4(x) = −230x16 + · · ·

f k(x) = −cx2k
+ · · ·

x
1

1

I Degree of polynomial increases exponentially in the number of
compositions

I Leads to complex long-time map, though short-time map is simple

Flow map composition: example

Consider the logistic map
xk+1 = f (xk)

f (x) = 4x(1− x)

f 2(x) = 16x(1− x)(1− 2x)2

f 3(x) = −214x8 + · · ·

f 4(x) = −230x16 + · · ·

f k(x) = −cx2k
+ · · ·

x
1

1

I Degree of polynomial increases exponentially in the number of
compositions

I Leads to complex long-time map, though short-time map is simple

Flow map composition: example

Consider the logistic map
xk+1 = f (xk)

f (x) = 4x(1− x)

f 2(x) = 16x(1− x)(1− 2x)2

f 3(x) = −214x8 + · · ·
f 4(x) = −230x16 + · · ·

f k(x) = −cx2k
+ · · ·

x
1

1

I Degree of polynomial increases exponentially in the number of
compositions

I Leads to complex long-time map, though short-time map is simple

Flow map composition: example

Consider the logistic map
xk+1 = f (xk)

f (x) = 4x(1− x)

f 2(x) = 16x(1− x)(1− 2x)2

f 3(x) = −214x8 + · · ·
f 4(x) = −230x16 + · · ·

f k(x) = −cx2k
+ · · ·

x
1

1

I Degree of polynomial increases exponentially in the number of
compositions

I Leads to complex long-time map, though short-time map is simple

Representing short-time flow maps
I Short-time flow maps are reasonably “well behaved”
I Represent them with relatively low-order polynomials
I Use orthogonal polynomials

I Expand flow map φ in terms of orthogonal polynomials ψj (e.g.,
Legendre polynomials):

φ(x) =
n∑

j=1

ajψj (x) aj = 〈φ, ψj 〉

I Can compute coefficients aj by evaluating φ at collocation points,
using Gauss quadrature

I Simply propagate the collocation points through the flow map to
obtain the corresponding coefficients

tk x
xj

tk+1 x
φ(xj)

φ

Representing short-time flow maps
I Short-time flow maps are reasonably “well behaved”
I Represent them with relatively low-order polynomials
I Use orthogonal polynomials

I Expand flow map φ in terms of orthogonal polynomials ψj (e.g.,
Legendre polynomials):

φ(x) =
n∑

j=1

ajψj (x) aj = 〈φ, ψj 〉

I Can compute coefficients aj by evaluating φ at collocation points,
using Gauss quadrature

I Simply propagate the collocation points through the flow map to
obtain the corresponding coefficients

tk x
xj

tk+1 x
φ(xj)

φ

Representing short-time flow maps
I Short-time flow maps are reasonably “well behaved”
I Represent them with relatively low-order polynomials
I Use orthogonal polynomials

I Expand flow map φ in terms of orthogonal polynomials ψj (e.g.,
Legendre polynomials):

φ(x) =
n∑

j=1

ajψj (x) aj = 〈φ, ψj 〉

I Can compute coefficients aj by evaluating φ at collocation points,
using Gauss quadrature

I Simply propagate the collocation points through the flow map to
obtain the corresponding coefficients

tk x
xj

tk+1 x
φ(xj)

φ

Why flow map composition and spectral interpolation?

I Accurate long-time behavior

I Minimal storage needed to represent flow map
I Degree of the flow map polynomial grows exponentially with number

of compositions: if short-time flow map is approximated by a
degree-p polynomial, after k compositions the degree is pk

I For a non-autonomous system, number of parameters grows linearly
with number of compositions.

I For an autonomous system, number of parameters is constant,
independent of number of compositions.

I Spectral interpolation is accurate and efficient
I Typically p + 1 collocation points for a degree-p approximation

Why flow map composition and spectral interpolation?

I Accurate long-time behavior

I Minimal storage needed to represent flow map
I Degree of the flow map polynomial grows exponentially with number

of compositions: if short-time flow map is approximated by a
degree-p polynomial, after k compositions the degree is pk

I For a non-autonomous system, number of parameters grows linearly
with number of compositions.

I For an autonomous system, number of parameters is constant,
independent of number of compositions.

