Localization for multi-particle Anderson Hamiltonians \& unique continuation principle for spectral projections

Abel Klein
University of California, Irvine

Disordered quantum many-body systems
 BIRS

October 31, 2013

Localization for multi-particle Anderson Hamiltonians

Joint work with Son Nguyen:

- AK and Son T. Nguyen: The bootstrap multiscale analysis for the multi-particle Anderson model. J. Stat. Phys. 151, 983-973 (2013).
- AK and Son T. Nguyen: Bootstrap multiscale analysis and localization for multi-particle continuous Anderson Hamiltonians. Preprint (to be posted soon in the arXiv).

Multi-particle Anderson Hamiltonians

The n-particle Anderson Hamiltonian is the random Schrödinger operator

$$
H_{\omega}^{(n)}:=H_{0, \omega}^{(n)}+U \quad \text { on } \quad L^{2}\left(\mathbb{R}^{n d}\right), \quad \text { where } \quad H_{0, \omega}^{(n)}:=-\Delta^{(n)}+V_{\omega}^{(n)}
$$

Multi-particle Anderson Hamiltonians

The n-particle Anderson Hamiltonian is the random Schrödinger operator

$$
H_{\omega}^{(n)}:=H_{0, \omega}^{(n)}+U \quad \text { on } \quad L^{2}\left(\mathbb{R}^{n d}\right), \quad \text { where } \quad H_{0, \omega}^{(n)}:=-\Delta^{(n)}+V_{\omega}^{(n)}
$$

(1) $\Delta^{(n)}$ is the $n d$-dimensional Laplacian operator.

Multi-particle Anderson Hamiltonians

The n-particle Anderson Hamiltonian is the random Schrödinger operator

$$
H_{\omega}^{(n)}:=H_{0, \omega}^{(n)}+U \quad \text { on } \quad L^{2}\left(\mathbb{R}^{n d}\right), \quad \text { where } \quad H_{0, \omega}^{(n)}:=-\Delta^{(n)}+V_{\omega}^{(n)}
$$

(1) $\Delta^{(n)}$ is the $n d$-dimensional Laplacian operator.
(2) $V_{\omega}^{(n)}$ is the random potential given by $\left(\mathrm{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n d}\right)$

$$
V_{\omega}^{(n)}(\mathbf{x})=\sum_{i=1, \ldots, n} V_{\omega}^{(1)}\left(x_{i}\right), \quad \text { with } \quad V_{\omega}^{(1)}(x)=\sum_{k \in \mathbb{Z}^{d}} \omega_{k} u(x-k),
$$

Multi-particle Anderson Hamiltonians

The n-particle Anderson Hamiltonian is the random Schrödinger operator

$$
H_{\omega}^{(n)}:=H_{0, \omega}^{(n)}+U \quad \text { on } \quad \mathrm{L}^{2}\left(\mathbb{R}^{n d}\right), \quad \text { where } \quad H_{0, \omega}^{(n)}:=-\Delta^{(n)}+V_{\omega}^{(n)}
$$

(1) $\Delta^{(n)}$ is the $n d$-dimensional Laplacian operator.
(2) $V_{\omega}^{(n)}$ is the random potential given by $\left(\mathrm{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n d}\right)$

$$
V_{\omega}^{(n)}(\mathbf{x})=\sum_{i=1, \ldots, n} V_{\omega}^{(1)}\left(x_{i}\right), \quad \text { with } \quad V_{\omega}^{(1)}(x)=\sum_{k \in \mathbb{Z}^{d}} \omega_{k} u(x-k),
$$

(1) $\omega=\left\{\omega_{k}\right\}_{k \in \mathbb{Z}^{d}}$ is a family of independent identically distributed random variables whose common probability distribution μ has a bounded density ρ and satisfies $\left\{0, M_{+}\right\} \subset \operatorname{supp} \mu \subseteq\left[0, M_{+}\right]$for some $M_{+}>0$;

Multi-particle Anderson Hamiltonians

The n-particle Anderson Hamiltonian is the random Schrödinger operator

$$
H_{\omega}^{(n)}:=H_{0, \omega}^{(n)}+U \quad \text { on } \quad L^{2}\left(\mathbb{R}^{n d}\right), \quad \text { where } \quad H_{0, \omega}^{(n)}:=-\Delta^{(n)}+V_{\omega}^{(n)}
$$

