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Harmonic maps

For maps u : (Mm, g)→ (N d , h) ∈W 1,2 between Riemannian
manifolds consider the Dirichlet energy

E (u) :=
1

2

∫
M
|du|2 dVg .

u is said to be weakly harmonic if it is a critical point with respect
to outer variations of itself: i.e. for any φ ∈ Γc(u∗TN ) letting
ut := Expu(x)(tφ(x)) we must have

0 =
d

dt
E (ut)t=o =

∫
M
〈du,du∗TNφ〉T∗M⊗u∗TN dVg

where du∗TN : u∗TN → T∗M⊗ u∗TN is the induced exterior
covariant derivative.Therefore u is harmonic if
τ(u) = d∗u∗TN (du) = 0.
N.B. if Ñ⊂N and u :M→ Ñ⊂N is harmonic then
τ(u) = (d∗u∗TN (du))> = 0 weakly.
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Hélein’s Theorem

Unless dim(M) = 1, u ∈W 1,2(M,N ) is not continuous in
general, so in order to deal with Harmonic maps we assume that
N ↪→Rn and define:

W 1,2(M,N ) := {u ∈W 1,2(M,Rn)|u(x) ∈ N a.e.}

Now a harmonic map must (weakly) solve

(∆gu)> = 0.

To simplify we will now assume (M, g) = (B1, gEucl) and letting
{νK} denote an orthonormal frame for NN we have (∆u)> = 0
when

−∆u =
∑
K

〈∇νK (u),∇u〉νK (u)

We see that this PDE is quadratic in ∇u in the RHS. Since there
is no L1-theory for the Laplacian the best we can do is to say
∇u ∈ Lp for all p < 2.
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Hélein’s Theorem

However we have the following classical:

Theorem
Any weakly harmonic map u ∈W 1,2 ∩ C 0 is smooth.

So we only need a ‘little more regularity’ when m = 2.

Theorem (Rivière ’92)

When m > 2 there exist ‘nowhere continuous’ weakly harmonic
maps.

Partial regularity does exist in higher dimension for weakly
stationary harmonic maps - which allows one to assume
∇u ∈ M2,m−2.



Interior and free boundary regularity for Dirac-harmonic maps, harmonic maps and related PDE
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Hélein’s Theorem

Letting m = 2 and considering N = Sd with the round metric, we
have that ν(u) = u for a map u : D → Sd and u is harmonic if

−∆u = u|∇u|2.

In this setting we may observe (Shatah ’88) that

div(ui∇uj − uj∇ui) = ui∆uj − uj∆ui = 0

and write (Hélein ’91)

−∆ui =
∑
j

(ui∇uj − uj∇ui ) · ∇uj .

Note that in general we could write

−∆ui =
∑
K ,j

(νK (u)i∇νK (u)j − νK (u)j∇νK (u)i ) · ∇uj

but we do not necessarily have

div(νK(u)i∇νK(u)j − νK(u)j∇νK(u)i) = 0
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Hélein’s Theorem

Wente estimates

Theorem (Wente ’69, Coiffman et al ’93)

Let E ,D ∈ L2(B1⊂R2,∧1R2) and φ ∈W 1,2
0 weakly solve

∆φ = E · D

and
dE = d∗D = 0

then φ is continuous and

‖φ‖L∞ + ‖∇φ‖L2 + ‖∇2φ‖L1 + ‖∇φ‖L2,1 ≤ C‖E‖L2‖D‖L2 .

Therefore we can at least conclude the full regularity for harmonic
maps from a disc into a round sphere. Actually we have in all
dimensions E ,D ∈ L2(Rm,∧1Rm), dE = d∗D = 0 then

E · D ∈ H1⊂L1.
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Hélein’s Theorem

Wente estimates

Theorem (Wente ’69, Coiffman et al ’93)

Let E ,D ∈ L2(B1⊂R2,∧1R2) and φ ∈W 1,2
0 weakly solve

∆φ = E · D

and
dE = d∗D = 0

then φ is continuous and

‖φ‖L∞ + ‖∇φ‖L2 + ‖∇2φ‖L1 + ‖∇φ‖L2,1 ≤ C‖E‖L2‖D‖L2 .

