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Goal

I Efficient, accurate representation of nonlinear maps
I Example: double gyre

t = 0 t = 2

Simple deformation

t = 10

Complex deformation



Two simple ideas

I Flow map composition
I Represent a long-time flow map as a composition of short-time flow

maps
I Each short-time flow map should be relatively easy to describe

I Spectral interpolation

I Expand each short-time flow map in terms of orthogonal functions
(e.g., Legendre polynomials)

I Can determine coefficients from values at collocation points
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Flow map composition: example

Consider the logistic map
xk+1 = f (xk)

f (x) = 4x(1− x)

f 2(x) = 16x(1− x)(1− 2x)2

f 3(x) = −214x8 + · · ·
f 4(x) = −230x16 + · · ·

f k(x) = −cx2k
+ · · ·

x
1

1

I Degree of polynomial increases exponentially in the number of
compositions

I Leads to complex long-time map, though short-time map is simple
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Representing short-time flow maps
I Short-time flow maps are reasonably “well behaved”
I Represent them with relatively low-order polynomials
I Use orthogonal polynomials

I Expand flow map φ in terms of orthogonal polynomials ψj (e.g.,
Legendre polynomials):

φ(x) =
n∑

j=1

ajψj (x) aj = 〈φ, ψj 〉

I Can compute coefficients aj by evaluating φ at collocation points,
using Gauss quadrature

I Simply propagate the collocation points through the flow map to
obtain the corresponding coefficients

tk x
xj

tk+1 x
φ(xj)

φ
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Why flow map composition and spectral interpolation?

I Accurate long-time behavior

I Minimal storage needed to represent flow map
I Degree of the flow map polynomial grows exponentially with number

of compositions: if short-time flow map is approximated by a
degree-p polynomial, after k compositions the degree is pk

I For a non-autonomous system, number of parameters grows linearly
with number of compositions.

I For an autonomous system, number of parameters is constant,
independent of number of compositions.

I Spectral interpolation is accurate and efficient
I Typically p + 1 collocation points for a degree-p approximation
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Spectral interpolation for FTLE of double gyre

Gauss-Lobatto collocation points
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Error comparison

I Measure errors as a function of number of flow map compositions
and number of collocation points

I Compare spectral interpolation with cubic spline and linear
interpolation

I Spectral is the most accurate, and uses the least memory
I Cubic spline faster; a good alternative
I Linear interpolation is fast, but poor accuracy
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Simple ODE example

ẋ = x(1− x2), x ∈ [−1, 1]
x

0 1−1

I Want flow map φt for large times.
I Approximate in terms of Legendre polynomials ψi (x):

φt ≈
P∑

i=0

ai (t)ψi (x)

I Same as polynomial chaos expansion, for an uncertain initial
condition uniformly distributed in [−1, 1].
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Flow map composition: ODE example
I Compare with results for flow map composition

I Degree-3 polynomial for φ∆t , ∆t = 0.2
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Standard PC: poor convergence
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Propagating a PDF in the double gyre

I Propagation of a probability density function using flow map
composition

I Double gyre parameters: A = 0.25, ε = 0.25, ω = 2π
I Legendre polynomial basis with 11× 6 collocation points
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Almost invariant sets: low resolution

I Calculate eigenvectors of the approximation of Perron-Frobenius
I 22× 12 collocation points
I Double gyre: A = 0.25, ε = 0.25, ω = 2π
I Eigenvectors corresponding to near-unity eigenvalues reveal

almost-invariant sets
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Almost invariant sets: high resolution
I Same calculation at higher resolution reveals islands

I 43× 22 collocation points
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Approximating a few Koopman eigenfunctions using
Dynamic Mode Decomposition

Given a discrete-time dynamical system ~xn+1 = F (~xn) with ~xn ∈ RN , the
action of the Koopman operator K on ψ : RN → C is

(Kψ)(~xn) = ψ(F (~xn)) = ψ(~xn+1).

Our goal is to approximate a few Koopman eigenfunctions, ϕ(~x), using
two sets of data,

X =
[
~x1 ~x2 . . . ~xM

]
, Y =

[
~y1 ~y2 . . . ~yM

]
,

where ~yn = F (~xn).
Using Dynamic Mode Decomposition, the approximations of the
Koopman modes and eigenvalues are obtained by solving the eigenvalue
problem:

A~v = λ~v ,

with A = YX †, where the rank of A is the smaller of N or M.
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Extending Dynamic Mode Decomposition

Instead of operating on raw data, we define M observables,
ψm(~x) : RN → C, and form the transformed data matrices

ΨX =

ψ1(~x1) . . . ψ1(~xM)
...

...
...

ψM(~x1) . . . ψM(~xM)

 , ΨY =

ψ1(~y1) . . . ψ1(~yM)
...

...
...

ψM(~y1) . . . ψM(~yM)

 ,
and compute the left-eigenvectors of

~w∗(ΨY Ψ†X ) = λ~w∗.

For a given left-eigenvector, the approximation of the Koopman
eigenfunction is

ϕ̃(~x) =
M∑
j=1

w∗j ψj(~x), (1)

where w∗j is the complex conjugate of the j-th element of ~w . Note: using
regular DMD ψj(~x) = u∗j x , where uj is a basis vector for the image of X .



Computing Koopman eigenfunctions: a linear example

I ~xn+1 =

[
0.8 −0.05
0 0.7

]
~xn, with

λ = 0.8, 0.7.
I Data are a time series of 11

snapshots
I Basis functions (observables)

are ψi,j(x , y) = x iy j for
i , j = 0, 1, 2, 3.
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Comparing the eigenfunctions: a linear example

DMD Eigenfunctions Koopman Eigenfunctions



A nonlinear example: the Stuart-Landau equation

I dA
dt = a0A− a1|A|2A, with
A ∈ C, a0 = 1, a1 = 1 + i

I Eight time series (∆t = 0.1)
with 29 snapshots each

I Choose ψm,n(r , θ) = rme inθ

with A = r exp(iθ)

I m = −4, . . . , 3 and
n = −16, . . . , 16.
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0S. Bagheri. Koopman Mode Decomposition of the Cylinder Wake, JFM 726, 2013.



Computing isochrons in the Stuart-Landau equation

Analytic ∠φ0,1

Re(A)

Im
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)m exp
(
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( 1
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))) I Plot of the level sets of ∠φ0,1

I Good agreement with the
analytical results

0A. Mauroy, I. Mezic, J. Moehlis. Isostables, isochrons, and Koopman spectrum for
the action-angle representation of stable fixed point dynamics.
arXiv:1302.0032 [math.DS]



Summary

I Efficient representation of long-time flow maps
I Compose short-time flow maps
I Represent short-time flow maps by spectral interpolation

I Examples
I Computing FTLE fields
I Propagating probability density functions
I Computing eigenfunctions of Perron-Frobenius

I Approximate Koopman eigenfunctions using Dynamic Mode
Decomposition (DMD)

I Sample several observables from different points in phase space
I Reconstructs Koopman eigenfunctions for both linear and nonlinear

problems
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