(1) $\Delta^{(n)}$ is the $n d$-dimensional Laplacian operator.
(2) $V_{\omega}^{(n)}$ is the random potential given by $\left(\mathrm{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n d}\right)$ $V_{\omega}^{(n)}(\mathrm{x})=\sum_{i=1, \ldots, n} V_{\omega}^{(1)}\left(x_{i}\right), \quad$ with $\quad V_{\omega}^{(1)}(x)=\sum_{k \in \mathbb{Z}^{d}} \omega_{k} u(x-k)$,
(1) $\omega=\left\{\omega_{k}\right\}_{k \in \mathbb{Z}^{d}}$ is a family of independent identically distributed random variables whose common probability distribution μ has a bounded density ρ and satisfies $\left\{0, M_{+}\right\} \subset \operatorname{supp} \mu \subseteq\left[0, M_{+}\right]$for some $M_{+}>0$;
(2) the single site potential u is a measurable function on \mathbb{R}^{d} with

$$
u_{-} \chi_{\Lambda_{\delta_{-}}(0)} \leq u \leq \chi_{\Lambda_{\delta_{+}}(0)} \quad \text { for some constants } \quad u_{-}, \delta_{ \pm} \in(0, \infty) .
$$

Multi-particle Anderson Hamiltonians

The n-particle Anderson Hamiltonian is the random Schrödinger operator

$$
H_{\omega}^{(n)}:=H_{0, \omega}^{(n)}+U \quad \text { on } \quad L^{2}\left(\mathbb{R}^{n d}\right), \quad \text { where } \quad H_{0, \omega}^{(n)}:=-\Delta^{(n)}+V_{\omega}^{(n)}
$$

(1) $\Delta^{(n)}$ is the $n d$-dimensional Laplacian operator.
(2) $V_{\omega}^{(n)}$ is the random potential given by $\left(\mathrm{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n d}\right)$

$$
V_{\omega}^{(n)}(\mathbf{x})=\sum_{i=1, \ldots, n} V_{\omega}^{(1)}\left(x_{i}\right), \quad \text { with } \quad V_{\omega}^{(1)}(x)=\sum_{k \in \mathbb{Z}^{d}} \omega_{k} u(x-k),
$$

(1) $\omega=\left\{\omega_{k}\right\}_{k \in \mathbb{Z}^{d}}$ is a family of independent identically distributed random variables whose common probability distribution μ has a bounded density ρ and satisfies $\left\{0, M_{+}\right\} \subset \operatorname{supp} \mu \subseteq\left[0, M_{+}\right]$for some $M_{+}>0$;
(2) the single site potential u is a measurable function on \mathbb{R}^{d} with

$$
u_{-} \chi_{\Lambda_{\delta_{-}}(0)} \leq u \leq \chi_{\Lambda_{\delta_{+}}(0)} \quad \text { for some constants } \quad u_{-}, \delta_{ \pm} \in(0, \infty) .
$$

(3) U is a short range interaction potential between the n particles:

$$
U(\mathbf{x})=\sum_{1 \leq i<j \leq n} \widetilde{U}\left(x_{i}-x_{j}\right),
$$

Multi-particle Anderson Hamiltonians

The n-particle Anderson Hamiltonian is the random Schrödinger operator

$$
H_{\omega}^{(n)}:=H_{0, \omega}^{(n)}+U \quad \text { on } \quad L^{2}\left(\mathbb{R}^{n d}\right), \quad \text { where } \quad H_{0, \omega}^{(n)}:=-\Delta^{(n)}+V_{\omega}^{(n)}
$$

(1) $\Delta^{(n)}$ is the $n d$-dimensional Laplacian operator.
(2) $V_{\omega}^{(n)}$ is the random potential given by $\left(\mathrm{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n d}\right)$

$$
V_{\omega}^{(n)}(\mathbf{x})=\sum_{i=1, \ldots, n} V_{\omega}^{(1)}\left(x_{i}\right), \quad \text { with } \quad V_{\omega}^{(1)}(x)=\sum_{k \in \mathbb{Z}^{d}} \omega_{k} u(x-k),
$$

