Localization for multi-particle Anderson Hamiltonians & unique continuation principle for spectral projections

Abel Klein

University of California, Irvine

Disordered quantum many-body systems BIRS October 31, 2013

Abel Klein Multi-particle localization & unique continuation principle

< ロ > < 同 > < 回 > < 回 > < 回 > <

Localization for multi-particle Anderson Hamiltonians

Joint work with Son Nguyen:

- AK and Son T. Nguyen: *The bootstrap multiscale analysis for the multi-particle Anderson model*. J. Stat. Phys. **151**, 983-973 (2013).
- AK and Son T. Nguyen: *Bootstrap multiscale analysis and localization for multi-particle continuous Anderson Hamiltonians*. Preprint (to be posted soon in the arXiv).

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The *n*-particle Anderson Hamiltonian is the random Schrödinger operator $H^{(n)}_{\omega} := H^{(n)}_{0,\omega} + U$ on $L^2(\mathbb{R}^{nd})$, where $H^{(n)}_{0,\omega} := -\Delta^{(n)} + V^{(n)}_{\omega}$.

The *n*-particle Anderson Hamiltonian is the random Schrödinger operator $H_{\omega}^{(n)} := H_{0,\omega}^{(n)} + U$ on $L^2(\mathbb{R}^{nd})$, where $H_{0,\omega}^{(n)} := -\Delta^{(n)} + V_{\omega}^{(n)}$. **a** $\Delta^{(n)}$ is the *nd*-dimensional Laplacian operator.

Abel Klein Multi-particle localization & unique continuation principle

The *n*-particle Anderson Hamiltonian is the random Schrödinger operator $H_{\omega}^{(n)} := H_{0,\omega}^{(n)} + U$ on $L^{2}(\mathbb{R}^{nd})$, where $H_{0,\omega}^{(n)} := -\Delta^{(n)} + V_{\omega}^{(n)}$. **a** $\Delta^{(n)}$ is the *nd*-dimensional Laplacian operator. **a** $V_{\omega}^{(n)}$ is the random potential given by $(\mathbf{x} = (x_{1}, ..., x_{n}) \in \mathbb{R}^{nd})$ $V_{\omega}^{(n)}(\mathbf{x}) = \sum_{i=1,...,n} V_{\omega}^{(1)}(x_{i})$, with $V_{\omega}^{(1)}(\mathbf{x}) = \sum_{k \in \mathbb{Z}^{d}} \omega_{k} u(x-k)$,

The *n*-particle Anderson Hamiltonian is the random Schrödinger operator $H_{\omega}^{(n)} := H_{0,\omega}^{(n)} + U$ on $L^{2}(\mathbb{R}^{nd})$, where $H_{0,\omega}^{(n)} := -\Delta^{(n)} + V_{\omega}^{(n)}$. **a** $\Delta^{(n)}$ is the *nd*-dimensional Laplacian operator. **b** $V_{\omega}^{(n)}$ is the random potential given by $(\mathbf{x} = (x_{1}, ..., x_{n}) \in \mathbb{R}^{nd})$ $V_{\omega}^{(n)}(\mathbf{x}) = \sum_{i=1,...,n} V_{\omega}^{(1)}(x_{i})$, with $V_{\omega}^{(1)}(x) = \sum_{k \in \mathbb{Z}^{d}} \omega_{k} u(x-k)$, **b** $\omega = \{\omega_{k}\}_{k \in \mathbb{Z}^{d}}$ is a family of independent identically distributed random variables whose common probability distribution μ has a bounded density ρ and satisfies $\{0, M_{+}\} \subset \text{supp } \mu \subseteq [0, M_{+}]$ for some $M_{+} > 0$;

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

The *n*-particle Anderson Hamiltonian is the random Schrödinger operator $H^{(n)}_{\omega}:=H^{(n)}_{0,\omega}+U \quad \text{on} \quad \mathrm{L}^2(\mathbb{R}^{nd}), \quad \text{where} \quad H^{(n)}_{0,\omega}:=-\Delta^{(n)}+V^{(n)}_{\omega}.$ • $\Delta^{(n)}$ is the *nd*-dimensional Laplacian operator. **2** $V_0^{(n)}$ is the random potential given by $(\mathbf{x} = (x_1, ..., x_n) \in \mathbb{R}^{nd})$ $V_{\omega}^{(n)}(\mathbf{x}) = \sum V_{\omega}^{(1)}(x_i), \quad \text{with} \quad V_{\omega}^{(1)}(\mathbf{x}) = \sum \omega_k u(x-k),$ $i=1\ldots n$ • $\omega = \{\omega_k\}_{k \in \mathbb{Z}^d}$ is a family of independent identically distributed random variables whose common probability distribution μ has a bounded density ρ and satisfies $\{0, M_+\} \subset \operatorname{supp} \mu \subseteq [0, M_+]$ for some $M_+ > 0$; 2) the single site potential u is a measurable function on \mathbb{R}^d with

 $u_-\chi_{\Lambda_{\delta_-}(0)} \leq u \leq \chi_{\Lambda_{\delta_+}(0)} \quad \text{for some constants} \quad u_-, \delta_\pm \in (0,\infty).$

The *n*-particle Anderson Hamiltonian is the random Schrödinger operator $H^{(n)}_{\omega}:=H^{(n)}_{0,\omega}+U \quad \text{on} \quad \mathrm{L}^2(\mathbb{R}^{nd}), \quad \text{where} \quad H^{(n)}_{0,\omega}:=-\Delta^{(n)}+V^{(n)}_{\omega}.$ • $\Delta^{(n)}$ is the *nd*-dimensional Laplacian operator. **2** $V_0^{(n)}$ is the random potential given by $(\mathbf{x} = (x_1, ..., x_n) \in \mathbb{R}^{nd})$ $V_{\omega}^{(n)}(\mathbf{x}) = \sum V_{\omega}^{(1)}(x_i), \quad \text{with} \quad V_{\omega}^{(1)}(\mathbf{x}) = \sum \omega_k u(x-k),$ $i=1\ldots n$ • $\omega = \{\omega_k\}_{k \in \mathbb{Z}^d}$ is a family of independent identically distributed random variables whose common probability distribution μ has a bounded density ρ and satisfies $\{0, M_+\} \subset \operatorname{supp} \mu \subseteq [0, M_+]$ for some $M_+ > 0$; 2 the single site potential \underline{u} is a measurable function on \mathbb{R}^d with

 $u_{-\chi_{\Lambda_{\delta_{-}}(0)}} \leq u \leq \chi_{\Lambda_{\delta_{+}}(0)}$ for some constants $u_{-}, \delta_{\pm} \in (0, \infty)$. **3** *U* is a short range interaction potential between the *n* particles:

$$U(\mathbf{x}) = \sum_{1 \leq i < j \leq n} \widetilde{U}(x_i - x_j),$$

The *n*-particle Anderson Hamiltonian is the random Schrödinger operator $H^{(n)}_{\omega}:=H^{(n)}_{0,\omega}+U \quad \text{on} \quad \mathrm{L}^2(\mathbb{R}^{nd}), \quad \text{where} \quad H^{(n)}_{0,\omega}:=-\Delta^{(n)}+V^{(n)}_{\omega}.$ • $\Delta^{(n)}$ is the *nd*-dimensional Laplacian operator. 2 $V_{\alpha}^{(n)}$ is the random potential given by $(\mathbf{x} = (x_1, ..., x_n) \in \mathbb{R}^{nd})$ $V^{(n)}_{\omega}(\mathbf{x}) = \sum V^{(1)}_{\omega}(x_i), \text{ with } V^{(1)}_{\omega}(\mathbf{x}) = \sum \omega_k u(x-k),$ $i = 1 \dots n$ • $\omega = \{\omega_k\}_{k \in \mathbb{Z}^d}$ is a family of independent identically distributed random variables whose common probability distribution μ has a bounded density ρ and satisfies $\{0, M_+\} \subset \operatorname{supp} \mu \subseteq [0, M_+]$ for some $M_+ > 0$; 2) the single site potential u is a measurable function on \mathbb{R}^d with

 $u_{-\chi_{\Lambda_{\delta_{-}}(0)}} \leq u \leq \chi_{\Lambda_{\delta_{+}}(0)}$ for some constants $u_{-}, \delta_{\pm} \in (0, \infty)$. U is a short range interaction potential between the *n* particles:

$$U(\mathbf{x}) = \sum_{\substack{1 \le i < j \le n \\ \widetilde{U}(\mathbf{y}) \le \widetilde{U}_{\infty} < \infty, \ \widetilde{U}(y) = \widetilde{U}(-y), \ \widetilde{U}(y) = 0 \text{ for } \|y\|_{\infty} > r_0 \in (0,\infty)_{\text{constraints}}$$

Multi-particle localization & unique continuation principle

Localization for multi-particle Anderson Hamiltonians

Basic properties of $H^{(n)}_{\omega}$

Abel Klein Multi-particle localization & unique continuation principle

<ロ> (四) (四) (三) (三) (三) (三)

H⁽ⁿ⁾_∞ is a Z^d-ergodic random Schrödinger operator on L²(ℝnd). (Z^d acts on ℝnd by (x₁, x₂..., x_n) → (x₁ + a, x₂ + a, ..., x_n + a) for a ∈ Z^d.)

