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Localization for multi-particle Anderson Hamiltonians

Multi-particle Anderson Hamiltonians
The n-particle Anderson Hamiltonian is the random Schrödinger operator

H
(n)
ω := H

(n)
0,ω +U on L2(Rnd), where H

(n)
0,ω :=−∆(n) +V

(n)
ω .

1 ∆(n) is the nd-dimensional Laplacian operator.
2 V

(n)
ω is the random potential given by (x = (x1, ...,xn) ∈ Rnd)

V
(n)
ω (x) = ∑

i=1,...,n
V

(1)
ω (xi ), with V

(1)
ω (x) = ∑

k∈Zd

ωk u(x−k),

1 ω = {ωk}k∈Zd is a family of independent identically distributed random
variables whose common probability distribution µ has a bounded
density ρ and satisfies {0,M+} ⊂ suppµ ⊆ [0,M+] for some M+ > 0;

2 the single site potential u is a measurable function on Rd with

u−χΛδ− (0) ≤ u ≤ χΛδ+
(0) for some constants u−,δ± ∈ (0,∞).

3 U is a short range interaction potential between the n particles:

U(x) = ∑
1≤i<j≤n

Ũ(xi −xj),

0≤ Ũ(y)≤ Ũ∞ < ∞, Ũ(y) = Ũ(−y), Ũ(y) = 0 for ‖y‖
∞
> r0 ∈ (0,∞).
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Ũ(xi −xj),
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Ũ(xi −xj),
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Localization for multi-particle Anderson Hamiltonians

Basic properties of H(n)
ω

H
(n)
ω is a Zd -ergodic random Schrödinger operator on L2(Rnd). (Zd

acts on Rnd by (x1,x2 . . . ,xn)→ (x1 +a,x2 +a, . . . ,xn +a) for a ∈ Zd .)
There exist fixed subsets Σ(n), Σ

(n)
pp , Σ

(n)
ac and Σ

(n)
sc of R so that the

spectrum σ(H
(n)
ω ) of H(n)

ω , as well as its pure point, absolutely
continuous, and singular continuous components, are equal to these
fixed sets with probability one.
H

(1)
ω = H

(1)
0,ω , so Σ(1) = [0,∞). Letting Σ

(n)
0 denote the almost sure

spectrum of H(n)
0,ω , we have

Σ
(n)
0 = Σ(1) + . . .+ Σ(1) = [0,∞).

We have
Σ(n) = Σ

(n)
0 = [0,∞).
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Localization for multi-particle Anderson Hamiltonians

Notation

1 Given x = (x1, . . . ,xd) ∈ Rd , we set ‖x‖= ‖x‖
∞

:= max{|x1| , . . . , |xd |}.
If a = (a1, . . . ,an) ∈ Rnd , we set ‖a‖ := max{‖a1‖ , . . . ,‖an‖},
diama := maxi , j=1,...,n ‖ai −aj‖, Sa =

{
a1, ..., an

}
.

2 χx = χΛ1(x) = χ{y∈Rnd ;‖y−x‖< 1
2} for x ∈ Rnd .

3 Fix ν > nd
2 and let T be the operator on L2 (Rnd

)
given by

multiplication of the function 〈x〉ν , where 〈x〉= (1+‖x‖2)
1
2 .

4 Given a,b ∈ Rnd , we set dH(a, b) := dH(Sa, Sb), where dH(S1, S2) is
the the Hausdorff distance between finite subsets S1, S2 ⊆ Rd :

dH(S1, S2) := max
{
max
x∈S1

min
y∈S2
‖x−y‖ ,max

y∈S2
min
x∈S1
‖x−y‖

}
.

Note that dH(a, b)≤ ‖a−b‖ ≤ dH(a, b) +diama for a, b ∈ Rnd .

5 H
(n)
ω will denote a fixed n-particle Anderson Hamiltonian.
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Localization for multi-particle Anderson Hamiltonians

Theorem (Localization for multi-particle Anderson Ham.)

Given N ∈ N, there exists an energy E (N) > 0 such that:

(I) The following holds with probability one:
(Anderson localization) HN

ω has pure point spectrum in the interval
[0,E (N)]. Moreover, for all E ≤ E (N) and ψ ∈ χ{E}(H

N
ω ) we have

‖χxψ‖ ≤ Cω,E

∥∥T−1
ψ
∥∥ e−M‖x‖ for all x ∈ RNd .