(1) $\omega=\left\{\omega_{k}\right\}_{k \in \mathbb{Z}^{d}}$ is a family of independent identically distributed random variables whose common probability distribution μ has a bounded density ρ and satisfies $\left\{0, M_{+}\right\} \subset \operatorname{supp} \mu \subseteq\left[0, M_{+}\right]$for some $M_{+}>0$;
(2) the single site potential u is a measurable function on \mathbb{R}^{d} with

$$
u_{-} \chi_{\Lambda_{\delta_{-}}(0)} \leq u \leq \chi_{\Lambda_{\delta_{+}}(0)} \quad \text { for some constants } \quad u_{-}, \delta_{ \pm} \in(0, \infty) .
$$

(3) U is a short range interaction potential between the n particles:

$$
\begin{gathered}
U(x)=\sum_{\substack{1 \leq i<j \leq n}} \widetilde{U}\left(x_{i}-x_{j}\right), \\
0 \leq \widetilde{U}(y) \leq \widetilde{U}_{\infty}<\infty, \widetilde{U}(y)=\widetilde{U}(-y), \widetilde{U}(y)=0 \text { for }\|y\|_{\infty}>r_{0} \in(0, \infty),
\end{gathered}
$$

Basic properties of $H_{\omega}^{(n)}$

Basic properties of $H_{\omega}^{(n)}$

- $H_{\omega}^{(n)}$ is a \mathbb{Z}^{d}-ergodic random Schrödinger operator on $L^{2}\left(\mathbb{R}^{n d}\right)$. $\left(\mathbb{Z}^{d}\right.$ acts on $\mathbb{R}^{n d}$ by $\left(x_{1}, x_{2} \ldots, x_{n}\right) \rightarrow\left(x_{1}+a, x_{2}+a, \ldots, x_{n}+a\right)$ for $a \in \mathbb{Z}^{d}$. $)$

Basic properties of $H_{\omega}^{(n)}$

- $H_{\omega}^{(n)}$ is a \mathbb{Z}^{d}-ergodic random Schrödinger operator on $L^{2}\left(\mathbb{R}^{n d}\right)$. $\left(\mathbb{Z}^{d}\right.$ acts on $\mathbb{R}^{n d}$ by $\left(x_{1}, x_{2} \ldots, x_{n}\right) \rightarrow\left(x_{1}+a, x_{2}+a, \ldots, x_{n}+a\right)$ for $a \in \mathbb{Z}^{d}$.)
- There exist fixed subsets $\Sigma^{(n)}, \Sigma_{\mathrm{pp}}^{(n)}, \Sigma_{\mathrm{ac}}^{(n)}$ and $\Sigma_{\mathrm{sc}}^{(n)}$ of \mathbb{R} so that the spectrum $\sigma\left(H_{\omega}^{(n)}\right)$ of $H_{\omega}^{(n)}$, as well as its pure point, absolutely continuous, and singular continuous components, are equal to these fixed sets with probability one.

Basic properties of $H_{\omega}^{(n)}$

- $H_{\omega}^{(n)}$ is a \mathbb{Z}^{d}-ergodic random Schrödinger operator on $L^{2}\left(\mathbb{R}^{n d}\right)$. $\left(\mathbb{Z}^{d}\right.$ acts on $\mathbb{R}^{n d}$ by $\left(x_{1}, x_{2} \ldots, x_{n}\right) \rightarrow\left(x_{1}+a, x_{2}+a, \ldots, x_{n}+a\right)$ for $a \in \mathbb{Z}^{d}$.)
- There exist fixed subsets $\Sigma^{(n)}, \Sigma_{\mathrm{pp}}^{(n)}, \Sigma_{\mathrm{ac}}^{(n)}$ and $\Sigma_{\mathrm{sc}}^{(n)}$ of \mathbb{R} so that the spectrum $\sigma\left(H_{\omega}^{(n)}\right)$ of $H_{\omega}^{(n)}$, as well as its pure point, absolutely continuous, and singular continuous components, are equal to these fixed sets with probability one.
- $H_{\omega}^{(1)}=H_{0, \omega}^{(1)}$, so $\Sigma^{(1)}=[0, \infty)$. Letting $\Sigma_{0}^{(n)}$ denote the almost sure spectrum of $H_{0, \omega}^{(n)}$, we have