- *H*⁽ⁿ⁾_ω is a Z^d-ergodic random Schrödinger operator on L²(ℝnd). (Z^d acts on ℝnd by (x₁, x₂..., x_n) → (x₁ + a, x₂ + a,..., x_n + a) for a ∈ Z^d.)
- There exist fixed subsets $\Sigma^{(n)}$, $\Sigma^{(n)}_{pp}$, $\Sigma^{(n)}_{ac}$ and $\Sigma^{(n)}_{sc}$ of \mathbb{R} so that the spectrum $\sigma(H^{(n)}_{\omega})$ of $H^{(n)}_{\omega}$, as well as its pure point, absolutely continuous, and singular continuous components, are equal to these fixed sets with probability one.

・ロト ・得 ト ・ヨト ・ヨト … ヨ

- *H*⁽ⁿ⁾_ω is a Z^d-ergodic random Schrödinger operator on L²(ℝnd). (Z^d acts on ℝnd by (x₁, x₂..., x_n) → (x₁ + a, x₂ + a,..., x_n + a) for a ∈ Z^d.)
- There exist fixed subsets $\Sigma^{(n)}$, $\Sigma^{(n)}_{pp}$, $\Sigma^{(n)}_{ac}$ and $\Sigma^{(n)}_{sc}$ of \mathbb{R} so that the spectrum $\sigma(H^{(n)}_{\omega})$ of $H^{(n)}_{\omega}$, as well as its pure point, absolutely continuous, and singular continuous components, are equal to these fixed sets with probability one.
- $H^{(1)}_{\omega} = H^{(1)}_{0,\omega}$, so $\Sigma^{(1)} = [0,\infty)$. Letting $\Sigma^{(n)}_0$ denote the almost sure spectrum of $H^{(n)}_{0,\omega}$, we have

$$\Sigma_0^{(n)} = \overline{\Sigma^{(1)} + \ldots + \Sigma^{(1)}} = [0, \infty).$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- *H*⁽ⁿ⁾_ω is a Z^d-ergodic random Schrödinger operator on L²(ℝnd). (Z^d acts on ℝnd by (x₁, x₂..., x_n) → (x₁ + a, x₂ + a,..., x_n + a) for a ∈ Z^d.)
- There exist fixed subsets $\Sigma^{(n)}$, $\Sigma^{(n)}_{pp}$, $\Sigma^{(n)}_{ac}$ and $\Sigma^{(n)}_{sc}$ of \mathbb{R} so that the spectrum $\sigma(H^{(n)}_{\omega})$ of $H^{(n)}_{\omega}$, as well as its pure point, absolutely continuous, and singular continuous components, are equal to these fixed sets with probability one.
- $H^{(1)}_{\omega} = H^{(1)}_{0,\omega}$, so $\Sigma^{(1)} = [0,\infty)$. Letting $\Sigma^{(n)}_0$ denote the almost sure spectrum of $H^{(n)}_{0,\omega}$, we have

$$\Sigma_0^{(n)} = \overline{\Sigma^{(1)} + \ldots + \Sigma^{(1)}} = [0, \infty).$$

We have

$$\Sigma^{(n)} = \Sigma_0^{(n)} = [0,\infty).$$

・ロト ・得 ト ・ヨト ・ヨト … ヨ

Abel Klein Multi-particle localization & unique continuation principle

1 Given $x = (x_1, ..., x_d) \in \mathbb{R}^d$, we set $||x|| = ||x||_{\infty} := \max\{|x_1|, ..., |x_d|\}$. If $\mathbf{a} = (a_1, ..., a_n) \in \mathbb{R}^{nd}$, we set $||\mathbf{a}|| := \max\{||a_1||, ..., ||a_n||\}$, diam $\mathbf{a} := \max_{i,j=1,...,n} ||a_i - a_j||$, $\mathscr{S}_{\mathbf{a}} = \{a_1, ..., a_n\}$.

• Given $x = (x_1, ..., x_d) \in \mathbb{R}^d$, we set $||x|| = ||x||_{\infty} := \max\{|x_1|, ..., |x_d|\}$. If $\mathbf{a} = (a_1, ..., a_n) \in \mathbb{R}^{nd}$, we set $||\mathbf{a}|| := \max\{||a_1||, ..., ||a_n||\}$, diam $\mathbf{a} := \max_{i, j=1,...,n} ||a_i - a_j||$, $\mathscr{S}_{\mathbf{a}} = \{a_1, ..., a_n\}$.

- Given $x = (x_1, ..., x_d) \in \mathbb{R}^d$, we set $||x|| = ||x||_{\infty} := \max\{|x_1|, ..., |x_d|\}$. If $\mathbf{a} = (a_1, ..., a_n) \in \mathbb{R}^{nd}$, we set $||\mathbf{a}|| := \max\{||a_1||, ..., ||a_n||\}$, diam $\mathbf{a} := \max_{i,j=1,...,n} ||a_i - a_j||$, $\mathscr{S}_{\mathbf{a}} = \{a_1, ..., a_n\}$.
- Fix $v > \frac{nd}{2}$ and let T be the operator on $L^2(\mathbb{R}^{nd})$ given by multiplication of the function $\langle x \rangle^v$, where $\langle x \rangle = (1 + ||x||^2)^{\frac{1}{2}}$.

- Given $x = (x_1, ..., x_d) \in \mathbb{R}^d$, we set $||x|| = ||x||_{\infty} := \max\{|x_1|, ..., |x_d|\}$. If $\mathbf{a} = (a_1, ..., a_n) \in \mathbb{R}^{nd}$, we set $||\mathbf{a}|| := \max\{||a_1||, ..., ||a_n||\}$, diam $\mathbf{a} := \max_{i,j=1,...,n} ||a_i - a_j||$, $\mathscr{S}_{\mathbf{a}} = \{a_1, ..., a_n\}$.
- So Fix $v > \frac{nd}{2}$ and let T be the operator on $L^2(\mathbb{R}^{nd})$ given by multiplication of the function $\langle \mathbf{x} \rangle^v$, where $\langle \mathbf{x} \rangle = (1 + ||\mathbf{x}||^2)^{\frac{1}{2}}$.
- Given $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{nd}$, we set $d_H(\mathbf{a}, \mathbf{b}) := d_H(\mathscr{S}_{\mathbf{a}}, \mathscr{S}_{\mathbf{b}})$, where $d_H(S_1, S_2)$ is the the Hausdorff distance between finite subsets $S_1, S_2 \subseteq \mathbb{R}^d$:

$$d_{H}(S_{1}, S_{2}) := \max \left\{ \max_{x \in S_{1}} \min_{y \in S_{2}} \|x - y\|, \max_{y \in S_{2}} \min_{x \in S_{1}} \|x - y\| \right\}.$$

- Given $x = (x_1, ..., x_d) \in \mathbb{R}^d$, we set $||x|| = ||x||_{\infty} := \max\{|x_1|, ..., |x_d|\}$. If $\mathbf{a} = (a_1, ..., a_n) \in \mathbb{R}^{nd}$, we set $||\mathbf{a}|| := \max\{||a_1||, ..., ||a_n||\}$, diam $\mathbf{a} := \max_{i,j=1,...,n} ||a_i - a_j||$, $\mathscr{S}_{\mathbf{a}} = \{a_1, ..., a_n\}$.
- **3** Fix $v > \frac{nd}{2}$ and let T be the operator on $L^2(\mathbb{R}^{nd})$ given by multiplication of the function $\langle \mathbf{x} \rangle^{v}$, where $\langle \mathbf{x} \rangle = (1 + ||\mathbf{x}||^2)^{\frac{1}{2}}$.
- Given $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{nd}$, we set $d_H(\mathbf{a}, \mathbf{b}) := d_H(\mathscr{S}_{\mathbf{a}}, \mathscr{S}_{\mathbf{b}})$, where $d_H(S_1, S_2)$ is the the Hausdorff distance between finite subsets $S_1, S_2 \subseteq \mathbb{R}^d$:

$$d_{H}(S_{1}, S_{2}) := \max \left\{ \max_{x \in S_{1}} \min_{y \in S_{2}} \|x - y\|, \max_{y \in S_{2}} \min_{x \in S_{1}} \|x - y\| \right\}.$$

Note that $d_H(\mathbf{a}, \mathbf{b}) \leq \|\mathbf{a} - \mathbf{b}\| \leq d_H(\mathbf{a}, \mathbf{b}) + \text{diam } \mathbf{a} \text{ for } \mathbf{a}, \mathbf{b} \in \mathbb{R}^{nd}.$

- Given $x = (x_1, ..., x_d) \in \mathbb{R}^d$, we set $||x|| = ||x||_{\infty} := \max\{|x_1|, ..., |x_d|\}$. If $\mathbf{a} = (a_1, ..., a_n) \in \mathbb{R}^{nd}$, we set $||\mathbf{a}|| := \max\{||a_1||, ..., ||a_n||\}$, diam $\mathbf{a} := \max_{i,j=1,...,n} ||a_i - a_j||$, $\mathscr{S}_{\mathbf{a}} = \{a_1, ..., a_n\}$.
- So Fix $v > \frac{nd}{2}$ and let T be the operator on $L^2(\mathbb{R}^{nd})$ given by multiplication of the function $\langle \mathbf{x} \rangle^v$, where $\langle \mathbf{x} \rangle = (1 + ||\mathbf{x}||^2)^{\frac{1}{2}}$.
- Given $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{nd}$, we set $d_H(\mathbf{a}, \mathbf{b}) := d_H(\mathscr{S}_{\mathbf{a}}, \mathscr{S}_{\mathbf{b}})$, where $d_H(S_1, S_2)$ is the the Hausdorff distance between finite subsets $S_1, S_2 \subseteq \mathbb{R}^d$:

$$d_{H}(S_{1}, S_{2}) := \max \left\{ \max_{x \in S_{1}} \min_{y \in S_{2}} \|x - y\|, \max_{y \in S_{2}} \min_{x \in S_{1}} \|x - y\| \right\}.$$

Note that $d_H(\mathbf{a}, \mathbf{b}) \leq \|\mathbf{a} - \mathbf{b}\| \leq d_H(\mathbf{a}, \mathbf{b}) + \text{diam } \mathbf{a} \text{ for } \mathbf{a}, \mathbf{b} \in \mathbb{R}^{nd}.$

• $H_{\omega}^{(n)}$ will denote a fixed *n*-particle Anderson Hamiltonian.