I Spectral interpolation is accurate and efficient
I Typically p + 1 collocation points for a degree-p approximation

Why flow map composition and spectral interpolation?

I Accurate long-time behavior

I Minimal storage needed to represent flow map
I Degree of the flow map polynomial grows exponentially with number

of compositions: if short-time flow map is approximated by a
degree-p polynomial, after k compositions the degree is pk

I For a non-autonomous system, number of parameters grows linearly
with number of compositions.

I For an autonomous system, number of parameters is constant,
independent of number of compositions.

I Spectral interpolation is accurate and efficient
I Typically p + 1 collocation points for a degree-p approximation

Outline

Two simple ideas

Computing FTLE fields

Uncertainty quantification and Perron-Frobenius

Approximating Koopman eigenfunctions using DMD

Spectral interpolation for FTLE of double gyre

Gauss-Lobatto collocation points

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Short-time flow map (∆t = 0.1)

512× 256 uniform grid (exact)

10× 5 collocation points (∆t = 0.1)

Error comparison

I Measure errors as a function of number of flow map compositions
and number of collocation points

I Compare spectral interpolation with cubic spline and linear
interpolation

I Spectral is the most accurate, and uses the least memory
I Cubic spline faster; a good alternative
I Linear interpolation is fast, but poor accuracy

Spectral

of

 Y
 C

ol
lo

ca
tio

n
Po

in
ts

of Intermediate Flow Maps

Log of L2 Error

20 40 60 80 100 120 140

5

10

15

20

25

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

Cubic

of

 Y
 C

ol
lo

ca
tio

n
Po

in
ts

of Intermediate Flow Maps

Log of L2 Error

20 40 60 80 100 120 140
5

10

15

20

25

30

35

40

45

50

−5

−4

−3

−2

−1

0

Linear

of

 Y
 C

ol
lo

ca
tio

n
Po

in
ts

of Intermediate Flow Maps

Log of L2 Error

20 40 60 80 100 120 140
5

10

15

20

25

30

35

40

45

50

−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

Outline

Two simple ideas

Computing FTLE fields

Uncertainty quantification and Perron-Frobenius

Approximating Koopman eigenfunctions using DMD

Simple ODE example

ẋ = x(1− x2), x ∈ [−1, 1]
x

0 1−1

I Want flow map φt for large times.
I Approximate in terms of Legendre polynomials ψi (x):

φt ≈
P∑

i=0

ai (t)ψi (x)

I Same as polynomial chaos expansion, for an uncertain initial
condition uniformly distributed in [−1, 1].

−1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5

x

φ
T
(x

)

exact
app., P = 20

T = 3

−1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5

x

φ
T
(x

)

exact
app., P = 20

T = 6

Simple ODE example

ẋ = x(1− x2), x ∈ [−1, 1]
x

0 1−1

I Want flow map φt for large times.
I Approximate in terms of Legendre polynomials ψi (x):

φt ≈
P∑

i=0

ai (t)ψi (x)

I Same as polynomial chaos expansion, for an uncertain initial
condition uniformly distributed in [−1, 1].

−1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5

x

φ
T
(x

)

exact
app., P = 20

T = 3

−1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5

x

φ
T
(x

)

exact
app., P = 20

T = 6

Flow map composition: ODE example
I Compare with results for flow map composition

I Degree-3 polynomial for φ∆t , ∆t = 0.2

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

φ
T
(x

)
exact
app., P = 3

T = 3

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

φ
T
(x

)

exact
app., P = 3

T = 6

I Greatly improved accuracy, with spectral convergence

Standard PC: poor convergence

0 10 20 30 40
10

0

10
1

10
2

P

L
2
E
r
r
o
r

Composition: Spectral convergence

0 10 20 30 40
10

−15

10
−10

10
−5

10
0

10
5

P

L
2
E
r
r
o
r

Flow map composition: ODE example
I Compare with results for flow map composition

I Degree-3 polynomial for φ∆t , ∆t = 0.2

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

φ
T
(x

)
exact
app., P = 3

T = 3

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

φ
T
(x

)

exact
app., P = 3

T = 6

I Greatly improved accuracy, with spectral convergence
Standard PC: poor convergence