$$
\Sigma_{0}^{(n)}=\overline{\Sigma^{(1)}+\ldots+\Sigma^{(1)}}=[0, \infty)
$$

Basic properties of $H_{\omega}^{(n)}$

- $H_{\omega}^{(n)}$ is a \mathbb{Z}^{d}-ergodic random Schrödinger operator on $L^{2}\left(\mathbb{R}^{n d}\right)$. $\left(\mathbb{Z}^{d}\right.$ acts on $\mathbb{R}^{n d}$ by $\left(x_{1}, x_{2} \ldots, x_{n}\right) \rightarrow\left(x_{1}+a, x_{2}+a, \ldots, x_{n}+a\right)$ for $a \in \mathbb{Z}^{d}$.)
- There exist fixed subsets $\Sigma^{(n)}, \Sigma_{\mathrm{pp}}^{(n)}, \Sigma_{\mathrm{ac}}^{(n)}$ and $\Sigma_{\mathrm{sc}}^{(n)}$ of \mathbb{R} so that the spectrum $\sigma\left(H_{\omega}^{(n)}\right)$ of $H_{\omega}^{(n)}$, as well as its pure point, absolutely continuous, and singular continuous components, are equal to these fixed sets with probability one.
- $H_{\omega}^{(1)}=H_{0, \omega}^{(1)}$, so $\Sigma^{(1)}=[0, \infty)$. Letting $\Sigma_{0}^{(n)}$ denote the almost sure spectrum of $H_{0, \omega}^{(n)}$, we have

$$
\Sigma_{0}^{(n)}=\overline{\Sigma^{(1)}+\ldots+\Sigma^{(1)}}=[0, \infty)
$$

- We have

$$
\Sigma^{(n)}=\Sigma_{0}^{(n)}=[0, \infty)
$$

Notation

Notation

(1) Given $x=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}$, we set $\|x\|=\|x\|_{\infty}:=\max \left\{\left|x_{1}\right|, \ldots,\left|x_{d}\right|\right\}$. If $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n d}$, we set $\|\mathbf{a}\|:=\max \left\{\left\|a_{1}\right\|, \ldots,\left\|a_{n}\right\|\right\}$, diama $:=\max _{i, j=1, \ldots, n}\left\|a_{i}-a_{j}\right\|, \quad \mathscr{S}_{\mathbf{a}}=\left\{a_{1}, \ldots, a_{n}\right\}$.

Notation

(1) Given $x=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}$, we set $\|x\|=\|x\|_{\infty}:=\max \left\{\left|x_{1}\right|, \ldots,\left|x_{d}\right|\right\}$. If $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n d}$, we set $\|\mathbf{a}\|:=\max \left\{\left\|a_{1}\right\|, \ldots,\left\|a_{n}\right\|\right\}$, diama $:=\max _{i, j=1, \ldots, n}\left\|a_{i}-a_{j}\right\|, \quad \mathscr{S}_{\mathbf{a}}=\left\{a_{1}, \ldots, a_{n}\right\}$.
(2) $\chi_{\mathrm{x}}=\chi_{\Lambda_{1}(\mathrm{x})}=\chi_{\left\{\mathbf{y} \in \mathbb{R}^{n d} ;\|\mathbf{y}-\mathrm{x}\|<\frac{1}{2}\right\}} \quad$ for $\mathrm{x} \in \mathbb{R}^{n d}$.

Notation

(1) Given $x=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}$, we set $\|x\|=\|x\|_{\infty}:=\max \left\{\left|x_{1}\right|, \ldots,\left|x_{d}\right|\right\}$. If $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n d}$, we set $\|\mathbf{a}\|:=\max \left\{\left\|a_{1}\right\|, \ldots,\left\|a_{n}\right\|\right\}$, diama $:=\max _{i, j=1, \ldots, n}\left\|a_{i}-a_{j}\right\|, \quad \mathscr{S}_{\mathbf{a}}=\left\{a_{1}, \ldots, a_{n}\right\}$.
(2) $\chi_{\mathrm{x}}=\chi_{\Lambda_{1}(\mathrm{x})}=\chi_{\left\{\mathrm{y} \in \mathbb{R}^{n d} ;\|\mathrm{y}-\mathrm{x}\|<\frac{1}{2}\right\}} \quad$ for $\mathrm{x} \in \mathbb{R}^{n d}$.
(3) Fix $v>\frac{n d}{2}$ and let T be the operator on $L^{2}\left(\mathbb{R}^{n d}\right)$ given by multiplication of the function $\langle\mathbf{x}\rangle^{v}$, where $\langle\mathbf{x}\rangle=\left(1+\|\mathbf{x}\|^{2}\right)^{\frac{1}{2}}$.

Notation

(1) Given $x=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}$, we set $\|x\|=\|x\|_{\infty}:=\max \left\{\left|x_{1}\right|, \ldots,\left|x_{d}\right|\right\}$. If $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n d}$, we set $\|\mathbf{a}\|:=\max \left\{\left\|a_{1}\right\|, \ldots,\left\|a_{n}\right\|\right\}$, $\operatorname{diama}:=\max _{i, j=1, \ldots, n}\left\|a_{i}-a_{j}\right\|, \quad \mathscr{S}_{\mathbf{a}}=\left\{a_{1}, \ldots, a_{n}\right\}$.
(2) $\chi_{\mathrm{x}}=\chi_{\Lambda_{1}(\mathrm{x})}=\chi_{\left\{\mathbf{y} \in \mathbb{R}^{n d} ;\|\mathrm{y}-\mathrm{x}\|<\frac{1}{2}\right\}} \quad$ for $\mathrm{x} \in \mathbb{R}^{n d}$.
(3) Fix $v>\frac{n d}{2}$ and let T be the operator on $L^{2}\left(\mathbb{R}^{n d}\right)$ given by multiplication of the function $\langle\mathbf{x}\rangle^{\nu}$, where $\langle\mathbf{x}\rangle=\left(1+\|\mathbf{x}\|^{2}\right)^{\frac{1}{2}}$.
(9) Given $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{n d}$, we set $d_{H}(\mathbf{a}, \mathbf{b}):=d_{H}\left(\mathscr{S}_{\mathbf{a}}, \mathscr{S}_{\mathbf{b}}\right)$, where $d_{H}\left(S_{1}, S_{2}\right)$ is the the Hausdorff distance between finite subsets $S_{1}, S_{2} \subseteq \mathbb{R}^{d}$:

$$
d_{H}\left(S_{1}, S_{2}\right):=\max \left\{\max _{x \in S_{1}} \min _{y \in S_{2}}\|x-y\|, \max _{y \in S_{2}} \min _{x \in S_{1}}\|x-y\|\right\}
$$

Notation

(1) Given $x=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}$, we set $\|x\|=\|x\|_{\infty}:=\max \left\{\left|x_{1}\right|, \ldots,\left|x_{d}\right|\right\}$. If $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n d}$, we set $\|\mathbf{a}\|:=\max \left\{\left\|a_{1}\right\|, \ldots,\left\|a_{n}\right\|\right\}$, $\operatorname{diama}:=\max _{i, j=1, \ldots, n}\left\|a_{i}-a_{j}\right\|, \quad \mathscr{S}_{\mathbf{a}}=\left\{a_{1}, \ldots, a_{n}\right\}$.
(2) $\chi_{\mathrm{x}}=\chi_{\Lambda_{1}(\mathrm{x})}=\chi_{\left\{\mathrm{y} \in \mathbb{R}^{n d} ;\|\mathrm{y}-\mathrm{x}\|<\frac{1}{2}\right\}} \quad$ for $\mathrm{x} \in \mathbb{R}^{n d}$.
(3) Fix $v>\frac{n d}{2}$ and let T be the operator on $L^{2}\left(\mathbb{R}^{n d}\right)$ given by multiplication of the function $\langle\mathbf{x}\rangle^{v}$, where $\langle\mathbf{x}\rangle=\left(1+\|\mathbf{x}\|^{2}\right)^{\frac{1}{2}}$.
(9) Given $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{n d}$, we set $d_{H}(\mathbf{a}, \mathbf{b}):=d_{H}\left(\mathscr{S}_{\mathbf{a}}, \mathscr{S}_{\mathbf{b}}\right)$, where $d_{H}\left(S_{1}, S_{2}\right)$ is the the Hausdorff distance between finite subsets $S_{1}, S_{2} \subseteq \mathbb{R}^{d}$:

$$
d_{H}\left(S_{1}, S_{2}\right):=\max \left\{\max _{x \in S_{1}} \min _{y \in S_{2}}\|x-y\|, \max _{y \in S_{2}} \min _{x \in S_{1}}\|x-y\|\right\}
$$

Note that $\quad d_{H}(\mathbf{a}, \mathbf{b}) \leq\|\mathbf{a}-\mathbf{b}\| \leq d_{H}(\mathbf{a}, \mathbf{b})+\operatorname{diam} \mathbf{a}$ for $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{n d}$.