Abel Klein Multi-particle localization & unique continuation principle

・ロト ・回 ト ・ヨト ・ヨト

э

Given $N \in \mathbb{N}$, there exists an energy $E^{(N)} > 0$ such that:

Abel Klein Multi-particle localization & unique continuation principle

Given $N \in \mathbb{N}$, there exists an energy $E^{(N)} > 0$ such that:

(I) The following holds with probability one:

Given $N \in \mathbb{N}$, there exists an energy $E^{(N)} > 0$ such that:

(I) The following holds with probability one:

• (Anderson localization) H^N_{ω} has pure point spectrum in the interval $[0, E^{(N)}]$. Moreover, for all $E \leq E^{(N)}$ and $\psi \in \chi_{\{E\}}(H^N_{\omega})$ we have

$$\|\chi_{\mathbf{x}}\psi\| \leq C_{\omega,E} \left\| T^{-1}\psi \right\| e^{-M\|\mathbf{x}\|} \quad \text{ for all } \quad \mathbf{x} \in \mathbb{R}^{Nd}.$$

Given $N \in \mathbb{N}$, there exists an energy $E^{(N)} > 0$ such that:

(I) The following holds with probability one:

• (Anderson localization) H^N_{ω} has pure point spectrum in the interval $[0, E^{(N)}]$. Moreover, for all $E \leq E^{(N)}$ and $\psi \in \chi_{\{E\}}(H^N_{\omega})$ we have

$$\|\chi_{\mathsf{x}}\psi\| \leq C_{\omega,E} \left\| T^{-1}\psi \right\| e^{-M\|\mathsf{x}\|} \qquad ext{for all} \quad \mathsf{x}\in \mathbb{R}^{Nd}$$

In particular, each eigenfunction ψ of H_{ω}^{N} with eigenvalue $E \leq E^{(N)}$ is exponentially localized with the non-random rate of decay M > 0.

Given $N \in \mathbb{N}$, there exists an energy $E^{(N)} > 0$ such that:

(I) The following holds with probability one:

• (Anderson localization) H^N_{ω} has pure point spectrum in the interval $[0, E^{(N)}]$. Moreover, for all $E \leq E^{(N)}$ and $\psi \in \chi_{\{E\}}(H^N_{\omega})$ we have

$$\|\chi_{\mathsf{x}}\psi\| \leq C_{\omega,E} \, \|\, T^{-1}\psi\| \, e^{-M\|\mathsf{x}\|} \qquad ext{for all} \quad \mathsf{x} \in \mathbb{R}^{Nd}$$

In particular, each eigenfunction ψ of H_{ω}^{N} with eigenvalue $E \leq E^{(N)}$ is exponentially localized with the non-random rate of decay M > 0.

(*Finite multiplicity of eigenvalues*) The eigenvalues of H^N_ω in [0, E^(N)] have finite multiplicity:

$$\operatorname{tr} \chi_{\{E\}}(H^N_\omega) < \infty \quad ext{for all} \quad E \leq E^{(N)}.$$

Theorem-cont.

• (Summable Uniform Decay of Eigenfunction Correlations (SUDEC)). For every $\zeta \in (0,1)$ there exists a constant $C_{\omega,\zeta}$ such that for every $E \leq E^{(N)}$ and $\phi, \psi \in \operatorname{Ran} \chi_{\{E\}}(H^N_{\omega})$ we have

 $\left\|\chi_{\mathbf{x}}\phi\right\|\left\|\chi_{\mathbf{y}}\psi\right\| \leq C_{\omega,\zeta}\left\|\mathcal{T}^{-1}\phi\right\|\left\|\mathcal{T}^{-1}\psi\right\|\left\langle\mathbf{x}\right\rangle^{2\nu}e^{-\left(d_{H}(\mathbf{x},\mathbf{y})\right)^{\zeta}}$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{Nd}$.

Theorem-cont.

• (Summable Uniform Decay of Eigenfunction Correlations (SUDEC)). For every $\zeta \in (0,1)$ there exists a constant $C_{\omega,\zeta}$ such that for every $E \leq E^{(N)}$ and $\phi, \psi \in \operatorname{Ran} \chi_{\{E\}}(H^N_{\omega})$ we have

 $\|\chi_{\mathbf{x}}\phi\| \|\chi_{\mathbf{y}}\psi\| \leq C_{\omega,\zeta} \|T^{-1}\phi\| \|T^{-1}\psi\| \langle \mathbf{x} \rangle^{2\nu} e^{-(d_H(\mathbf{x},\mathbf{y}))^{\zeta}}$

for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{Nd}$.

(II) (Dynamical Localization) For every $\zeta \in (0,1)$ and $\mathbf{y} \in \mathbb{R}^{Nd}$ there exists a constant $C_{\zeta}(\mathbf{y})$ such that, letting $I = (-\infty, E^{(N)}]$,

$$\mathbb{E}\left\{\sup_{\|g\|_{\omega}\leq 1}\left\|\chi_{\mathbf{x}}\chi_{I}(H_{\omega}^{N})g(H_{\omega}^{N})\chi_{\mathbf{y}}\right\|\right\}\leq C_{\zeta}(\mathbf{y})e^{-\left(d_{H}(\mathbf{x},\mathbf{y})\right)^{\zeta}}\text{ for all }\mathbf{x}\in\mathbb{R}^{Nd},$$

the supremum being taken over all Borel functions g on \mathbb{R} with $\|g\|_{\infty} = \sup_{t \in \mathbb{R}} |g(t)| \leq 1.$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Theorem-cont.

• (Summable Uniform Decay of Eigenfunction Correlations (SUDEC)). For every $\zeta \in (0,1)$ there exists a constant $C_{\omega,\zeta}$ such that for every $E \leq E^{(N)}$ and $\phi, \psi \in \operatorname{Ran} \chi_{\{E\}}(H^N_{\omega})$ we have

 $\|\chi_{\mathbf{x}}\phi\| \|\chi_{\mathbf{y}}\psi\| \leq C_{\omega,\zeta} \|T^{-1}\phi\| \|T^{-1}\psi\| \langle \mathbf{x} \rangle^{2\nu} e^{-(d_H(\mathbf{x},\mathbf{y}))^{\zeta}}$

for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{Nd}$.

(II) (Dynamical Localization) For every $\zeta \in (0,1)$ and $\mathbf{y} \in \mathbb{R}^{Nd}$ there exists a constant $C_{\zeta}(\mathbf{y})$ such that, letting $I = (-\infty, E^{(N)}]$,

$$\mathbb{E}\left\{\sup_{\|\boldsymbol{g}\|_{\omega}\leq 1}\left\|\boldsymbol{\chi}_{\mathbf{x}}\boldsymbol{\chi}_{I}(\boldsymbol{H}_{\omega}^{N})\boldsymbol{g}(\boldsymbol{H}_{\omega}^{N})\boldsymbol{\chi}_{\mathbf{y}}\right\|\right\}\leq C_{\zeta}(\mathbf{y})e^{-\left(d_{H}(\mathbf{x},\mathbf{y})\right)^{\zeta}}\text{ for all }\mathbf{x}\in\mathbb{R}^{Nd},$$

the supremum being taken over all Borel functions g on \mathbb{R} with $\|g\|_{\infty} = \sup_{t \in \mathbb{R}} |g(t)| \leq 1$. In particular, we have

$$\mathbb{E}\left\{\sup_{t\in\mathbb{R}}\left\|\chi_{\mathbf{x}}\chi_{I}(H_{\omega}^{N})e^{itH_{\omega}^{N}}\chi_{\mathbf{y}}\right\|\right\}\leq C_{\zeta}(\mathbf{y})e^{-(d_{H}(\mathbf{x},\mathbf{y}))^{\zeta}} \text{ for all } \mathbf{x}\in\mathbb{R}^{Nd}.$$

Abel Klein

Multi-particle localization & unique continuation principle

Abel Klein Multi-particle localization & unique continuation principle

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

• Localization was proved for the (discrete) multi-particle Anderson model by Chulaevsky and Suhov, using a multiscale analysis, and by Aizenman and Warzel, using the fractional moment method.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Localization was proved for the (discrete) multi-particle Anderson model by Chulaevsky and Suhov, using a multiscale analysis, and by Aizenman and Warzel, using the fractional moment method.
- Chulaevsky, Boutet de Monvel and Suhov extended the results of Chulaevsky and Suhov to the multi-particle Anderson Hamiltonian, obtaining localization at the bottom of the spectrum.