0 10 20 30 40
10

0

10
1

10
2

P

L
2
E
r
r
o
r

Composition: Spectral convergence

0 10 20 30 40
10

−15

10
−10

10
−5

10
0

10
5

P

L
2
E
r
r
o
r

Propagating a PDF in the double gyre

I Propagation of a probability density function using flow map
composition

I Double gyre parameters: A = 0.25, ε = 0.25, ω = 2π
I Legendre polynomial basis with 11× 6 collocation points

x

y

0 0.5 1 1.5 2
0

0.5

1

T = 0

x

y

0 0.5 1 1.5 2
0

0.5

1

T = 1

x

y

0 0.5 1 1.5 2
0

0.5

1

T = 10

x

y

0 0.5 1 1.5 2
0

0.5

1

T = 20

Almost invariant sets: low resolution

I Calculate eigenvectors of the approximation of Perron-Frobenius
I 22× 12 collocation points
I Double gyre: A = 0.25, ε = 0.25, ω = 2π
I Eigenvectors corresponding to near-unity eigenvalues reveal

almost-invariant sets

Eigenvector 2

x

y

0 1 2
0

0.5

1

−0.6 −0.4 −0.2 0

Eigenvector 3

x

y

0 1 2
0

0.5

1

−0.5 0 0.5

Almost invariant sets: high resolution
I Same calculation at higher resolution reveals islands

I 43× 22 collocation points

Eigenvector 2

x

y

0 1 2
0

0.5

1

0 0.1 0.2 0.3

Eigenvector 3

x
y

0 1 2
0

0.5

1

−0.4 −0.2 0 0.2

Poincare map

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Almost invariant sets: high resolution
I Same calculation at higher resolution reveals islands

I 43× 22 collocation points

Eigenvector 2

x

y

0 1 2
0

0.5

1

0 0.1 0.2 0.3

Eigenvector 3

x
y

0 1 2
0

0.5

1

−0.4 −0.2 0 0.2

Poincare map

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Outline

Two simple ideas

Computing FTLE fields

Uncertainty quantification and Perron-Frobenius

Approximating Koopman eigenfunctions using DMD

Approximating a few Koopman eigenfunctions using
Dynamic Mode Decomposition

Given a discrete-time dynamical system ~xn+1 = F (~xn) with ~xn ∈ RN , the
action of the Koopman operator K on ψ : RN → C is

(Kψ)(~xn) = ψ(F (~xn)) = ψ(~xn+1).

Our goal is to approximate a few Koopman eigenfunctions, ϕ(~x), using
two sets of data,

X =
[
~x1 ~x2 . . . ~xM

]
, Y =

[
~y1 ~y2 . . . ~yM

]
,

where ~yn = F (~xn).
Using Dynamic Mode Decomposition, the approximations of the
Koopman modes and eigenvalues are obtained by solving the eigenvalue
problem:

A~v = λ~v ,

with A = YX †, where the rank of A is the smaller of N or M.

Approximating a few Koopman eigenfunctions using
Dynamic Mode Decomposition

Given a discrete-time dynamical system ~xn+1 = F (~xn) with ~xn ∈ RN , the
action of the Koopman operator K on ψ : RN → C is

(Kψ)(~xn) = ψ(F (~xn)) = ψ(~xn+1).

Our goal is to approximate a few Koopman eigenfunctions, ϕ(~x), using
two sets of data,

X =
[
~x1 ~x2 . . . ~xM

]
, Y =

[
~y1 ~y2 . . . ~yM

]
,

where ~yn = F (~xn).

Using Dynamic Mode Decomposition, the approximations of the
Koopman modes and eigenvalues are obtained by solving the eigenvalue
problem:

A~v = λ~v ,

with A = YX †, where the rank of A is the smaller of N or M.

Approximating a few Koopman eigenfunctions using
Dynamic Mode Decomposition

Given a discrete-time dynamical system ~xn+1 = F (~xn) with ~xn ∈ RN , the
action of the Koopman operator K on ψ : RN → C is

(Kψ)(~xn) = ψ(F (~xn)) = ψ(~xn+1).