In particular, each eigenfunction ψ of HN
ω with eigenvalue E ≤ E (N) is

exponentially localized with the non-random rate of decay M > 0.
(Finite multiplicity of eigenvalues) The eigenvalues of HN

ω in [0,E (N)]
have finite multiplicity:

trχ{E}(H
N
ω ) < ∞ for all E ≤ E (N).
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Localization for multi-particle Anderson Hamiltonians

Theorem-cont.

(Summable Uniform Decay of Eigenfunction Correlations (SUDEC)) .
For every ζ ∈ (0,1) there exists a constant Cω,ζ such that for every
E ≤ E (N) and φ ,ψ ∈ Ranχ{E}(H

N
ω ) we have

‖χxφ‖
∥∥χyψ

∥∥≤ Cω,ζ

∥∥T−1
φ
∥∥∥∥T−1

ψ
∥∥〈x〉2νe−(dH(x,y))ζ

for all x,y ∈ RNd .

(II) (Dynamical Localization) For every ζ ∈ (0,1) and y ∈ RNd there exists
a constant Cζ (y) such that, letting I = (−∞,E (N)],

E

{
sup
‖g‖

∞
≤1

∥∥∥χxχ I (H
N
ω )g(HN

ω )χy

∥∥∥}≤ Cζ (y)e−(dH(x,y))ζ

for all x ∈ RNd ,

the supremum being taken over all Borel functions g on R with
‖g‖

∞
= supt∈R |g(t)| ≤ 1. In particular, we have

E
{
sup
t∈R

∥∥∥χxχ I (H
N
ω )e itH

N
ω χy

∥∥∥}≤ Cζ (y)e−(dH(x,y))ζ

for all x ∈ RNd .
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Localization for multi-particle Anderson Hamiltonians

Comments

Localization was proved for the (discrete) multi-particle Anderson
model by Chulaevsky and Suhov, using a multiscale analysis, and by
Aizenman and Warzel, using the fractional moment method.
Chulaevsky, Boutet de Monvel and Suhov extended the results of
Chulaevsky and Suhov to the multi-particle Anderson Hamiltonian,
obtaining localization at the bottom of the spectrum.
Our localization results are derived from a bootstrap multiscale
analysis, an enhanced multiscale analysis developed in the one-particle
case by Germinet and K.
Son Nguyen will describe this extension of bootstrap multiscale
analysis in his talk.
We extend the bootstrap multiscale analysis (and its consequences) to
the multi-particle Anderson Hamiltonian without requiring a covering
condition. This requires Wegner estimates without a covering
condition, which will be described by Peter Hislop in his talk.
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Unique continuation principle for spectral projections

Unique continuation principle for spectral projections

Wegner estimates without a covering condition use a unique continuation
principle for spectral projections, which we will now describe.

AK, Unique continuation principle for spectral projections of
Schrödinger operators and optimal Wegner estimates for non-ergodic
random Schrödinger operators. Comm. Math Phys. 323, 1229-1246
(2013)
Appendix to : AK and Son T. Nguyen, Bootstrap multiscale analysis
and localization for multi-particle continuous Anderson Hamiltonians.
Preprint (to be posted soon in the arXiv).
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Unique continuation principle for spectral projections

Schrödinger operators
We consider a Schrödinger operator

H =−∆ +V on L2(Rd),

where ∆ is the Laplacian operator and V is a bounded potential.

We define balls and rectangles:

B(x ,δ ) :=
{
y ∈ Rd ; |y −x |< δ

}
, with |x | := |x |2 =

(
d

∑
j=1
|xj |2

) 1
2

;

Λ = ΛL(a) := a+
d

∏
j=1

(−Lj
2 ,

Lj
2 ) =

d

∏
j=1

(aj −
Lj
2 ,aj +

Lj
2 ),

where a ∈ Rd and L = (L1, . . . ,Ld) ∈ (0,∞)d .
HΛ denotes the restriction of H to the the rectangle Λ⊂ Rd :

HΛ =−∆Λ +VΛ on L2(Λ).

∆Λ is the Laplacian on Λ with either Dirichlet or periodic bc.
VΛ is the restriction of V to Λ..
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Unique continuation principle for spectral projections

Unique continuation principle for spectral projections

A UCPSP on a rectangle Λ is an estimate of the form

χ I (HΛ)WΛ χ I (HΛ)≥ κ χ I (HΛ) on L2(Λ),

where χ I is the characteristic function of an interval I ⊂ R, W ≥ 0 is a
potential, and κ > 0 is a constant.