- Localization was proved for the (discrete) multi-particle Anderson model by Chulaevsky and Suhov, using a multiscale analysis, and by Aizenman and Warzel, using the fractional moment method.
- Chulaevsky, Boutet de Monvel and Suhov extended the results of Chulaevsky and Suhov to the multi-particle Anderson Hamiltonian, obtaining localization at the bottom of the spectrum.
- Our localization results are derived from a bootstrap multiscale analysis, an enhanced multiscale analysis developed in the one-particle case by Germinet and K.

- Localization was proved for the (discrete) multi-particle Anderson model by Chulaevsky and Suhov, using a multiscale analysis, and by Aizenman and Warzel, using the fractional moment method.
- Chulaevsky, Boutet de Monvel and Suhov extended the results of Chulaevsky and Suhov to the multi-particle Anderson Hamiltonian, obtaining localization at the bottom of the spectrum.
- Our localization results are derived from a bootstrap multiscale analysis, an enhanced multiscale analysis developed in the one-particle case by Germinet and K.
- Son Nguyen will describe this extension of bootstrap multiscale analysis in his talk.

- Localization was proved for the (discrete) multi-particle Anderson model by Chulaevsky and Suhov, using a multiscale analysis, and by Aizenman and Warzel, using the fractional moment method.
- Chulaevsky, Boutet de Monvel and Suhov extended the results of Chulaevsky and Suhov to the multi-particle Anderson Hamiltonian, obtaining localization at the bottom of the spectrum.
- Our localization results are derived from a bootstrap multiscale analysis, an enhanced multiscale analysis developed in the one-particle case by Germinet and K.
- Son Nguyen will describe this extension of bootstrap multiscale analysis in his talk.
- We extend the bootstrap multiscale analysis (and its consequences) to the multi-particle Anderson Hamiltonian without requiring a covering condition. This requires Wegner estimates without a covering condition, which will be described by Peter Hislop in his talk.

Wegner estimates without a covering condition use a unique continuation principle for spectral projections, which we will now describe.

- AK, Unique continuation principle for spectral projections of Schrödinger operators and optimal Wegner estimates for non-ergodic random Schrödinger operators. Comm. Math Phys. 323, 1229-1246 (2013)
- Appendix to : AK and Son T. Nguyen, *Bootstrap multiscale analysis and localization for multi-particle continuous Anderson Hamiltonians*. Preprint (to be posted soon in the arXiv).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Schrödinger operators

We consider a Schrödinger operator

$$H = -\Delta + V$$
 on $L^2(\mathbb{R}^d)$,

where Δ is the Laplacian operator and V is a bounded potential.

Schrödinger operators

We consider a Schrödinger operator

$$H=-\Delta+V$$
 on $\mathrm{L}^2(\mathbb{R}^d),$

where Δ is the Laplacian operator and V is a bounded potential.

• We define balls and rectangles:

$$B(x,\delta) := \left\{ y \in \mathbb{R}^d; |y - x| < \delta \right\}, \text{ with } |x| := |x|_2 = \left(\sum_{j=1}^d |x_j|^2 \right)^{\frac{\pi}{2}};$$
$$\Lambda = \Lambda_{\mathsf{L}}(a) := a + \prod_{j=1}^d \left(-\frac{L_j}{2}, \frac{L_j}{2} \right) = \prod_{j=1}^d \left(a_j - \frac{L_j}{2}, a_j + \frac{L_j}{2} \right),$$
where $a \in \mathbb{R}^d$ and $\mathsf{L} = (L_1, \dots, L_d) \in (0, \infty)^d.$

イロト イポト イヨト イヨト

Schrödinger operators

We consider a Schrödinger operator

$$H=-\Delta+V$$
 on $\mathrm{L}^2(\mathbb{R}^d),$

where Δ is the Laplacian operator and V is a bounded potential.

• We define balls and rectangles:

$$B(x, \delta) := \left\{ y \in \mathbb{R}^d; |y - x| < \delta
ight\}, ext{ with } |x| := |x|_2 = \left(\sum_{j=1}^d |x_j|^2
ight)^{\frac{1}{2}}$$

$$\Lambda = \Lambda_{\mathsf{L}}(a) := a + \prod_{j=1}^{d} \left(-\frac{L_j}{2}, \frac{L_j}{2} \right) = \prod_{j=1}^{d} \left(a_j - \frac{L_j}{2}, a_j + \frac{L_j}{2} \right),$$

where $a \in \mathbb{R}^d$ and $\mathbf{L} = (L_1, \dots, L_d) \in (0, \infty)^d$.

• H_{Λ} denotes the restriction of H to the the rectangle $\Lambda \subset \mathbb{R}^d$:

$$H_{\Lambda} = -\Delta_{\Lambda} + V_{\Lambda}$$
 on $L^{2}(\Lambda)$.

• Δ_{Λ} is the Laplacian on Λ with either Dirichlet or periodic bc.

• V_{Λ} is the restriction of V to Λ ..

A UCPSP on a rectangle Λ is an estimate of the form

 $\chi_I(H_\Lambda)W_\Lambda\chi_I(H_\Lambda) \ge \kappa\chi_I(H_\Lambda)$ on $L^2(\Lambda)$,

where χ_I is the characteristic function of an interval $I \subset \mathbb{R}$, $W \ge 0$ is a potential, and $\kappa > 0$ is a constant.

A UCPSP on a rectangle Λ is an estimate of the form

 $\chi_I(H_\Lambda)W_\Lambda\chi_I(H_\Lambda) \ge \kappa\chi_I(H_\Lambda)$ on $L^2(\Lambda)$,

where χ_I is the characteristic function of an interval $I \subset \mathbb{R}$, $W \ge 0$ is a potential, and $\kappa > 0$ is a constant.

• If $W \ge \kappa > 0$ (covering condition) the UCPSP is trivial.

A UCPSP on a rectangle Λ is an estimate of the form

 $\chi_I(H_{\Lambda})W_{\Lambda}\chi_I(H_{\Lambda}) \ge \kappa\chi_I(H_{\Lambda})$ on $L^2(\Lambda)$,

where χ_I is the characteristic function of an interval $I \subset \mathbb{R}$, $W \ge 0$ is a potential, and $\kappa > 0$ is a constant.

- If $W \ge \kappa > 0$ (covering condition) the UCPSP is trivial.
- If V and W are bounded \mathbb{Z}^d -periodic potentials, $W \ge 0$ with W > 0on an open set, Combes, Hislop and Klopp (2003) proved the UCPSP for H_{Λ} with periodic boundary condition, for boxes $\Lambda = \Lambda_L(x_0) \subset \mathbb{R}^d$ with $L \in \mathbb{N}$ and arbitrary bounded intervals *I*, with a constant $\kappa > 0$ depending on sup *I* (and d, V, W), but not on the box Λ . Their proof uses the unique continuation principle and Floquet theory.

A UCPSP on a rectangle Λ is an estimate of the form

 $\chi_I(H_{\Lambda})W_{\Lambda}\chi_I(H_{\Lambda}) \ge \kappa\chi_I(H_{\Lambda})$ on $L^2(\Lambda)$,

where χ_I is the characteristic function of an interval $I \subset \mathbb{R}$, $W \ge 0$ is a potential, and $\kappa > 0$ is a constant.

- If $W \ge \kappa > 0$ (covering condition) the UCPSP is trivial.
- If V and W are bounded \mathbb{Z}^d -periodic potentials, $W \ge 0$ with W > 0on an open set, Combes, Hislop and Klopp (2003) proved the UCPSP for H_{Λ} with periodic boundary condition, for boxes $\Lambda = \Lambda_L(x_0) \subset \mathbb{R}^d$ with $L \in \mathbb{N}$ and arbitrary bounded intervals I, with a constant $\kappa > 0$ depending on sup I (and d, V, W), but not on the box Λ . Their proof uses the unique continuation principle and Floquet theory.
- Germinet and Klein (2013) proved a modified version of the CHK UCPSP, using Bourgain and Kenig's quantitative unique continuation principle and (some) Floquet theory, obtaining control of the constant *k* in terms of the relevant parameters.