Therefore we can at least conclude the full regularity for harmonic
maps from a disc into a round sphere. Actually we have in all
dimensions E ,D ∈ L2(Rm,∧1Rm), dE = d∗D = 0 then

E · D ∈ H1⊂L1.



Interior and free boundary regularity for Dirac-harmonic maps, harmonic maps and related PDE

Hélein’s Theorem

Wente estimates

Theorem (Hélein ’91)

Any weakly harmonic map u ∈W 1,2(M2,N ), whereM and N
are closed, is smooth.

Idea of Proof: Use a technical Lemma which allows us to assume
the tangent bundle of N is trivial (only true when N is sufficiently
regular)
Then find an appropriate frame in which to express the equation.
This frame will turn any ‘bad’ non-linearities into ‘good’
Wente-type non-linearities.
The ideas introduced by Hélein have been improved on and
generalised since, in particular the partial regularity for harmonic
maps in higher dimensions was proved using the same methods by
Evans ’91 (into spherical targets) and Bethuel ’93 (general targets).
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Hélein’s Theorem

Wente estimates

Theorem (Hélein ’91)
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Rivière and Rivière-Struwe’s Approach

Rivière generalised Hélein’s methods and proved

Theorem (Rivière ’07)

Let Ω ∈ L2(B1, so(n)⊗ R2) and u ∈W 1,2(B1,Rn) solve

d∗Ω(du) = −∆u − Ω · ∇u = 0 (1)

then u is Hölder continuous.

For higher dimensions Rivière-Struwe proved:

Theorem (Rivière-Struwe ’08)

Let Ω ∈ M2,m−2(B1, so(n)⊗ Rm) and u ∈W 1,2(B1,Rn),
∇u ∈ M2,m−2(B1) solve

d∗Ω(du) = −∆u − Ω · ∇u = 0. (2)

Then there exists ε > 0 such that if ‖Ω‖M2,m−2(B1) ≤ ε then u is
Hölder continuous.
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Rivière and Rivière-Struwe’s Approach

The key to this theorem lies in the existence of a Coulomb gauge
in the Morrey space setting:

Theorem (Rivière-Struwe)

Given any such Ω there exist ε = ε(m, n) > 0,
P ∈W 1,2(B1, SO(n)) and ξ ∈W 1,2

0 (B1, so(n)⊗ ∧m−2Rm) such
that whenever ‖Ω‖M2,m−2(B1) ≤ ε then

P−1dP + P−1ΩP = ∗dξ, d ∗ ξ = 0

and
‖∇ξ‖M2,m−2 + ‖∇P‖M2,m−2 ≤ C‖Ω‖M2,m−2 .

Re-writing (1) with respect to P we have

d∗(P−1du) = − ∗ (d(P−1) ∧ ∗du)− P−1∆u

= ∗(P−1dP ∧ ∗P−1du) + ∗(P−1ΩP ∧ ∗P−1du)

= ∗(∗dξ ∧ ∗P−1du) = ∗dξ · P−1du
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Rivière and Rivière-Struwe’s Approach

The above observations have (in particular) the following
applications and generalisations:

I (1) describes critical points of conformally invariant elliptic
Lagrangians in two dimensions providing the optimal
regularity results there (Rivière)

I (2) describes weakly stationary harmonic maps and allows one
to conclude the partial regularity (Riviére - Struwe)

I Studying the inhomogeneous equation has applications in
proving partial regularity of the harmonic map flow in any
dimension (Moser ’12)

I Applications to regularity of poly/fractional harmonic maps
(Da Lio - Rivière, Schikorra, Struwe)