Our goal is to approximate a few Koopman eigenfunctions, ϕ(~x), using
two sets of data,

X =
[
~x1 ~x2 . . . ~xM

]
, Y =

[
~y1 ~y2 . . . ~yM

]
,

where ~yn = F (~xn).
Using Dynamic Mode Decomposition, the approximations of the
Koopman modes and eigenvalues are obtained by solving the eigenvalue
problem:

A~v = λ~v ,

with A = YX †, where the rank of A is the smaller of N or M.

Extending Dynamic Mode Decomposition

Instead of operating on raw data, we define M observables,
ψm(~x) : RN → C, and form the transformed data matrices

ΨX =

ψ1(~x1) . . . ψ1(~xM)
...

...
...

ψM(~x1) . . . ψM(~xM)

 , ΨY =

ψ1(~y1) . . . ψ1(~yM)
...

...
...

ψM(~y1) . . . ψM(~yM)

 ,
and compute the left-eigenvectors of

~w∗(ΨY Ψ†X) = λ~w∗.

For a given left-eigenvector, the approximation of the Koopman
eigenfunction is

ϕ̃(~x) =
M∑
j=1

w∗j ψj(~x), (1)

where w∗j is the complex conjugate of the j-th element of ~w . Note: using
regular DMD ψj(~x) = u∗j x , where uj is a basis vector for the image of X .

Computing Koopman eigenfunctions: a linear example

I ~xn+1 =

[
0.8 −0.05
0 0.7

]
~xn, with

λ = 0.8, 0.7.
I Data are a time series of 11

snapshots
I Basis functions (observables)

are ψi,j(x , y) = x iy j for
i , j = 0, 1, 2, 3.

DMD Data

−1 −0.8 −0.6 −0.4 −0.2 0
0

0.2

0.4

0.6

0.8

1

x

y

Computed eigenvalues

2 4 6 8 10

0.4

0.6

0.8

1

Index

E
ig

e
n
v
a
lu

e

DMD

Exact I Desired eigenfunctions:
ϕi,j(x , y) = (2x − y)iy j for
i , j ∈ N

I λi,j = (0.8)i (0.7)j

Comparing the eigenfunctions: a linear example

DMD Eigenfunctions Koopman Eigenfunctions

A nonlinear example: the Stuart-Landau equation

I dA
dt = a0A− a1|A|2A, with
A ∈ C, a0 = 1, a1 = 1 + i

I Eight time series (∆t = 0.1)
with 29 snapshots each

I Choose ψm,n(r , θ) = rme inθ

with A = r exp(iθ)

I m = −4, . . . , 3 and
n = −16, . . . , 16.

DMD Data

−4 −2 0 2 4
−4

−2

0

2

4

Computed eigenvalues

−6 −5 −4 −3 −2 −1 0
−5

0

5

Re(λ)

Im
(λ

)

Desired

DMD

Computed eigenfunction (λ = −2)

0 0.5 1 1.5 2
10

−2

10
0

10
2

10
4

r

|φ
(r

,
θ
)|

Desired

DMD

0S. Bagheri. Koopman Mode Decomposition of the Cylinder Wake, JFM 726, 2013.

Computing isochrons in the Stuart-Landau equation

Analytic ∠φ0,1

Re(A)

Im
(A

)

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Computed ∠φ0,1

I Koopman eigenfunctions:
φm,n =

(1
r2 − 1

)m exp
(
in
(
θ + ln

(1
r

))) I Plot of the level sets of ∠φ0,1

I Good agreement with the
analytical results

0A. Mauroy, I. Mezic, J. Moehlis. Isostables, isochrons, and Koopman spectrum for
the action-angle representation of stable fixed point dynamics.
arXiv:1302.0032 [math.DS]

Summary

I Efficient representation of long-time flow maps
I Compose short-time flow maps
I Represent short-time flow maps by spectral interpolation

I Examples
I Computing FTLE fields
I Propagating probability density functions
I Computing eigenfunctions of Perron-Frobenius

I Approximate Koopman eigenfunctions using Dynamic Mode
Decomposition (DMD)

I Sample several observables from different points in phase space
I Reconstructs Koopman eigenfunctions for both linear and nonlinear

problems

	Two simple ideas
	Computing FTLE fields
	Uncertainty quantification and Perron-Frobenius
	Approximating Koopman eigenfunctions using DMD

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	0.9:
	0.10:
	0.11:
	0.12:
	0.13:
	0.14:
	0.15:
	anm0:

