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Introduction

GOAL: study the Dirichlet energy of moving frames associated to
tori immersed in Rm, m ≥ 3.

Importance of moving frames

I Classical topic of differential geometry: Darboux 20’ies,
Cartan 40’ies, Chern 50’ies, Hélein 2002.

I Why important?
Because selecting a ”best moving frame” in surface theory has
a comparable importance as ”fixing an optimal gauge in
physical problems” (in GR: harmonic coordinates to study
Einstein Equations; in YM: Coulomb Gauge).

Indeed: Best frame→ global conformal structure of the underlying
abstract surface + local conformal coordinates.
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Notation

I ~Φ : T2 ↪→ Rm immersion, m ≥ 3.

I ~e = (~e1,~e2) is a moving frame of ~Φ(T2),
i.e. ∀x ∈ T2, (~e1(x),~e2(x)) is an orthonormal basis of
T~Φ(x)

~Φ(T2).

I (~Φ,~e) is called framed torus

I We define the frame energy

F(~Φ,~e) :=
1

4

∫
T2

|d~e|2dvolg

where dvolg is the volume form associated to g := ~Φ∗(gRm)
and |d~e|2 :=

∑2
i ,j ,k=1 g ij∂x i~ek · ∂x j~ek .
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Relation of the frame energy F with the Willmore
functional W

By projecting on the tangent and the normal space d~ei one gets

F(~Φ,~e) = FT (~Φ,~e) + W (~Φ)

where

FT (~Φ,~e) =
1

2

∫
T2

|~e1 · d~e2|2dvolg Tangential frame energy

and

W (~Φ) :=

∫
T2

H2dvolg =
1

4

∫
T2

|I|2dvolg Willmore functional

(I is the second fundamental form of ~Φ and H = 1
2 g ijIij is the

mean curvature).



First properties of frame energy

I F is invariant under scaling in Rm and under conformal
transformations of g (i.e. in the domain)

I but F is NOT conformally invariant in Rm (i.e. is not
invariant under inversions)

I For every C > 0, the metrics induced by the framed
immersions in F−1([0,C ]) are contained in a compact subset
of the moduli space of the torus.

⇒ F can be seen as a more coercive Willmore energy where the
extra term FT prevents

I degeneration under Moebius transformations of Rm

I degeneration of conformal classes of the underlying abstract
surface

(both the last two difficulties are present, and are non trivial issues,
for the Willmore functional)
⇒ good chances to perform minimization of F .
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Calculus of variations of F : weak setting

I Weak immersions: fix a reference metric g0 on T2, we say
that ~Φ ∈ E(T2,R3) iff
i) ~Φ ∈W 1,∞(T2,R3) and called g~Φ := ~Φ∗gR3 there exists
C~Φ > 1 s.t.

C−1
~Φ

g~Φ ≤ g0 ≤ C~Φg~Φ a.e.

ii) ~n ∈W 1,2(T2), i.e. I ∈ L2(T2).

I Weak moving frame: ~e ∈W 1,2(T2,T ~Φ(T2)× T ~Φ(T 2)) a.e.
orthonormal

I Weak framed immersions={(~Φ,~e) : ~Φ and ~e as above} form a
Banach manifold.
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Calculus of variations of F : Frechét differentability and the
PDE

Proposition

F is Frechét differentiable on the space of weak framed immersions
and (~Φ,~e) is a critical point of F iff

0 = div
[1

2

(
∇~H − 3∇H ~n +∇⊥~n × ~H

)
−~Ixg (~e2 · ∇⊥~e1)

−~e2 · ∇⊥~e1 (~e2 · ∇~e1,∇~Φ)g +
1

2
|~e2 · ∇~e1|2g∇⊥~Φ

]
.

Remark: The equation is 4th order non linear elliptic and critical
(criticality is a common feature of geometric PDEs:
Willmore,Harmonic maps, CMC surfaces, Yang Mills, Yamabe,
etc.)
⇒ challenging to prove the regularity of critical points of the frame
energy.
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Calculus of variations of F : regularity of critical points

How prove regularity?

i) Inspired by the work of Hélein on CMC surfaces and of Rivière on
Willmore surfaces, we discover some new hidden conservation laws
ii) these conservation laws satisfy an elliptic system involving
Jacobian nonlinearities which can be studied using integrability by
compensation theory.

Theorem

Let ~Φ be a weak immersion of the disc D2 into R3 and let
~e = (~e1,~e2) be a moving frame on ~Φ such that (~Φ,~e) is a critical
point of the frame energy F . Then, up to a bilipschitz
reparametrization we have locally that ~Φ is conformal and ~e is the
coordinate moving frame associated to ~Φ, i.e.

(~e1,~e2) =

(
∂x1

~Φ

|∂x1
~Φ|
,
∂x2

~Φ

|∂x2
~Φ|

)
. Moreover, there exist ρ ∈ (0, 1) such

that ~Φ|Bρ(0) is a C∞ immersion.



Calculus of variations of F : regularity of critical points

How prove regularity?
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Application to regular homotopy classes: basic defintions

IDEA: Morse Theory of the frame energy F on the space of
framed tori → explore the topology of the space of framed tori.

DEFINITION: Let Σ2 be a closed surface, then two immersions
f , g : Σ2 ↪→ Rm are regularly homotopic if there exists
H : Σ2 × [0, 1]→ Rm smooth s.t.
(i) H0(·) = H(·, 0) = f , H1(·) = H(., 1) = g
(ii) Ht is an immersion of Σ2 in Rm for every t ∈ [0, 1].

REMARK:
- intermediate notion between homotopy (just topological) and
isotopy (for every t ∈ [0, 1] Ht is an embedding)
-to be more precise we will consider regular homotopic immersions
UP TO DIFFEOMORPHISMS IN THE DOMAIN
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Application to regular homotopy classes: our problem

Some history

I 1958 Smale: ∀f , g : S2 ↪→ R3 are regularly homotopic (→
sphere eversion); in R4 there are instead countably many
regular homotopy classes of spheres.

I 1959 Hirsh: generalization to submanifolds of Riemannian
manifolds, in particular
- ∀Σ2 countably many regular homotopy classes of immersions
into R4

- ∀f , g : Σ2 ↪→ Rm, m ≥ 5, are regularly homotopic.

I 1985 Pinkall: there are exactly two regular homotopy classes
of immersed tori in R3

Question: can we find a canonical rapresentant for the two classes
of Pinkall? Idea: minimize F
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Minimization of F in regular homotopy classes

Lemma The notion of regular homotopy class extend to weak
immersions.

Theorem

Fix σ a regular homotopy class of immersions of the 2-torus T2

into R3. Then there exists a smooth conformal immersion
~Φ : T2 ↪→ R3, with ~Φ ∈ σ, such that, called

~e := (~e1,~e2) :=

(
∂x1

~Φ

|∂x1
~Φ|
,
∂x2

~Φ

|∂x2
~Φ|

)
the coordinate moving frame, the

couple (~Φ,~e) minimizes the frame energy F among all weak
immersions of T2 into R3 lying in σ and all W 1,2 moving frames
on ~Φ(T2):

F(~Φ,~e) = min
{
F(~̃Φ, ~̃e) : ~̃Φ ∈ E(T2,R3), ~̃Φ ∈ σ, ~̃e ∈W 1,2(T2)

}
.
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Some comments on the Theorem

a) The minimization of F in regular homotopy classes of tori
immersed in R4 is more difficult: possible loss of homotopic
complexity in the concentration points of F .

b) The minimization of the Willmore functional in regular
homotopy classes is more difficult (maybe even not possible)
because of
- possible degeneration of conformal classes
- bubbling of the the conformal factor
here both are excluded.
The first by the previous Proposition, the second by a Wente-type
estimate of λ in terms of F .
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Free minimization

Questions: what about free minimization in arbitrary codimension?
Is there a minimizer? Who is it?

Theorem Let ~Φ : T2 ↪→ Rm be a smooth immersion of the
2-dimensional torus into the Euclidean 3 ≤ m-dimensional space
and let ~e = (~e1,~e2) be any moving frame along ~Φ. Then

F(~Φ,~e) :=
1

4

∫
T2

|d~e|2 dvolg ≥ 2π2 .

Question: rigidity?
YES! If equality holds then it must be m ≥ 4, ~Φ(T2) ⊂ Rm must
be, up to isometries and dilations in Rm, the Clifford torus

TCl := S1 × S1 ⊂ R4 ⊂ Rm ,

and ~e must be, up to a constant rotation on T (~Φ(T2)), the
moving frame given by ( ∂∂θ ,

∂
∂ϕ), where of course (θ, ϕ) are natural

flat the coordinates on S1 × S1.
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Comments on the lower bound

I In codimension one the lower bound is of course implied by
the proof of Willmore conjecture by Marques-Neves, but our
lower bound holds in arbitrary codimension.

I Surprisingly, our lower bound works better in higher
codimension: it is sharp and rigid in codimension at least 2,
but in codimension one it is not realized.

I Topping (2000), using integral geometry, proved an analogous
lower bound for an analogous energy for immersions of
rectangular tori into S3.
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Sketch of the proof of the lower bound

Lemma Let (~Φ,~e) be a framed immersion of T2 into Rm, m ≥ 3,
and denote τ ∈ M the conformal class induced by ~Φ. Then

F(~Φ,~e) ≥ π2

(
τ2 +

1

τ2

)
sin2 θ

sin2 θ + cos4 θ
.

-Now let f (τ) denote the right hand side and define

Ω :=
{

(τ1, τ2) :
(
τ1 − 1

2

)2
+ (τ2 − 1)2 ≤ 1

4

}
∩M+.

-Then, by direct computation, f |∂Ω ≥ 2π2 and is monotone strictly
increasing in τ2 for τ2 ≥ 1 → lower bound true for τ /∈ Ω.
-But if τ ∈ Ω then the Willmore conjecture holds by the work of
Li-Yau and Montiel-Ros. So we conclude.
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Open problems

I Who is the global minimizer of F in R3? The Clifford torus?

I Who is the knotted minimizer of F in R3? The diagonal
double cover of the Clifford torus (proposed by Kusner in
1983)?

I Minimization of F in regular homotopy classes in R4



!!THANK YOU FOR THE
ATTENTION!!


