Disordered Quantum Many-Body Systems BIRS - Banff, October 27 - November 01, 2013 Condensation in a Disordered Bose-Hubbard

Model

Valentin A.Zagrebnov

Département de Mathématiques, Aix-Marseille Université and LATP, France

- Lattice Bose-Gas and Bose-Einstein Condensation
- Bose-Hubbard Model and Mott-type Phase Transition

Aizenman-Lieb-Seiringer-Solovej-Yngvason (2004)

- BEC in the Infinite-Range-Hopping Model

Bru-Dorlas (2003)

- Random IRH Bose-Hubbard Model

Dorlas-Pastur-VZ (2006)

- Enhancement/Suppression of BEC by Randomness

1. Lattice Bose-gas

• $\Lambda := \{x \in \mathbb{Z}^d : -L_{\alpha}/2 \leq x_{\alpha} < L_{\alpha}/2, \ \alpha = 1, \dots, d\} \subset \mathbb{Z}^d$ with p.b.c., dual set $\Lambda^* := \{q_{\alpha} = 2\pi n/L_{\alpha} : n = 0, \pm 1, \pm 2, \dots \pm (L_{\alpha}/2 - 1), L_{\alpha}/2, \ \alpha = 1, 2, \dots d\}$ to $\Lambda = L_1 \times L_2 \times \dots \times L_d$, $|\Lambda| = V$.

• The one-particle Hilbert space $\mathfrak{h}(\Lambda) := \mathbb{C}^{\Lambda}$, basis $\{e_x\}_{x \in \Lambda}$, $e_x(y) = \delta_{x,y}$ and $u = \sum_{x \in \Lambda} u_x e_x \in \mathfrak{h}(\Lambda)$. The one-particle kinetic-energy (hopping) operator

$$(t_{\Lambda}u)(x) := \sum_{y \in \Lambda} t_{x,y}^{\Lambda}(u_x - u_y), \ t_{xy}^{\Lambda} = \frac{1}{V} \sum_{q \in \Lambda^*} \hat{t}_q e^{iq(x-y)}, \ \hat{t}_q \ge 0.$$

• The *free boson* Hamilton in the Fock $\mathfrak{F}_B(\mathfrak{h}(\Lambda))$:

$$T_{\Lambda} := \sum_{x \in \Lambda} a_x^* (t_{\Lambda} a)_x = \frac{1}{2} \sum_{x,y \in \Lambda} t_{xy}^{\Lambda} (a_x^* - a_y^*) (a_x - a_y) = \sum_{q \in \Lambda^*} (\hat{t}_0 - \hat{t}_q) \hat{a}_q^* \hat{a}_q \hat$$

2. Bose-Einstein Condensation: Bose-Hubbard Model

Nearest neighbour (n.n.) hopping: the one-particle spectrum:

$$\epsilon(q) := (\hat{t}_0 - \hat{t}_q) = \sum_{\alpha=1}^d 4 \sin^2(q_\alpha/2) \ge 0 , \quad q \in \Lambda^* .$$

• Lattice free Bose-gas: the BEC occurs in the zero-mode:

$$\rho_{c,\ n.n.}^{free}(\beta) := \lim_{\mu \uparrow 0} \lim_{\Lambda} \frac{1}{V} \sum_{q \in \Lambda^*} \frac{1}{e^{\beta(\epsilon(q) - \mu)} - 1} = \int_0^\infty \frac{\mathcal{N}_d(d\epsilon)}{e^{\beta\epsilon} - 1} < \infty ,$$

the density of states $\mathcal{N}_d(d\epsilon) = \{c_d \epsilon^{(d/2-1)} + o(\epsilon^{(d/2-1)})\} d\epsilon, d > 2.$

Bose-Hubbard model: on-site repulsive interaction

$$H_{\Lambda} := T_{\Lambda} + \lambda \sum_{x \in \Lambda} n_x(n_x - 1) , \ \lambda \ge 0 .$$

• **THEOREM** [Kennedy-Lieb-Shastry ('88)] There is zero-mode BEC in the Bose-Hubbard model with n.n. *hard-core* ($\lambda = +\infty$) interaction for the half-filled lattice, $\rho(\beta, \mu) \leq 1$.