If W ≥ κ > 0 (covering condition) the UCPSP is trivial.
If V and W are bounded Zd -periodic potentials, W ≥ 0 with W > 0
on an open set, Combes, Hislop and Klopp (2003) proved the UCPSP
for HΛ with periodic boundary condition, for boxes Λ = ΛL(x0)⊂ Rd

with L ∈ N and arbitrary bounded intervals I , with a constant κ > 0
depending on sup I (and d ,V ,W ), but not on the box Λ. Their proof
uses the unique continuation principle and Floquet theory.
Germinet and Klein (2013) proved a modified version of the CHK
UCPSP, using Bourgain and Kenig’s quantitative unique continuation
principle and (some) Floquet theory, obtaining control of the constant
κ in terms of the relevant parameters.
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Unique continuation principle for spectral projections

Theorem (UCPSP)

There exists a constant Md > 0, depending only on d , such that:

Let H =−∆ +V be a Schrödinger operator on L2(Rd).
Given an energy E0 > 0 and δ ∈]0, 1

2 ], define γ = γ(d ,K ,δ ) > 0 by

γ
2 = 1

2δ
Md

(
1+K

2
3
)
, where K = K (V ,E0) = 2‖V ‖

∞
+E0.

Then, given
{yk}k∈Zd ⊂ Rd with B(yk ,δ )⊂ Λ1(k) for all k ∈ Zd ,
a closed interval I ⊂]−∞,E0] with |I | ≤ 2γ ,
a rectangle Λ = ΛL(x0) with x0 ∈ Rd and Lj ≥ 114

√
d , j = 1, . . . ,d ,

we have
χ I (HΛ)W (Λ) χ I (HΛ)≥ γ

2χ I (HΛ) on L2(Λ),

where
W (Λ) = ∑

k∈Zd ,Λ1(k)⊂Λ

χB(yk ,δ).
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Unique continuation principle for spectral projections

Comments on the UCPSP

Rojas-Molina and Veselić (2013) proved, under the hypotheses of the
Theorem, that for boxes Λ = ΛL(x0) with x0 ∈ Zd and L ∈Nodd, if ψ is
an eigenfunction of HΛ with eigenvalue E ∈]−∞,E0], then∥∥∥W (Λ)

ψ

∥∥∥2

2
≥ κE0 ‖ψ‖

2
2 with κE0 > 0.

This is just the UCPSP when I = {E}.Their proof uses the
quantitative unique continuation principle (Bourgain and Kenig).
Our Theorem is derived from the quantitative unique continuation
principle as in Bourgain and Klein using the “dominant boxes”
introduced by Rojas-Molina and Veselić.
The UCPSP is a crucial ingredient for proving Wegner estimates for
one and multi-particle Anderson Hamiltonians. The UCPSP replaces
the covering condition.
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Unique continuation principle for spectral projections

Quantitative unique continuation principle (Bourgain-Klein)

Let Ω⊂ Rd open. Let ψ ∈ H2(Ω) and let ζ ∈ L2(Ω) be defined by

−∆ψ +Vψ = ζ a.e. on Ω,

where V is a bounded real measurable function on Ω, ‖V ‖
∞
≤ K < ∞.

Let Θ⊂ Ω be a bounded measurable set where
∥∥ψχΘ

∥∥
2 > 0.

Set Q(x ,Θ) := sup
y∈Θ
|y −x | for x ∈ Ω.

Let x0 ∈ Ω\Θ satisfy Q = Q(x0,Θ)≥ 1 and B(x0,6Q +2)⊂ Ω.

Then, given
0< δ ≤min

{
dist(x0,Θ) , 1

2

}
,

we have(
δ

Q

)md

(
1+K

2
3
)(

Q
4
3 +log ‖ψχΩ‖2

‖ψχΘ‖2

)
‖ψχΘ‖22 ≤

∥∥ψχB(x0,δ)

∥∥2
2 +‖ζ χΩ‖22 ,

where md > 0 is a constant depending only on d .
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A corollary to the quantitative unique continuation principle

Corollary
There exists a constant Md > 0, depending only on d , such that:

Let H =−∆ +V be a Schrödinger operator on L2(Rd), where V is a
bounded potential with ‖V ‖

∞
≤ K .

Fix δ ∈]0, 1
2 ] and sites {yk}k∈Zd ⊂ Rd with B(yk ,δ )⊂ Λ1(k) for all

k ∈ Zd .
Consider a rectangle Λ = ΛL(x0) with x0 ∈ Rd and Lj ≥ 114

√
d ,

j = 1, . . . ,d ,
Then for all real-valued ψ ∈D(∆Λ) = D(HΛ) we have (on L2(Λ))

δ
Md

(
1+K

2
3
)
‖ψ‖22 ≤ ∑

k∈Zd ,Λ1(k)⊂Λ

∥∥ψχB(yk ,δ)

∥∥2
2 + δ

2 ‖HΛψ‖22

=
∥∥∥W (Λ)

ψ

∥∥∥2

2
+ δ

2 ‖HΛψ‖22 .
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A corollary to the quantitative unique continuation principle

Corollary
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Proof of the UCPSP

Let E0 > 0 and I ⊂]−∞,E0] a closed interval; set β = 1
2 |I |. Since

HΛ ≥−‖V ‖∞
for any box Λ, without loss of generality we assume

I = [E −β ,E + β ] with E ∈ [−‖V ‖
∞
,E0], so

‖V −E‖
∞
≤ ‖V ‖

∞
+max{E0,‖V ‖∞

} ≤ K = 2‖V ‖
∞

+E0.

Moreover, for any box Λ we have

‖(HΛ−E )ψ‖2 ≤ β ‖ψ‖2 for ψ = χ I (HΛ)ψ.

Let Λ be a box as in the Corollary and ψ = χ I (HΛ)ψ real-valued. It follows
from the Corollary applied to H−E that

δ
Md

(
1+K

2
3
)
‖ψ‖22 ≤

∥∥∥W (Λ)
ψ

∥∥∥2

2
+ δ

2 ‖(HΛ−E )ψ‖22 ≤
∥∥∥W (Λ)

ψ

∥∥∥2

2
+ β

2 ‖ψ‖22 .

If β 2 ≤ γ2 := 1
2δ

Md

(
1+K

2
3
)
, i.e., |I | ≤ 2γ , we get

γ
2 ‖ψ‖22 ≤

∥∥∥W (Λ)
ψ

∥∥∥2

2
, i.e., γ

2χ I (HΛ)≤ χ I (HΛ)W (Λ)χ I (HΛ).
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Proof of the Corollary
For simplicity we take a box Λ = ΛL(0) with L ∈ Nodd. We extend functions
ϕ on Λ to functions V̂ and ϕ̃ on Rd and V to a potential V̂ on Rd so

˜(−∆ +V )ψ = (−∆ + V̂ )ψ̃.

Take Y ∈ Nodd, 9≤ Y < L
2 . Since L is odd, we have Λ =

⋃
k∈Λ∩Zd Λ1(k).

It follows that for all ϕ ∈ L2(Λ) we have

∑
k∈Λ∩Zd

∥∥ϕ̃ΛY (k)

∥∥2
2 ≤ (2Y )d ‖ϕΛ‖22 .

We now fix ψ ∈D(∆Λ). Following Rojas-Molina and Veselić, we call a site
k ∈ Λ̂ = Λ∩Zd dominating (for ψ) if∥∥ψΛ1(k)

∥∥2
2 ≥

1
2(2Y )d

∥∥ψ̃ΛY (k)

∥∥2
2 ,

and note that, letting D̂ ⊂ Λ∩Zd denote the collection of dominating sites,

∑
k∈D̂

∥∥ψΛ1(k)

∥∥2
2 ≥

1
2 ‖ψΛ‖22 .

Abel Klein Multi-particle localization & unique continuation principle



Unique continuation principle for spectral projections

Proof of the Corollary
For simplicity we take a box Λ = ΛL(0) with L ∈ Nodd. We extend functions
ϕ on Λ to functions V̂ and ϕ̃ on Rd and V to a potential V̂ on Rd so

˜(−∆ +V )ψ = (−∆ + V̂ )ψ̃.

Take Y ∈ Nodd, 9≤ Y < L
2 . Since L is odd, we have Λ =

⋃
k∈Λ∩Zd Λ1(k).

It follows that for all ϕ ∈ L2(Λ) we have

∑
k∈Λ∩Zd

∥∥ϕ̃ΛY (k)

∥∥2
2 ≤ (2Y )d ‖ϕΛ‖22 .

We now fix ψ ∈D(∆Λ). Following Rojas-Molina and Veselić, we call a site
k ∈ Λ̂ = Λ∩Zd dominating (for ψ) if∥∥ψΛ1(k)

∥∥2
2 ≥

1
2(2Y )d

∥∥ψ̃ΛY (k)

∥∥2
2 ,

and note that, letting D̂ ⊂ Λ∩Zd denote the collection of dominating sites,

∑
k∈D̂

∥∥ψΛ1(k)

∥∥2
2 ≥

1
2 ‖ψΛ‖22 .

Abel Klein Multi-particle localization & unique continuation principle



Unique continuation principle for spectral projections

Proof of the Corollary
For simplicity we take a box Λ = ΛL(0) with L ∈ Nodd. We extend functions
ϕ on Λ to functions V̂ and ϕ̃ on Rd and V to a potential V̂ on Rd so

˜(−∆ +V )ψ = (−∆ + V̂ )ψ̃.

Take Y ∈ Nodd, 9≤ Y < L
2 . Since L is odd, we have Λ =

⋃
k∈Λ∩Zd Λ1(k).

It follows that for all ϕ ∈ L2(Λ) we have

∑
k∈Λ∩Zd

∥∥ϕ̃ΛY (k)

∥∥2
2 ≤ (2Y )d ‖ϕΛ‖22 .

We now fix ψ ∈D(∆Λ). Following Rojas-Molina and Veselić, we call a site
k ∈ Λ̂ = Λ∩Zd dominating (for ψ) if∥∥ψΛ1(k)

∥∥2
2 ≥

1
2(2Y )d

∥∥ψ̃ΛY (k)

∥∥2
2 ,

and note that, letting D̂ ⊂ Λ∩Zd denote the collection of dominating sites,

∑
k∈D̂

∥∥ψΛ1(k)

∥∥2
2 ≥

1
2 ‖ψΛ‖22 .

Abel Klein Multi-particle localization & unique continuation principle



Unique continuation principle for spectral projections

Proof of the Corollary
For simplicity we take a box Λ = ΛL(0) with L ∈ Nodd. We extend functions
ϕ on Λ to functions V̂ and ϕ̃ on Rd and V to a potential V̂ on Rd so

˜(−∆ +V )ψ = (−∆ + V̂ )ψ̃.

Take Y ∈ Nodd, 9≤ Y < L
2 . Since L is odd, we have Λ =

⋃
k∈Λ∩Zd Λ1(k).

It follows that for all ϕ ∈ L2(Λ) we have

∑
k∈Λ∩Zd

∥∥ϕ̃ΛY (k)

∥∥2
2 ≤ (2Y )d ‖ϕΛ‖22 .

We now fix ψ ∈D(∆Λ). Following Rojas-Molina and Veselić, we call a site
k ∈ Λ̂ = Λ∩Zd dominating (for ψ) if∥∥ψΛ1(k)

∥∥2
2 ≥

1
2(2Y )d

∥∥ψ̃ΛY (k)

∥∥2
2 ,

and note that, letting D̂ ⊂ Λ∩Zd denote the collection of dominating sites,

∑
k∈D̂

∥∥ψΛ1(k)

∥∥2
2 ≥

1
2 ‖ψΛ‖22 .

Abel Klein Multi-particle localization & unique continuation principle



Unique continuation principle for spectral projections

Proof of the Corollary-continued

If k ∈ D̂ we apply the QUCP with Ω = ΛY (k) and Θ = Λ1(k), obtaining

δ
m′d

(
1+K

2
3
)∥∥ψΛ1(k)

∥∥2
2 ≤

∥∥∥ψB(yJ(k),δ)

∥∥∥2

2
+ δ

2
∥∥∥ζ̃ΛY (k)

∥∥∥2

2
,

where ζ = (−∆ +V )ψ , Y is appropriately chosen, Y ≤ 40
√
d < L

2 , and
the map J : D̂→ Λ∩Zd is defined appropriately so

J(k) ∈ ΛY (k) and #J−1({j})≤ 2 for all j .
Summing over k ∈ D̂ and using ∑k∈D̂

∥∥ψΛ1(k)

∥∥2
2 ≥

1
2 ‖ψΛ‖22, we get

1
2δ

m′d

(
1+K

2
3
)
‖ψΛ‖22 ≤ 2 ∑

k∈Λ∩Zd

∥∥ψB(yk ,δ)

∥∥2
2 + (2Y )dδ

2 ‖ζΛ‖22

≤ 2 ∑
k∈Λ∩Zd

∥∥ψB(yk ,δ)

∥∥2
2 + (80

√
d)dδ

2 ‖ζΛ‖22 ,

which implies (with a different constant Md > 0)

δ
Md

(
1+K

2
3
)
‖ψΛ‖22 ≤ ∑

k∈Λ∩Zd

∥∥ψχB(yk ,δ)

∥∥2
2 + δ

2 ‖ζΛ‖22 .
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