There exists a constant $M_d > 0$, depending only on d, such that:

Abel Klein Multi-particle localization & unique continuation principle

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

There exists a constant $M_d > 0$, depending only on d, such that:

• Let $H = -\Delta + V$ be a Schrödinger operator on $L^2(\mathbb{R}^d)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 うの()

There exists a constant $M_d > 0$, depending only on d, such that:

- Let $H = -\Delta + V$ be a Schrödinger operator on $L^2(\mathbb{R}^d)$.
- Given an energy $E_0 > 0$ and $\delta \in]0, \frac{1}{2}]$, define $\gamma = \gamma(d, K, \delta) > 0$ by

$$\gamma^2 = rac{1}{2} \delta^{M_d \left(1 + \kappa^{rac{2}{3}}
ight)}, \quad ext{where} \quad \mathcal{K} = \mathcal{K}(\mathcal{V}, \mathcal{E}_0) = 2 \, \|\mathcal{V}\|_\infty + \mathcal{E}_0.$$

There exists a constant $M_d > 0$, depending only on d, such that:

- Let $H = -\Delta + V$ be a Schrödinger operator on $L^2(\mathbb{R}^d)$.
- Given an energy $E_0 > 0$ and $\delta \in]0, \frac{1}{2}]$, define $\gamma = \gamma(d, K, \delta) > 0$ by

$$\gamma^2 = rac{1}{2} \delta^{M_d \left(1+\kappa^{rac{2}{3}}
ight)}, \quad ext{where} \quad \mathcal{K} = \mathcal{K}(\mathcal{V}, \mathcal{E}_0) = 2 \left\|\mathcal{V}
ight\|_{\infty} + \mathcal{E}_0.$$

Then, given

There exists a constant $M_d > 0$, depending only on d, such that:

- Let $H = -\Delta + V$ be a Schrödinger operator on $L^2(\mathbb{R}^d)$.
- Given an energy $E_0 > 0$ and $\delta \in]0, \frac{1}{2}]$, define $\gamma = \gamma(d, K, \delta) > 0$ by

$$\gamma^2 = \frac{1}{2} \delta^{M_d \left(1 + \kappa^{\frac{2}{3}}\right)}, \quad \text{where} \quad \mathcal{K} = \mathcal{K}(\mathcal{V}, \mathcal{E}_0) = 2 \|\mathcal{V}\|_{\infty} + \mathcal{E}_0.$$

Then, given

• $\{y_k\}_{k\in\mathbb{Z}^d}\subset\mathbb{R}^d$ with $B(y_k,\delta)\subset \Lambda_1(k)$ for all $k\in\mathbb{Z}^d$,

There exists a constant $M_d > 0$, depending only on d, such that:

- Let $H = -\Delta + V$ be a Schrödinger operator on $L^2(\mathbb{R}^d)$.
- Given an energy $E_0 > 0$ and $\delta \in]0, \frac{1}{2}]$, define $\gamma = \gamma(d, K, \delta) > 0$ by

$$\gamma^2 = \frac{1}{2} \delta^{M_d \left(1 + \kappa^{\frac{2}{3}}\right)}, \quad \text{where} \quad \mathcal{K} = \mathcal{K}(\mathcal{V}, \mathcal{E}_0) = 2 \|\mathcal{V}\|_{\infty} + \mathcal{E}_0.$$

Then, given

- $\{y_k\}_{k\in\mathbb{Z}^d}\subset\mathbb{R}^d$ with $B(y_k,\delta)\subset\Lambda_1(k)$ for all $k\in\mathbb{Z}^d$,
- a closed interval $I \subset]-\infty, E_0]$ with $|I| \leq 2\gamma$,

There exists a constant $M_d > 0$, depending only on d, such that:

- Let $H = -\Delta + V$ be a Schrödinger operator on $L^2(\mathbb{R}^d)$.
- Given an energy $E_0 > 0$ and $\delta \in]0, \frac{1}{2}]$, define $\gamma = \gamma(d, K, \delta) > 0$ by

$$\gamma^2 = rac{1}{2} \delta^{M_d \left(1+\kappa^{rac{2}{3}}
ight)}, \quad ext{where} \quad \mathcal{K} = \mathcal{K}(\mathcal{V}, \mathcal{E}_0) = 2 \left\|\mathcal{V}
ight\|_{\infty} + \mathcal{E}_0.$$

Then, given

- $\{y_k\}_{k\in\mathbb{Z}^d}\subset\mathbb{R}^d$ with $B(y_k,\delta)\subset\Lambda_1(k)$ for all $k\in\mathbb{Z}^d$,
- a closed interval $I \subset]-\infty, E_0]$ with $|I| \leq 2\gamma$,
- a rectangle $\Lambda = \Lambda_{\mathsf{L}}(x_0)$ with $x_0 \in \mathbb{R}^d$ and $L_j \ge 114\sqrt{d}$, $j = 1, \dots, d$,

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト - - ヨ -

There exists a constant $M_d > 0$, depending only on d, such that:

- Let $H = -\Delta + V$ be a Schrödinger operator on $L^2(\mathbb{R}^d)$.
- Given an energy $E_0 > 0$ and $\delta \in]0, \frac{1}{2}]$, define $\gamma = \gamma(d, K, \delta) > 0$ by

$$\gamma^2 = rac{1}{2} \delta^{M_d \left(1 + \kappa^{rac{2}{3}}
ight)}, \quad ext{where} \quad \mathcal{K} = \mathcal{K}(\mathcal{V}, \mathcal{E}_0) = 2 \left\|\mathcal{V}
ight\|_{\infty} + \mathcal{E}_0.$$

Then, given

- $\{y_k\}_{k\in\mathbb{Z}^d}\subset\mathbb{R}^d$ with $B(y_k,\delta)\subset\Lambda_1(k)$ for all $k\in\mathbb{Z}^d$,
- a closed interval $I \subset]-\infty, E_0]$ with $|I| \leq 2\gamma$,
- a rectangle $\Lambda = \Lambda_{\mathsf{L}}(x_0)$ with $x_0 \in \mathbb{R}^d$ and $L_j \ge 114\sqrt{d}$, j = 1, ..., d,

we have

$$\chi_I(H_\Lambda)W^{(\Lambda)}\chi_I(H_\Lambda) \ge \gamma^2\chi_I(H_\Lambda) \quad \text{on} \quad \mathrm{L}^2(\Lambda),$$

There exists a constant $M_d > 0$, depending only on d, such that:

- Let $H = -\Delta + V$ be a Schrödinger operator on $L^2(\mathbb{R}^d)$.
- Given an energy $E_0 > 0$ and $\delta \in]0, \frac{1}{2}]$, define $\gamma = \gamma(d, K, \delta) > 0$ by

$$\gamma^2 = \frac{1}{2} \delta^{M_d \left(1 + \kappa^{\frac{2}{3}}\right)}, \quad \text{where} \quad \mathcal{K} = \mathcal{K}(\mathcal{V}, \mathcal{E}_0) = 2 \|\mathcal{V}\|_{\infty} + \mathcal{E}_0.$$

Then, given

- $\{y_k\}_{k\in\mathbb{Z}^d}\subset\mathbb{R}^d$ with $B(y_k,\delta)\subset\Lambda_1(k)$ for all $k\in\mathbb{Z}^d$,
- a closed interval $I \subset]-\infty, E_0]$ with $|I| \leq 2\gamma$,
- a rectangle $\Lambda = \Lambda_{\mathsf{L}}(x_0)$ with $x_0 \in \mathbb{R}^d$ and $L_j \ge 114\sqrt{d}$, $j = 1, \dots, d$, we have

$$\chi_{I}(H_{\Lambda})W^{(\Lambda)}\chi_{I}(H_{\Lambda}) \geq \gamma^{2}\chi_{I}(H_{\Lambda}) \quad \text{on} \quad L^{2}(\Lambda),$$

where

$$W^{(\Lambda)} = \sum_{k \in \mathbb{Z}^d, \Lambda_1(k) \subset \Lambda} \chi_{B(y_k, \delta)}.$$

くロト く得ト くヨト くヨト 二日

• Rojas-Molina and Veselić (2013) proved, under the hypotheses of the Theorem, that for boxes $\Lambda = \Lambda_L(x_0)$ with $x_0 \in \mathbb{Z}^d$ and $L \in \mathbb{N}_{odd}$, if ψ is an eigenfunction of H_{Λ} with eigenvalue $E \in]-\infty, E_0]$, then

$$\left\| W^{(\Lambda)} \psi \right\|_2^2 \ge \kappa_{E_0} \left\| \psi \right\|_2^2$$
 with $\kappa_{E_0} > 0$.

• Rojas-Molina and Veselić (2013) proved, under the hypotheses of the Theorem, that for boxes $\Lambda = \Lambda_L(x_0)$ with $x_0 \in \mathbb{Z}^d$ and $L \in \mathbb{N}_{odd}$, if ψ is an eigenfunction of H_{Λ} with eigenvalue $E \in]-\infty, E_0]$, then

$$\left\| W^{(\Lambda)} \psi \right\|_2^2 \ge \kappa_{E_0} \left\| \psi \right\|_2^2 \quad \text{with} \quad \kappa_{E_0} > 0.$$

This is just the UCPSP when $I = \{E\}$.

• Rojas-Molina and Veselić (2013) proved, under the hypotheses of the Theorem, that for boxes $\Lambda = \Lambda_L(x_0)$ with $x_0 \in \mathbb{Z}^d$ and $L \in \mathbb{N}_{odd}$, if ψ is an eigenfunction of H_{Λ} with eigenvalue $E \in]-\infty, E_0]$, then

$$\left\| W^{(\Lambda)} \psi \right\|_2^2 \ge \kappa_{E_0} \left\| \psi \right\|_2^2 \quad ext{with} \quad \kappa_{E_0} > 0.$$

This is just the UCPSP when $I = \{E\}$. Their proof uses the quantitative unique continuation principle (Bourgain and Kenig).