3. BEC in the Infinite-Range-Hopping Model

• For the *Infinite-Range-Hopping* (IRH) Laplacian:

$$t_{xy}^{\wedge} = \frac{1}{V}(1 - \delta_{x,y}) , \ x, y \in \Lambda.$$

the one-particle spectrum $\epsilon(q) := (\hat{t}_0 - \hat{t}_q) = (1 - \delta_{q,0})$ has a *gap*:

$$\lim_{q\to 0} \epsilon(q) = 1 \neq \epsilon(0) = 0 ,$$

but chemical potential $\mu \leq 0$. Since the density of states is zero in the gap, $\mathcal{N}_d(d\epsilon) = \delta_1(\epsilon) d\epsilon$, the *critical* particle density:

$$\rho_{c,\ i.r.}^{free}(\beta) = \int_0^\infty \frac{\mathcal{N}_d(d\epsilon)}{e^{\beta\epsilon} - 1} = \frac{1}{e^{\beta} - 1} , \quad \beta_c(\rho) = \ln(1 + 1/\rho).$$

• **THEOREM** [Bru-Dorlas ('03)] The IRH Bose-Hubbard model manifests the BEC, which is suppressed near the integer values $\rho = 1, 2, ..., k, k+1, ...$ of the total density ρ for positive repulsion parameters $\lambda \in [\lambda_k, \lambda_{k+1}]$, the "Mott insulator" phases.

4. Random IRH Bose-Habbard Model [DPZ(2006)]

• On the probability space, $(\Omega, \Sigma, \mathbb{P})$, consider the random Hamiltonian for disordered system:

$$H^{\omega}_{\Lambda} = \frac{1}{2V} \sum_{x,y \in \Lambda} (a^*_x - a^*_y)(a_x - a_y) + \sum_{x \in \Lambda} \lambda^{\omega}_x n_x(n_x - 1) + \sum_{x \in \Lambda} \varepsilon^{\omega}_x n_x,$$

where $\{\lambda_x^{\omega} \ge 0\}_{x \in \mathbb{Z}^d} \{\varepsilon_x^{\omega} \in \mathbb{R}^1\}_{x \in \mathbb{Z}^d}$, for $\omega \in \Omega$, are real-valued stationary and ergodic random fields on \mathbb{Z}^d .

• THEOREM 1 For almost all $\omega \in \Omega$, (a.s.), there exists a nonrandom thermodynamic limit of the pressure $p_{\Lambda}^{\omega}(\beta,\mu) := \frac{1}{\beta V} \operatorname{Tr}_{\mathfrak{F}_B} \exp\left\{-\beta(H_{\Lambda}^{\omega}-\mu N_{\Lambda})\right\}$ exists and is equal to $a.s.-\lim_{\Lambda} p_{\Lambda}^{\omega}(\beta,\mu) = p(\beta,\mu) := \sup_{r\geq 0} \{-r^2 + \beta^{-1}\mathbb{E}[\ln\operatorname{Tr}_{(\mathfrak{F}_B)_x} \exp\beta[(\mu-\varepsilon_x^{\omega}-1)n_x-\lambda_x^{\omega}n_x(n_x-1)+r(a_x^*+a_x)]]\},$ where $\mathbb{E}(\cdot)$ is expectation with respect to the measure \mathbb{P} . The BEC fraction $= -r^2$.

5.1 Limit of the Hard-Core Bosons: $\lambda_x^{\omega} = +\infty$

• This formally discards from the boson Fock space $\mathfrak{F}_B(\Lambda)$ all vectors with more than one particle at one site: there is orthogonal projection P_{Λ} such that $\mathfrak{F}_B^{h.c.}(\Lambda) := P_{\Lambda} \mathfrak{F}_B(\Lambda)$.

