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Setup and motivation

Consider an unsteady vector field

ẋ=v(x , t), x ∈ U ⊂ R3, t ∈ [t−, t+]

Assume no temporal periodicity on v(x , t)

v can solve a PDE (e.g. Navier-Stokes) or be obtained
from physical measurements

Relevant structures are time-varying and only exist for
finite time (e.g. fronts, oceanic eddies)
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Setup and motivation

Describing and detecting transport barriers is an active
area of research

(c.f. publication list of any audience member)
Sarcasm aside, examples include

1 Forcasting for natural disasters (Olascoaga, Haller, Mezic,
Peacock etc.),

2 Agulhas eddies and climate change (Haller, Beron-Vera,
Froyland, Beal, etc.)

3 Plasma fusion (del-Castillo-Negrete, Morrison, B., etc.)
4 Zonal jets (del-Castillo-Negrete, Rypina, Olascoaga,

Beron-Vera, Haller, Froyland, Farazmand, B., etc.)
5 Biological systems (Green, Rowley, Ouellette,

Komoutsakous, Dabiri, Shadden, Ross, etc.)
6 Theoretical descriptions (Haller, Froyland, Mezic, Mancho,

Budisic, Allshouse, Thiffeault, Pratt, Kirwan, B., etc.)
7 Last, but not least, “etc.”
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Lagrangian Coherent Structures (LCSs) are barriers
to tranaport 1

Hyperbolic LCSs locally minimize/maximize normal
repulsion ρ

ρtt0
(x0,n0) = 〈nt,∇F t

t0
(x0)n0〉

Shear LCSs locally maximize tangential shear σ

σtt0
(x0, n0) = |∇F t

t0
(x0)n0 − 〈nt ,∇F t

t0
(x0)n0〉nt |

Transport barriers are hyperbolic or shear LCSs
1D.B. and G. Haller, Hyperbolic and Elliptic Transport Barriers in

Three-Dimensional Unsteady Flows, submitted
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Characterization of Hyperbolic and Shear LCS as
Orthogonal Surfaces

Theorem characterizing hyperbolic and shear LCSs:
Let C t

t0
=
(
∇F t

t0

)∗∇F t
t0

be the Cauchy-Green strain
tensor, ξi , λi be the eigenvectors and eigenvalues

If M(t) is a repelling (resp. attracting) LCS, then
M(t0) ⊥ ξ3 (resp. ξ1)
If M(t) is a shear LCS then M(t0) ⊥ n+ or M(t0) ⊥ n−

n± =

√ √
λ1√

λ1 +
√
λn
ξ1 ±

√ √
λn√

λ1 +
√
λn
ξ3

ξ3, ξ1, n± are the optimal directions of repulsion,
attraction, and shear.
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Zero Helicity Condition for Orthogonal Surfaces

If M(t0) ⊥ π for a vector field π, then the helicity of π

Hπ = 〈∇ × π, π〉
vanishes on M(t0). (General geometric, mathematical
constraint for orthogonal surfaces)

Consider a cut γ of M(t0) with a plane Σ.
The intersection γ is tangent to the the reduced field
π̂ = π × n, where n ⊥ Σ. π̂ is a vector field on Σ

Geometry of the reduced
fields
Think of π as ξ1, ξ3 or n±

Punchline: A cut γ of a strain/shear surface is a curve of
zero helicity and an integral curve of ξ̂1, ξ̂3 or n̂±
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Test case: Steady ABC Flow

As a proof of concept, we first consider the steady ABC
flow (steady solution of 3D Euler’s equation)

ẋ = A sin z + C cos y

ẏ = B sin x + A cos z

ż = C sin y + B cos x

Poincare plot on {z = 0} visually shows KAM-like vortex
structures
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Elliptic barriers (closed shear LCSs) in the Steady
ABC Flow

Closed reduced shearlines (green) are trajectories of the
reduced field n̂± on {z = 0}
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t0 + T = 40 t0 + T = 150

Trajectories are integrated for a fixed time for the full 3D
flow (i.e. we do not do a 2D analysis of the Poincare map)

Significance: Reconstructed 3D KAM tori without using
notions of invariance, steadiness, conjugacy to rotation,
Birkhoff Egrodic Theorem, etc.
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Repelling LCSs for Steady Case; t0 + T = 3

Reduced strainlines are integral curves of ξ̂3

Compute reduced strainlines of zero helicity on {z = 0}
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See that they separate finite-time dynamics of upward and
downward motions
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Shear Barriers for Periodic ABC Flow

Temporally periodic ABC flow

ẋ = (A + 0.1 sin t) sin z + C cos y

ẏ = B sin x + (A + 0.1 sin t) cos z

ż = C sin y + B cos x

KAM torus obtained from iterating a single closed reduced
shearline under the temporal Poincare map F 2π
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Repelling LCSs

Find reduced strainlines of zero helicity on multiple z slices

Parallel computation, one core for each z slice

Result for 3D barrier for integration time t0 + T = 4.0
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Temporally Chaotic Signal Added to ABC Flow

We consider the aperiodically forced ABC flow

ẋ = (A + F (t)) sin z + C cos y

ẏ = B sin x + (A + F (t)) cos z

ż = C sin y + B cos x
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Coherent Lagrangian Vortices in the Chaotically
Forced ABC Flow: t0 = 0,t0 + T = 100.

In this setting, there are no invariant sets of FT for any
time T

Used a family Πσ of 150 planes to cut the torus.
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Coherent Lagrangian Vortices in the Chaotically
Forced ABC Flow: t0 = 0,t0 + T = 100.

Study advection of nearby tracers

Coherent Lagrangian vortices maintain their shape over
the integration time, and are boundaries of vortices in
unsteady flows
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Concluding Remarks

Presented a theory of shear and hyperbolic transport
barriers for 3D unsteady flows

Based on a rigorous mathematical/physical description
(i.e. no heuristics, e.g. from steady flows) that was shown
to capture vortices in steady flows.

Ongoing work includes using the theory to detect elliptic
barriers in 3D velocity data

8 9 10 11 12−36−34−32
−90

−80

−70

−60

−50

−40

−30

−20

−10

Thank you for your attention!
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