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらう

• Rojas-Molina and Veselić (2013) proved, under the hypotheses of the Theorem, that for boxes $\Lambda = \Lambda_L(x_0)$ with $x_0 \in \mathbb{Z}^d$ and $L \in \mathbb{N}_{odd}$, if ψ is an eigenfunction of H_{Λ} with eigenvalue $E \in]-\infty, E_0]$, then

$$\left\| W^{(\Lambda)} \psi \right\|_2^2 \ge \kappa_{E_0} \left\| \psi \right\|_2^2 \quad \text{with} \quad \kappa_{E_0} > 0.$$

This is just the UCPSP when $I = \{E\}$. Their proof uses the quantitative unique continuation principle (Bourgain and Kenig).

• Our Theorem is derived from the quantitative unique continuation principle as in Bourgain and Klein using the "dominant boxes" introduced by Rojas-Molina and Veselić.

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨー つくつ

• Rojas-Molina and Veselić (2013) proved, under the hypotheses of the Theorem, that for boxes $\Lambda = \Lambda_L(x_0)$ with $x_0 \in \mathbb{Z}^d$ and $L \in \mathbb{N}_{odd}$, if ψ is an eigenfunction of H_{Λ} with eigenvalue $E \in]-\infty, E_0]$, then

$$\left\| W^{(\Lambda)} \psi \right\|_2^2 \ge \kappa_{E_0} \left\| \psi \right\|_2^2 \quad \text{with} \quad \kappa_{E_0} > 0.$$

This is just the UCPSP when $I = \{E\}$. Their proof uses the quantitative unique continuation principle (Bourgain and Kenig).

- Our Theorem is derived from the quantitative unique continuation principle as in Bourgain and Klein using the "dominant boxes" introduced by Rojas-Molina and Veselić.
- The UCPSP is a crucial ingredient for proving Wegner estimates for one and multi-particle Anderson Hamiltonians. The UCPSP replaces the covering condition.

Abel Klein Multi-particle localization & unique continuation principle

◆□ > ◆圖 > ◆臣 > ◆臣 > →

э

Let $\Omega \subset \mathbb{R}^d$ open. Let $\psi \in H^2(\Omega)$ and let $\zeta \in L^2(\Omega)$ be defined by $-\Delta \psi + V \psi = \zeta$ a.e. on Ω ,

where V is a bounded real measurable function on Ω , $\|V\|_{\infty} \leq K < \infty$.

Let $\Omega \subset \mathbb{R}^d$ open. Let $\psi \in \mathrm{H}^2(\Omega)$ and let $\zeta \in \mathrm{L}^2(\Omega)$ be defined by

 $-\Delta \psi + V \psi = \zeta$ a.e. on Ω ,

where V is a bounded real measurable function on Ω , $\|V\|_{\infty} \leq K < \infty$. Let $\Theta \subset \Omega$ be a bounded measurable set where $\|\psi\chi_{\Theta}\|_{2} > 0$.

Let $\Omega \subset \mathbb{R}^d$ open. Let $\psi \in \mathrm{H}^2(\Omega)$ and let $\zeta \in \mathrm{L}^2(\Omega)$ be defined by

 $-\Delta \psi + V \psi = \zeta$ a.e. on Ω ,

where V is a bounded real measurable function on Ω , $\|V\|_{\infty} \leq K < \infty$. Let $\Theta \subset \Omega$ be a bounded measurable set where $\|\psi\chi_{\Theta}\|_{2} > 0$.

Set
$$Q(x,\Theta) := \sup_{y\in\Theta} |y-x|$$
 for $x\in\Omega$.

Let $\Omega \subset \mathbb{R}^d$ open. Let $\psi \in H^2(\Omega)$ and let $\zeta \in L^2(\Omega)$ be defined by $-\Delta \psi + V \psi = \zeta$ a.e. on Ω ,

where V is a bounded real measurable function on Ω , $\|V\|_{\infty} \leq K < \infty$. Let $\Theta \subset \Omega$ be a bounded measurable set where $\|\psi\chi_{\Theta}\|_{2} > 0$.

Set
$$Q(x,\Theta) := \sup_{y\in\Theta} |y-x|$$
 for $x\in\Omega$.

 $\text{Let} \quad x_0 \in \Omega \setminus \overline{\Theta} \quad \text{satisfy} \quad Q = Q(x_0, \Theta) \geq 1 \quad \text{and} \quad B(x_0, 6Q + 2) \subset \Omega.$

Let $\Omega \subset \mathbb{R}^d$ open. Let $\psi \in H^2(\Omega)$ and let $\zeta \in L^2(\Omega)$ be defined by $-\Delta \psi + V \psi = \zeta$ a.e. on Ω ,

where V is a bounded real measurable function on Ω , $\|V\|_{\infty} \leq K < \infty$. Let $\Theta \subset \Omega$ be a bounded measurable set where $\|\psi\chi_{\Theta}\|_{2} > 0$.

Set
$$Q(x,\Theta) := \sup_{y\in\Theta} |y-x|$$
 for $x\in\Omega$.

Let $x_0 \in \Omega \setminus \overline{\Theta}$ satisfy $Q = Q(x_0, \Theta) \ge 1$ and $B(x_0, 6Q + 2) \subset \Omega$. Then, given

 $0 < \delta \leq \min\left\{\operatorname{dist}\left(x_0, \Theta\right), \frac{1}{2}\right\},\$

Let $\Omega \subset \mathbb{R}^d$ open. Let $\psi \in H^2(\Omega)$ and let $\zeta \in L^2(\Omega)$ be defined by $-\Delta \psi + V \psi = \zeta$ a.e. on Ω ,

where V is a bounded real measurable function on Ω , $\|V\|_{\infty} \leq K < \infty$. Let $\Theta \subset \Omega$ be a bounded measurable set where $\|\psi\chi_{\Theta}\|_{2} > 0$.

Set
$$Q(x,\Theta) := \sup_{y\in\Theta} |y-x|$$
 for $x\in\Omega$.

Let $x_0 \in \Omega \setminus \overline{\Theta}$ satisfy $Q = Q(x_0, \Theta) \ge 1$ and $B(x_0, 6Q + 2) \subset \Omega$. Then, given

$$0 < \delta \le \min\left\{ \mathsf{dist}\left(x_0, \Theta\right), \frac{1}{2} \right\},\$$

we have

$$\left(\frac{\delta}{Q}\right)^{m_d\left(1+\kappa^{\frac{2}{3}}\right)\left(Q^{\frac{4}{3}}+\log\frac{\|\psi\chi_{\Omega}\|_2}{\|\psi\chi_{\Theta}\|_2}\right)}\|\psi\chi_{\Theta}\|_2^2 \leq \left\|\psi\chi_{B(x_0,\delta)}\right\|_2^2 + \|\zeta\chi_{\Omega}\|_2^2,$$

where $m_d > 0$ is a constant depending only on $d_{1, a} \in \mathbb{R}$ is a constant depending only on $d_{1, a} \in \mathbb{R}$

Abel Klein Multi-particle localization & unique continuation principle

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

э

Corollary

There exists a constant $M_d > 0$, depending only on d, such that:

Corollary

There exists a constant $M_d > 0$, depending only on d, such that:

Let H = −Δ + V be a Schrödinger operator on L²(ℝ^d), where V is a bounded potential with ||V||_∞ ≤ K.

Corollary

There exists a constant $M_d > 0$, depending only on d, such that:

- Let H = −Δ + V be a Schrödinger operator on L²(ℝ^d), where V is a bounded potential with ||V||_∞ ≤ K.
- Fix $\delta \in [0, \frac{1}{2}]$ and sites $\{y_k\}_{k \in \mathbb{Z}^d} \subset \mathbb{R}^d$ with $B(y_k, \delta) \subset \Lambda_1(k)$ for all $k \in \mathbb{Z}^d$.

Corollary

There exists a constant $M_d > 0$, depending only on d, such that:

- Let H = −Δ + V be a Schrödinger operator on L²(ℝ^d), where V is a bounded potential with ||V||_∞ ≤ K.
- Fix $\delta \in [0, \frac{1}{2}]$ and sites $\{y_k\}_{k \in \mathbb{Z}^d} \subset \mathbb{R}^d$ with $B(y_k, \delta) \subset \Lambda_1(k)$ for all $k \in \mathbb{Z}^d$.
- Consider a rectangle $\Lambda = \Lambda_L(x_0)$ with $x_0 \in \mathbb{R}^d$ and $L_j \ge 114\sqrt{d}$, $j = 1, \dots, d$,

Corollary

There exists a constant $M_d > 0$, depending only on d, such that:

- Let H = −Δ + V be a Schrödinger operator on L²(ℝ^d), where V is a bounded potential with ||V||_∞ ≤ K.
- Fix $\delta \in [0, \frac{1}{2}]$ and sites $\{y_k\}_{k \in \mathbb{Z}^d} \subset \mathbb{R}^d$ with $B(y_k, \delta) \subset \Lambda_1(k)$ for all $k \in \mathbb{Z}^d$.
- Consider a rectangle $\Lambda = \Lambda_L(x_0)$ with $x_0 \in \mathbb{R}^d$ and $L_j \ge 114\sqrt{d}$, $j = 1, \dots, d$,

Then for all real-valued $\psi \in \mathscr{D}(\Delta_{\Lambda}) = \mathscr{D}(H_{\Lambda})$ we have (on $L^{2}(\Lambda)$)

Corollary

There exists a constant $M_d > 0$, depending only on d, such that:

- Let H = −Δ + V be a Schrödinger operator on L²(ℝ^d), where V is a bounded potential with ||V||_∞ ≤ K.
- Fix $\delta \in [0, \frac{1}{2}]$ and sites $\{y_k\}_{k \in \mathbb{Z}^d} \subset \mathbb{R}^d$ with $B(y_k, \delta) \subset \Lambda_1(k)$ for all $k \in \mathbb{Z}^d$.
- Consider a rectangle $\Lambda = \Lambda_L(x_0)$ with $x_0 \in \mathbb{R}^d$ and $L_j \ge 114\sqrt{d}$, $j = 1, \dots, d$,

Then for all real-valued $\psi \in \mathscr{D}(\Delta_{\Lambda}) = \mathscr{D}(H_{\Lambda})$ we have (on $L^{2}(\Lambda)$)

$$egin{aligned} &\delta^{M_d \left(1+\kappa^{rac{2}{3}}
ight)} \|\psi\|_2^2 &\leq \sum_{k \in \mathbb{Z}^d, \Lambda_1(k) \subset \Lambda} \left\|\psi \chi_{B(y_k,\delta)}
ight\|_2^2 + \delta^2 \left\|H_\Lambda \psi
ight\|_2^2 \ &= \left\|W^{(\Lambda)}\psi
ight\|_2^2 + \delta^2 \left\|H_\Lambda \psi
ight\|_2^2. \end{aligned}$$

Unique continuation principle for spectral projections

Proof of the UCPSP

Abel Klein Multi-particle localization & unique continuation principle

< □ > < @ > < 注 > < 注 > □ ≥ □

Let $E_0 > 0$ and $I \subset] -\infty, E_0$] a closed interval; set $\beta = \frac{1}{2}|I|$. Since $H_{\Lambda} \ge -\|V\|_{\infty}$ for any box Λ , without loss of generality we assume $I = [E - \beta, E + \beta]$ with $E \in [-\|V\|_{\infty}, E_0]$, so

 $\|V - E\|_{\infty} \le \|V\|_{\infty} + \max\{E_0, \|V\|_{\infty}\} \le K = 2\|V\|_{\infty} + E_0.$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Let $E_0 > 0$ and $I \subset] -\infty, E_0$] a closed interval; set $\beta = \frac{1}{2}|I|$. Since $H_{\Lambda} \ge -\|V\|_{\infty}$ for any box Λ , without loss of generality we assume $I = [E - \beta, E + \beta]$ with $E \in [-\|V\|_{\infty}, E_0]$, so

 $\|V - E\|_{\infty} \le \|V\|_{\infty} + \max\{E_0, \|V\|_{\infty}\} \le K = 2\|V\|_{\infty} + E_0.$

Moreover, for any box Λ we have

 $\|(H_{\Lambda}-E)\psi\|_2 \leq \beta \|\psi\|_2$ for $\psi = \chi_I(H_{\Lambda})\psi$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Let $E_0 > 0$ and $I \subset] -\infty, E_0$] a closed interval; set $\beta = \frac{1}{2}|I|$. Since $H_{\Lambda} \ge -\|V\|_{\infty}$ for any box Λ , without loss of generality we assume $I = [E - \beta, E + \beta]$ with $E \in [-\|V\|_{\infty}, E_0]$, so

 $\|V - E\|_{\infty} \le \|V\|_{\infty} + \max\{E_0, \|V\|_{\infty}\} \le K = 2\|V\|_{\infty} + E_0.$

Moreover, for any box Λ we have

 $\|(H_{\Lambda}-E)\psi\|_2 \leq \beta \|\psi\|_2$ for $\psi = \chi_I(H_{\Lambda})\psi$.

Let Λ be a box as in the Corollary and $\psi = \chi_I(H_\Lambda)\psi$ real-valued. It follows from the Corollary applied to H - E that

$$\delta^{M_d \left(1+\kappa^{\frac{2}{3}}\right)} \|\psi\|_2^2 \leq \left\| W^{(\Lambda)} \psi \right\|_2^2 + \delta^2 \|(H_{\Lambda} - E)\psi\|_2^2 \leq \left\| W^{(\Lambda)} \psi \right\|_2^2 + \beta^2 \|\psi\|_2^2.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Let $E_0 > 0$ and $I \subset] -\infty, E_0$] a closed interval; set $\beta = \frac{1}{2}|I|$. Since $H_{\Lambda} \ge -\|V\|_{\infty}$ for any box Λ , without loss of generality we assume $I = [E - \beta, E + \beta]$ with $E \in [-\|V\|_{\infty}, E_0]$, so

 $\|V - E\|_{\infty} \le \|V\|_{\infty} + \max\{E_0, \|V\|_{\infty}\} \le K = 2\|V\|_{\infty} + E_0.$

Moreover, for any box Λ we have

 $\|(H_{\Lambda}-E)\psi\|_2 \leq \beta \|\psi\|_2$ for $\psi = \chi_I(H_{\Lambda})\psi$.

Let Λ be a box as in the Corollary and $\psi = \chi_I(H_\Lambda)\psi$ real-valued. It follows from the Corollary applied to H - E that

$$\begin{split} \delta^{M_d \left(1+\kappa^2\right)} \|\psi\|_2^2 &\leq \left\|W^{(\Lambda)}\psi\right\|_2^2 + \delta^2 \|(H_{\Lambda}-E)\psi\|_2^2 \leq \left\|W^{(\Lambda)}\psi\right\|_2^2 + \beta^2 \|\psi\|_2^2.\\ \text{If } \beta^2 &\leq \gamma^2 := \frac{1}{2} \delta^{M_d \left(1+\kappa^2\right)}, \text{ i.e., } |I| \leq 2\gamma, \text{ we get}\\ \gamma^2 \|\psi\|_2^2 &\leq \left\|W^{(\Lambda)}\psi\right\|_2^2, \quad \text{i.e., } \gamma^2 \chi_I(H_{\Lambda}) \leq \chi_I(H_{\Lambda})W^{(\Lambda)}\chi_I(H_{\Lambda}). \end{split}$$

For simplicity we take a box $\Lambda = \Lambda_L(0)$ with $L \in \mathbb{N}_{odd}$. We extend functions \widehat{V} on Λ to functions \widehat{V} and $\widetilde{\varphi}$ on \mathbb{R}^d and V to a potential \widehat{V} on \mathbb{R}^d so

 $(-\Delta + V)\psi = (-\Delta + \widehat{V})\widetilde{\psi}.$

< ロ > (同 > (回 > (回 >))) 目 = (回 > (回 >)) 目 = (回 > (回 >)) 目 = (回 > (回 >)) 目 = (回 > (回 >)) 目 = (回 > (回 >)) (回 >) (回 >)) = (回 > (回 >)) (回 >) (回 >)) = ((\Pi >)) (((\Pi >))) (((\Pi >))) ((((\Pi >))

For simplicity we take a box $\Lambda = \Lambda_L(0)$ with $L \in \mathbb{N}_{odd}$. We extend functions $\widehat{\varphi}$ on Λ to functions \widehat{V} and $\widetilde{\varphi}$ on \mathbb{R}^d and V to a potential \widehat{V} on \mathbb{R}^d so

 $(-\Delta + V)\psi = (-\Delta + \widehat{V})\widetilde{\psi}.$

Take $Y \in \mathbb{N}_{odd}$, $9 \le Y < \frac{L}{2}$. Since *L* is odd, we have $\overline{\Lambda} = \bigcup_{k \in \Lambda \cap \mathbb{Z}^d} \overline{\Lambda_1(k)}$. It follows that for all $\varphi \in L^2(\Lambda)$ we have

$$\sum_{\boldsymbol{\kappa}\in\Lambda\cap\mathbb{Z}^d}\left\|\widetilde{\varphi}_{\Lambda_{\boldsymbol{Y}}(\boldsymbol{k})}\right\|_2^2\leq (2\boldsymbol{Y})^d\left\|\varphi_{\Lambda}\right\|_2^2.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

For simplicity we take a box $\Lambda = \Lambda_L(0)$ with $L \in \mathbb{N}_{odd}$. We extend functions $\widehat{\varphi}$ on Λ to functions \widehat{V} and $\widetilde{\varphi}$ on \mathbb{R}^d and V to a potential \widehat{V} on \mathbb{R}^d so