I Interior regularity (Wang-Xu ’09) and free boundary regularity
(S-Zhu ’13) for Dirac-harmonic maps

I New global estimates for harmonic maps in two dimensions
(S-Lamm ’13)
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I Interior regularity (Wang-Xu ’09) and free boundary regularity
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Additions to the theory

We provide the following addition to the results of Rivière and
Rivière-Struwe:

Theorem (m = 2:Rivière, S-Topping 2010. m ≥ 2: S 2011)

Let u ∈W 1,2, ∇u ∈ M2,m−2 weakly solve (for B1⊂Rm)

−∆u = Ω.∇u + f

for Ω ∈ M2,m−2(B1, so(n)⊗
∧1 Rm) and f ∈ Lp, m

2 < p < m.
Then there exist ε = ε(n,m, p) and C = C (n,m, p) such that
whenever ‖Ω‖M2,m−2(B1) ≤ ε we have

‖∇2u‖
M

2p
m ,m−2(B 1

2
)
+‖∇u‖

M
2p

m−p ,m−2
(B 1

2
)
≤ C (‖u‖L1(B1)+‖f ‖Lp(B1)).

In particular if f ≡ 0 then ∇u ∈ Lq for any q <∞ and
ε = ε(n,m, q).

The results are sharp when m = 2.
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Additions to the theory

Corollaries of this theorem:

I recover the ε-regularity and estimates for harmonic maps (S)
and Dirac-harmonic maps (S-Zhu) in all dimensions

I proves smoothness up to the free boundary with estimates for
Dirac-harmoninc maps in two dimensions (S-Zhu), and
recovers the proof for harmonic maps in all dimensions.

There have been at least two generalisations of this theorem, in
particular

I A. Schikorra (2012) has proved a similar ‘higher -
integrability’ result for more general (’non-local’) systems,
using different methods.

I R. Moser (2012) has proved a similar estimate for harmonic
maps but with 1 < p <∞ - with applications to the regularity
of harmonic map flow for dimension m ≥ 3.
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Dirac harmonic maps

Inspired by the supersymmetric nonlinear sigma model from
quantum field theory Chen-Jost-Li-Wang ’06 introduced the notion
of a Dirac harmonic map

- consider a coupled map

φ ∈W 1,2(M,N ) and spinor ψ ∈ Γ1, 4
3 (ΣM⊗ φ∗TN ) from a

closed spin Riemannian surface M to a Riemannian manifold N
with energy

L(φ, ψ) =

∫
M
|∇φ|2 + 〈D/ψ, ψ〉dVM.

A Dirac-harmonic map is a critical point (φ, ψ) of L.Similarly for
harmonic maps, letting N⊂Rn there exists some
Ω = Ω(φ,∇φ, ψ) ∈ L2 such that φ solves

−∆φ = Ω · ∇φ

with the spinor solving
∂/ψ = Θ · ψ

for some Θ = Θ(∇φ) ∈ L2(B1, gl(n)⊗ ∧1Rm)
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Dirac harmonic maps

Chen-Jost-Wang-Zhu ’12 introduced the appropriate free boundary
problem for Dirac-harmonic maps from spin surfaces with
boundary, which provides a mathematical interpretation of the
D-branes in superstring theory. Now ∂M 6= ∅ and for some
smooth submanifold S⊂N we consider constrained maps
φ : (M, ∂M)→ (N ,S) and spinors that satisfy a Chirality-type
boundary condition compatible with the supporting manifold S.