THEOREM 2

•
$$p_{h.c.}(\beta,\mu) = \sup_{r\geq 0} \{-r^2 + \beta^{-1}\mathbb{E}\{\ln \operatorname{Tr}_{(\mathfrak{F}_B^{h.c.})_x} \exp(\beta P\left[(\mu - \varepsilon_x^{\omega} - 1)n_x + r(a_x^* + a_x)\right]P)\}\}$$

• Operators $c_x^* := Pa_x^*P$, $c_x := Pa_xP$ restricted to dom $c_x^* = \operatorname{dom} c_x = \mathfrak{F}_B^{h.c.}$, have commutation relations:
 $[c_x, c_y^*] = 0$, $(x \neq y)$, $(c_x)^2 = (c_x^*)^2 = 0$, $c_x c_x^* + c_x^* c_x = I$.
• Taking the *XY* representation of these relations one gets:
 $p_{h.c.}(\beta,\mu) = \sup_{r\geq 0} \{-r^2 + \mathbb{E}\left\{\frac{1}{2}(\mu - \varepsilon_x^{\omega} - 1) + \beta^{-1}\ln\left[2\cosh\left(\frac{1}{2}\beta\sqrt{(\mu - \varepsilon_x^{\omega} - 1)^2 + 4r^2}\right)\right]\right\}\}$

5.2 Limit of the Perfect Bosons: $\lambda_x^{\omega} = 0$ **THEOREM 3** Let $\varepsilon_x^{\omega} \ge 0$.

•
$$p_0(\beta, \mu < 0) = \sup_{r \ge 0} \{-r^2 + \beta^{-1} \mathbb{E} \{ \ln \operatorname{Tr}_{(\mathfrak{F}_B)_x} \exp(\beta \left[(\mu - \varepsilon_x^{\omega} - 1)n_x + r(a_x^* + a_x) \right]) \} \}$$

• Let
$$\inf \varepsilon_x^{\omega} = 0$$
. Then
 $p_0(\beta, \mu < 0) = \beta^{-1} \mathbb{E} \{ \ln \operatorname{Tr}_{(\mathfrak{F}_B)_x} \exp(\beta \left[(\mu - \varepsilon_x^{\omega} - 1)n_x \right]) \} = \beta^{-1} \mathbb{E} \left\{ \ln \left[1 - \exp\{\beta(\mu - \varepsilon_x^{\omega} - 1)\} \right]^{-1} \right\}$.

• For
$$\mu \to -0$$
:
 $p_0(\beta, \mu = 0) := \beta^{-1} \mathbb{E} \left\{ \ln \left[1 - \exp\{\beta(-\varepsilon_x^{\omega} - 1)\}\right]^{-1} \right\}$,
 $\rho(\beta, \mu = 0) := \mathbb{E} \left[\frac{1}{e^{\beta(1 + \varepsilon^{\omega})} - 1} \right]$

6. Phase Diagram for Interaction $\lambda > 0$: Non-Random and Random Models

• Recall [Bru-Dorlas ('03)]: Let
$$\lambda \ge 0$$
 and $\varepsilon_x^{\omega} = 0$. Let $\tilde{p}(\beta, \mu, \lambda; r) := \frac{1}{\beta} \ln \operatorname{Tr}_{\mathcal{H}} \exp(-\beta [h_n(\mu, \lambda) - r(a^* + a)])$
 $h_n(\mu, \lambda) := (1 - \mu)n + \lambda n(n - 1)$
Then critical temperature $\beta_c^{-1}(\rho, \lambda)$ and the critical chemical po-

tential $\mu_c(\rho, \lambda)$ are defined by equations:

$$\tilde{p}''(\beta,\mu,\lambda;0) = 2$$
, $\rho = \frac{1}{Z_0(\beta,\mu,\lambda)} \sum_{n=1}^{\infty} n e^{-\beta h_n(\mu,\lambda)}$

• If $\varepsilon_x^{\omega} \neq 0$ and $\lambda > 0$, then by [Dorlas-Pastur-V.Z.('06)] one gets equations:

$$\mathbb{E}\left[\tilde{p}''(\beta,\mu-\varepsilon^{\omega},\lambda;0)\right] = 2, \ \rho = \mathbb{E}\left[\frac{1}{Z_0(\beta,\mu-\varepsilon^{\omega},\lambda)}\sum_{n=1}^{\infty} n \ e^{-\beta h_n(\mu-\varepsilon^{\omega},\lambda)}\right]$$

6.1 Random Perfect Bosons: $\lambda = 0$

• Assume that random variable $\varepsilon^{\omega} \in [0, \varepsilon]$, then the maximal allowed (critical) value $\mu_c = 0$, and the *critical inverse* temperature $\beta_c := \beta_c(\rho, \lambda = 0)$ is given by equation:

$$\rho = \mathbb{E}\left[\frac{1}{e^{\beta_c(1+\varepsilon^{\omega})}-1}\right].$$

• Theorem I: Irrespective of the ε^{ω} -distribution, this equation implies that the resulting $\beta_c(\rho, 0)$ is lower than $\ln\left(1 + \frac{1}{\rho}\right)$, for non-random case $\varepsilon_x^{\omega} = 0$.