 $(-\Delta + V)\psi = (-\Delta + \widehat{V})\widetilde{\psi}.$

Take $Y \in \mathbb{N}_{odd}$, $9 \le Y < \frac{L}{2}$. Since *L* is odd, we have $\overline{\Lambda} = \bigcup_{k \in \Lambda \cap \mathbb{Z}^d} \overline{\Lambda_1(k)}$. It follows that for all $\varphi \in L^2(\Lambda)$ we have

$$\sum_{\boldsymbol{\kappa}\in\Lambda\cap\mathbb{Z}^d}\left\|\widetilde{\varphi}_{\Lambda_{\boldsymbol{Y}}(\boldsymbol{k})}\right\|_2^2\leq (2\boldsymbol{Y})^d\left\|\varphi_{\Lambda}\right\|_2^2.$$

We now fix $\psi \in \mathscr{D}(\Delta_{\Lambda})$. Following Rojas-Molina and Veselić, we call a site $k \in \widehat{\Lambda} = \Lambda \cap \mathbb{Z}^d$ dominating (for ψ) if

$$\left\|\psi_{\Lambda_1(k)}\right\|_2^2 \geq \frac{1}{2(2Y)^d} \left\|\widetilde{\psi}_{\Lambda_Y(k)}\right\|_2^2,$$

< ロ > (同 > (回 > (回 >))) 目 = (回 > (回 >)) 目 = (回 > (回 >)) 目 = (回 > (回 >)) 目 = (回 > (回 >)) 目 = (回 > (回 >)) (回 >) (回 >)) = (回 > (回 >)) (回 >) (回 >)) = ((\Pi >)) (((\Pi >))) (((\Pi >))) ((((\Pi >))

For simplicity we take a box $\Lambda = \Lambda_L(0)$ with $L \in \mathbb{N}_{odd}$. We extend functions \widehat{V} on Λ to functions \widehat{V} and $\widetilde{\varphi}$ on \mathbb{R}^d and V to a potential \widehat{V} on \mathbb{R}^d so

 $(-\Delta + V)\psi = (-\Delta + \widehat{V})\widetilde{\psi}.$

Take $Y \in \mathbb{N}_{odd}$, $9 \le Y < \frac{L}{2}$. Since *L* is odd, we have $\overline{\Lambda} = \bigcup_{k \in \Lambda \cap \mathbb{Z}^d} \overline{\Lambda_1(k)}$. It follows that for all $\varphi \in L^2(\Lambda)$ we have

$$\sum_{\boldsymbol{\kappa}\in\Lambda\cap\mathbb{Z}^d}\left\|\widetilde{\varphi}_{\Lambda_{\boldsymbol{Y}}(\boldsymbol{k})}\right\|_2^2\leq (2\boldsymbol{Y})^d\left\|\varphi_{\Lambda}\right\|_2^2.$$

We now fix $\psi \in \mathscr{D}(\Delta_{\Lambda})$. Following Rojas-Molina and Veselić, we call a site $k \in \widehat{\Lambda} = \Lambda \cap \mathbb{Z}^d$ dominating (for ψ) if

$$\left\|\psi_{\Lambda_1(k)}\right\|_2^2 \geq \frac{1}{2(2Y)^d} \left\|\widetilde{\psi}_{\Lambda_Y(k)}\right\|_2^2,$$

and note that, letting $\widehat{D} \subset \Lambda \cap \mathbb{Z}^d$ denote the collection of dominating sites,

$$\sum_{k\in\widehat{D}} \left\|\psi_{\Lambda_1(k)}\right\|_2^2 \geq \frac{1}{2} \left\|\psi_{\Lambda}\right\|_2^2.$$

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらう

If $k \in \widehat{D}$ we apply the QUCP with $\Omega = \Lambda_{Y}(k)$ and $\Theta = \Lambda_{1}(k)$, obtaining $\delta^{m'_{d}\left(1+\kappa^{\frac{2}{3}}\right)} \left\|\psi_{\Lambda_{1}(k)}\right\|_{2}^{2} \leq \left\|\psi_{B(y_{J(k)},\delta)}\right\|_{2}^{2} + \delta^{2} \left\|\widetilde{\zeta}_{\Lambda_{Y}(k)}\right\|_{2}^{2}$,

Abel Klein Multi-particle localization & unique continuation principle

< ロ > (同 > (回 > (回 >))) 目 = (回 > (回 >)) 目 = (回 > (回 >)) 目 = (回 > (回 >)) 目 = (回 > (回 >)) 目 = (回 > (回 >)) (回 >) (回 >)) = (回 > (回 >)) (回 >) (回 >)) = ((\Pi >)) (((\Pi >))) (((\Pi >))) ((((\Pi >))

If $k \in \widehat{D}$ we apply the QUCP with $\Omega = \Lambda_Y(k)$ and $\Theta = \Lambda_1(k)$, obtaining $\delta^{m'_d \left(1+\kappa^2\right)} \|\psi_{\Lambda_1(k)}\|_2^2 \leq \|\psi_{B(y_{J(k)},\delta)}\|_2^2 + \delta^2 \|\widetilde{\zeta}_{\Lambda_Y(k)}\|_2^2$, where $\zeta = (-\Delta + V)\psi$, Y is appropriately chosen, $Y \leq 40\sqrt{d} < \frac{L}{2}$, and the map $J: \widehat{D} \to \Lambda \cap \mathbb{Z}^d$ is defined appropriately so $J(k) \in \Lambda_Y(k)$ and $\#J^{-1}(\{j\}) \leq 2$ for all j.

If $k \in \widehat{D}$ we apply the QUCP with $\Omega = \Lambda_Y(k)$ and $\Theta = \Lambda_1(k)$, obtaining $\delta^{m'_d\left(1+\kappa^{\frac{2}{3}}\right)} \left\|\psi_{\Lambda_1(k)}\right\|_2^2 \leq \left\|\psi_{B(y_{J(k)},\delta)}\right\|_2^2 + \delta^2 \left\|\widetilde{\zeta}_{\Lambda_Y(k)}\right\|_2^2,$ where $\zeta = (-\Delta + V)\psi$, Y is appropriately chosen, $Y \leq 40\sqrt{d} < \frac{L}{2}$, and the map $J: \widehat{D} \to \Lambda \cap \mathbb{Z}^d$ is defined appropriately so $J(k) \in \Lambda_Y(k)$ and $\#J^{-1}(\{j\}) \leq 2$ for all j. Summing over $k \in \widehat{D}$ and using $\sum_{k \in \widehat{D}} \| \psi_{\Lambda_1(k)} \|_2^2 \ge \frac{1}{2} \| \psi_{\Lambda} \|_2^2$, we get $\frac{1}{2} \delta^{m'_d \left(1+\kappa^{\frac{2}{3}}\right)} \|\psi_{\Lambda}\|_2^2 \leq 2 \sum \|\psi_{B(y_k,\delta)}\|_2^2 + (2Y)^d \delta^2 \|\zeta_{\Lambda}\|_2^2$ $k \in \Lambda \cap \mathbb{Z}^d$ $\leq 2 \sum \|\psi_{B(y_k,\delta)}\|_2^2 + (80\sqrt{d})^d \delta^2 \|\zeta_{\Lambda}\|_2^2,$ $k \in \overline{\Lambda \cap \mathbb{Z}^d}$

If $k \in \widehat{D}$ we apply the QUCP with $\Omega = \Lambda_Y(k)$ and $\Theta = \Lambda_1(k)$, obtaining $\delta^{m'_d\left(1+\kappa^{\frac{2}{3}}\right)} \left\|\psi_{\Lambda_1(k)}\right\|_2^2 \leq \left\|\psi_{B(y_{J(k)},\delta)}\right\|_2^2 + \delta^2 \left\|\widetilde{\zeta}_{\Lambda_Y(k)}\right\|_2^2,$ where $\zeta = (-\Delta + V)\psi$, Y is appropriately chosen, $Y \leq 40\sqrt{d} < \frac{L}{2}$, and the map $J: \widehat{D} \to \Lambda \cap \mathbb{Z}^d$ is defined appropriately so $J(k) \in \Lambda_Y(k)$ and $\#J^{-1}(\{j\}) \leq 2$ for all j. Summing over $k \in \widehat{D}$ and using $\sum_{k \in \widehat{D}} \|\psi_{\Lambda_1(k)}\|_2^2 \ge \frac{1}{2} \|\psi_{\Lambda}\|_2^2$, we get $\frac{1}{2} \delta^{m'_d \left(1+\kappa^{\frac{2}{3}}\right)} \|\psi_{\Lambda}\|_{2}^{2} \leq 2 \sum \|\psi_{B(y_{k},\delta)}\|_{2}^{2} + (2Y)^{d} \delta^{2} \|\zeta_{\Lambda}\|_{2}^{2}$ $k \in \Lambda \cap \mathbb{Z}^d$ $\leq 2 \sum \|\psi_{B(\gamma_{k},\delta)}\|_{2}^{2} + (80\sqrt{d})^{d}\delta^{2}\|\zeta_{\Lambda}\|_{2}^{2},$ $k \in \overline{\Lambda \cap \mathbb{Z}^d}$ which implies (with a different constant $M_d > 0$) $\delta^{M_d (1+\kappa^2)} \|\psi_{\Lambda}\|_2^2 \leq \sum \|\psi\chi_{B(y_k,\delta)}\|_2^2 + \delta^2 \|\zeta_{\Lambda}\|_2^2.$

Abel Klein

Multi-particle localization & unique continuation principle