Adapting the theory of Rivière-Struwe, they have proved:

Theorem (Chen et al ’12)

Let (φ, ψ) be a weakly Dirac-harmonic map fromM to N with
free boundary on S. If in addition we assume that S is totally
geodesic, then (φ, ψ) is smooth.
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Dirac harmonic maps

Theorem (S-Zhu ’13)

Let (φ, ψ) be a weakly Dirac-harmonic map fromM to N with
free boundary on S. Then (φ, ψ) is smooth up to the boundary.
Moreover given a local chart about ∂M: for any k ∈ N there exist
ε = ε(N ,S) and C = C (k ,N ,S) such that if (φ, ψ) is a weakly
Dirac-harmonic map from B+

1 to N with free boundary φ(I ) on S
satisfying ‖∇φ‖L2(B+

1 ) ≤ ε, then

‖∇kφ‖L∞(B+
1
2

) + ‖∇kψ‖L∞(B+
1
2

) ≤ C (‖∇φ‖L2(B+
1 ) + ‖ψ‖L4(B+

1 )).

The theory we develop recovers the interior ε-regularity for
Dirac-harmonic maps (Wang-Xu) along with the partial interior
regularity (Hélein, Bethuel, Evans, Rivière-Struwe) and free
boundary regularity (Jost-Gulliver, Scheven) for harmonic maps in
all dimensions with smooth estimates.
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Dirac harmonic maps

Idea of proof:

I A classical lemma coupled with the interior regularity
estimates allow us to assume that φ maps a neighbourhood of
any point p ∈ ∂M (B+

1 , say) into a (Fermi-)coordinate
neighbourhood of some q ∈ S⊂N (under a smallness
assumption).

I We show that the Chirality-type boundary condition for the
spinor is essentially Riemann-Hilbert condition for ∂.

I This enables us to prove that ψ ∈W 1,p for any p < 2 up to
the boundary. The equation for the map φ in these
coordinates becomes (for some Ω ∈ L2(B+

1 ) and
A ∈ L∞ ∩W 1,2(B+

1 ,GL(d))):

d∗(Adφ) = 〈Ω,Adφ〉+ f f ∈ Lp

∂φ>

∂−→n
= <(PS(−→n · ψ⊥;ψ>)) φ⊥ = 0
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Dirac harmonic maps

We can now reduce to:

Theorem (S-Zhu ’13)

Let 0 ≤ s ≤ d, Λ <∞ and 1 < p < 2. Consider A, Ω, f as above
but with (g , k) ∈ (W 1,p

∂ (I ,Rs),W 2,p
∂ (I ,Rd−s)), and u ∈W 1,2

weakly solving

d∗(Adu) = Ω · Adu + f in B+
1 ,

∂ui

∂−→n
= g i 1 ≤ i ≤ s, uj = k j s + 1 ≤ j ≤ d on I

Λ−1|ξ| ≤ |A(x)ξ| ≤ Λ|ξ| moreover we require that A(x) commutes

with R :=

(
Ids 0
0 −Idd−s

)
. Then u ∈W 2,p

loc (B+
1 ∪ I ), in

particular ∇u ∈ Lq up to the boundary for some q > 2.
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Dirac harmonic maps

In a work in progress with Tobias Lamm we also have the following
global estimate for almost harmonic maps in two dimensions:

Theorem (S-Lamm ’13)

Given a closed (N , h) and any map u ∈W 1,2(B1,N ) with
‖∇u‖L2 + ‖τ(u)‖L2 ≤ Λ, there exists a C = C (Λ,N ) such that

‖∇u‖L2,1(B 1
2

) ≤ C .



Interior and free boundary regularity for Dirac-harmonic maps, harmonic maps and related PDE

Dirac harmonic maps

In a work in progress with Tobias Lamm we also have the following
global estimate for almost harmonic maps in two dimensions:

Theorem (S-Lamm ’13)

Given a closed (N , h) and any map u ∈W 1,2(B1,N ) with
‖∇u‖L2 + ‖τ(u)‖L2 ≤ Λ, there exists a C = C (Λ,N ) such that

‖∇u‖L2,1(B 1
2

) ≤ C .



Interior and free boundary regularity for Dirac-harmonic maps, harmonic maps and related PDE

A simplified approach to harmonic maps in two dimensions

Recall the E-L equation for harmonic maps:

d∗u∗TN (du) = 0

we also trivially have

du∗TN (du) = 0.

Thus it should not be surprising that in two dimensions we have

∂u∗TN (∂u) = 0.

As before, we can make sense of this PDE for maps u ∈W 1,2 and
and where we had before: d∗Ω(du) = 0 we have

∂Ω(∂u) = ∂(∂u) + Ωz ∧ ∂u = 0

for
Ωi
j :=

∑
K

(νK (u)i∇νK (u)j − νK (u)j∇νK (u)i ).
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A simplified approach to harmonic maps in two dimensions

Now we can think more geometrically and use the following
classical result of Koszul-Malgrange ’58:

Theorem
Let U⊂Ck be simply connected and consider
ω : U → gl(n,C)⊗ ∧1Ck (local connection forms). Then there
exists a frame S : U → GL(n,C) (a ‘holomorphic frame’) solving

S−1∂S + S−1ωzS = 0

if and only if
F (0,2)
ω = 0.

So when k = 1 we always have the existence of such S for smooth
ω. Unfortunately this theorem is false if ω ∈ L2 - it would be nice
for us since then

∂(S−1∂u) = 0.
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A simplified approach to harmonic maps in two dimensions

However we have the following result of Hélein:

Lemma
Given Ω ∈ L2,1(B1, gl(n,C)⊗ ∧1R2) there exists ε > 0 such that
whenever ‖Ω‖L2,1 ≤ ε there exists S ∈ C 0 ∩W 1,2(B1,GL(n,C))
solving

S−1∂S + S−1ΩzS = 0

with

dist(S, Id) ≤ 1

3
.

The proof uses a very simple fixed point argument: In fact Hélein
used this in his proof of the regularity theory, however he required
a lot of machinery to put us into the position where Ω ∈ L2,1.
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A simplified approach to harmonic maps in two dimensions

Using a very simple observation we prove the following:

Theorem (S ’12)

Suppose Ω ∈ L2(B1, u(n)⊗ ∧1R2) has the following Hodge
decomposition:

Ω = da + ∗db

for a ∈W 1,2(B1, u(m)) and b ∈W 1,2
0 (B1, u(m)) and ∇b ∈ L2,1.

Now, there exists ε > 0 such that whenever

‖Ω‖L2 + ‖∇b‖L2,1 ≤ ε

there exists S ∈ C 0 ∩W 1,2(B1,GL(n,C)) solving

S−1∂S + S−1ΩzS = 0

with

dist(S,U(n)) ≤ 1

3
.
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A simplified approach to harmonic maps in two dimensions

Now for

Ωi
j :=

∑
K

(νK (u)idνK (u)j − νK (u)jdνK (u)i )

for any such Hodge decomposition we have

∆bij =
∑
K

2dνK (u)i ∧ dνK (u)j =
∑
K

2dνK (u)i · ∗dνK (u)j

Therefore by our Wente estimates we satisfy the conditions of the
Theorem and we can conclude that, for harmonic maps there exists
a frame S such that (when ‖∇u‖L2 is sufficiently small)

∂(S−1∂u) = 0

which recovers the full regularity, an energy convexity result
(Colding-Minicozzi) and an estimate on the energy in the local
Hardy space (Lamm-Lin) under the weakest assumption that N is
C 2.
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∑
K

2dνK (u)i · ∗dνK (u)j

Therefore by our Wente estimates we satisfy the conditions of the
Theorem and we can conclude that, for harmonic maps there exists
a frame S such that (when ‖∇u‖L2 is sufficiently small)

∂(S−1∂u) = 0

which recovers the full regularity, an energy convexity result
(Colding-Minicozzi) and an estimate on the energy in the local
Hardy space (Lamm-Lin) under the weakest assumption that N is
C 2.
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Thank you for your attention!
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