- Disorder enhances Bose-Einstein condensation.
- N.B. This is no longer true when $\lambda > 0$, and even the opposite may hold, if λ is small enough !

$$(\varepsilon = 0, \lambda = 0, 1) \Rightarrow Pr = 1/\varepsilon \ (\varepsilon = 2, \lambda = 0, 1)$$

6.2 Discrete Random Potentials: Hard-Core Bosons

• Equations $\beta_c := \beta_c(\rho) = \beta_c(\rho, \lambda = +\infty)$ for a given density ρ :

$$\mathbb{E}\left[\frac{\tanh\beta(\mu-\varepsilon^{\omega}-1)/2}{\mu-\varepsilon^{\omega}-1}\right] = 1$$
(1)

$$\rho = \frac{1}{2} + \frac{1}{2} \mathbb{E} \left[\tanh \frac{1}{2} \beta (\mu - \varepsilon^{\omega} - 1) \right] .$$
 (2)

(For the hard-core interaction the total particle density $\rho \leq 1$).

- Bernoulli random potential: $\varepsilon_x^{\omega} = \varepsilon$ with probability p and $\varepsilon_x^{\omega} = 0$ with probability 1 p.
- New Phenomenon: Let $\rho = p = 1/2$. Then (1) and (2) \Rightarrow

$$anh \frac{\beta_c \varepsilon}{4} = \frac{1}{2} \varepsilon \ , \ \lambda = +\infty \ .$$

This equation has *no solution* for $\varepsilon \ge 2 \Rightarrow$ no Bose-Einstein condensation for Bernoulli potential, if particle density $\rho = p$ and $\varepsilon \ge$ (some critical value) $\varepsilon_{cr} = 2$. Strong randomness is able to destroy BEC for the fractional density $\rho = p = 1/2$.

 $Pr = 1/2, \ \varepsilon = 4, \ \lambda = 3, 3.3, 4, 4.5, 6, 10, \infty$

- Theorem II: One obtains the same phenomenon for $\rho = 1 p$, although $\beta_c (\rho \neq 1 - p, \lambda = +\infty) < \infty$.
- Strong randomness is able to suppress (not to destroy) BEC for fractional densities $\rho \neq 1 - p$.

6.3 Bernoulli random potential for the case $\lambda < +\infty$.

The critical temperature for free bosons increases due to disorder. For the interacting system this is a more subtle matter, since it depends on the value of repulsion: For a not very large repulsions close to $\lambda_{c,\rho=1}(\varepsilon = 0) = 3$, we get $\beta_c(\rho = 1; \lambda = 3, \varepsilon > 0) < \beta_c(\rho = 1; \lambda = 3, \varepsilon = 0) = +\infty$.

This *lowering* of $\beta_c(\rho = 1)$, which *favourites* the BEC can be explained intuitively as follows:

At density $\rho = 1$, there is one particle per site, if $\varepsilon > 0$, then the lattice splits (by the Bernoulli random potential) into two parts with energies 0 and ε . A particle jumping from a site with ε to a site with $\varepsilon = 0$ loses the energy ε , which counteracts the gain of λ . This creates more freedom of movement promoting BEC. See **Fig.**.

6.4 Trinomial distribution and beyond: $\lambda < +\infty$

$$\varepsilon^{\omega} = \begin{cases} 0 & \Pr = 1/3 \\ \frac{1}{2}\varepsilon & \Pr = 1/3 \\ \varepsilon & \Pr = 1/3 \end{cases}$$

See Fig.

 $Pr = 1/3, \ \varepsilon = 10, \ \lambda = 3, 4, 6, 8$

15

 $Pr = 1/10, \ \varepsilon = 10, \ \lambda = 8$

THANK YOU FOR YOUR ATTENTION !