Notation

(1) Given $x=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}$, we set $\|x\|=\|x\|_{\infty}:=\max \left\{\left|x_{1}\right|, \ldots,\left|x_{d}\right|\right\}$. If $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n d}$, we set $\|\mathbf{a}\|:=\max \left\{\left\|a_{1}\right\|, \ldots,\left\|a_{n}\right\|\right\}$, $\operatorname{diama}:=\max _{i, j=1, \ldots, n}\left\|a_{i}-a_{j}\right\|, \quad \mathscr{S}_{\mathbf{a}}=\left\{a_{1}, \ldots, a_{n}\right\}$.
(2) $\chi_{\mathrm{x}}=\chi_{\Lambda_{1}(\mathrm{x})}=\chi_{\left\{\mathbf{y} \in \mathbb{R}^{n d} ;\|\mathrm{y}-\mathrm{x}\|<\frac{1}{2}\right\}} \quad$ for $\mathrm{x} \in \mathbb{R}^{n d}$.
(3) Fix $v>\frac{n d}{2}$ and let T be the operator on $L^{2}\left(\mathbb{R}^{n d}\right)$ given by multiplication of the function $\langle\mathbf{x}\rangle^{v}$, where $\langle\mathbf{x}\rangle=\left(1+\|\mathbf{x}\|^{2}\right)^{\frac{1}{2}}$.
(9) Given $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{n d}$, we set $d_{H}(\mathbf{a}, \mathbf{b}):=d_{H}\left(\mathscr{S}_{\mathbf{a}}, \mathscr{S}_{\mathbf{b}}\right)$, where $d_{H}\left(S_{1}, S_{2}\right)$ is the the Hausdorff distance between finite subsets $S_{1}, S_{2} \subseteq \mathbb{R}^{d}$:

$$
d_{H}\left(S_{1}, S_{2}\right):=\max \left\{\max _{x \in S_{1}} \min _{y \in S_{2}}\|x-y\|, \max _{y \in S_{2}} \min _{x \in S_{1}}\|x-y\|\right\}
$$

Note that $\quad d_{H}(\mathbf{a}, \mathbf{b}) \leq\|\mathbf{a}-\mathbf{b}\| \leq d_{H}(\mathbf{a}, \mathbf{b})+\operatorname{diam} \mathbf{a}$ for $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{n d}$.
(6) $H_{\omega}^{(n)}$ will denote a fixed n-particle Anderson Hamiltonian.

Theorem (Localization for multi-particle Anderson Ham.)

Theorem (Localization for multi-particle Anderson Ham.)

Given $N \in \mathbb{N}$, there exists an energy $E^{(N)}>0$ such that:

Theorem (Localization for multi-particle Anderson Ham.)

Given $N \in \mathbb{N}$, there exists an energy $E^{(N)}>0$ such that:
(I) The following holds with probability one:

Theorem (Localization for multi-particle Anderson Ham.)

Given $N \in \mathbb{N}$, there exists an energy $E^{(N)}>0$ such that:
(I) The following holds with probability one:

- (Anderson localization) H_{ω}^{N} has pure point spectrum in the interval $\left[0, E^{(N)}\right]$. Moreover, for all $E \leq E^{(N)}$ and $\psi \in \chi_{\{E\}}\left(H_{\omega}^{N}\right)$ we have

$$
\left\|\chi_{\mathrm{x}} \psi\right\| \leq C_{\omega, E}\left\|T^{-1} \psi\right\| e^{-M\|\mathbf{x}\|} \quad \text { for all } \quad \mathrm{x} \in \mathbb{R}^{N d}
$$

Theorem (Localization for multi-particle Anderson Ham.)

Given $N \in \mathbb{N}$, there exists an energy $E^{(N)}>0$ such that:
(I) The following holds with probability one:

- (Anderson localization) H_{ω}^{N} has pure point spectrum in the interval $\left[0, E^{(N)}\right]$. Moreover, for all $E \leq E^{(N)}$ and $\psi \in \chi_{\{E\}}\left(H_{\omega}^{N}\right)$ we have

$$
\left\|\chi_{\mathrm{x}} \psi\right\| \leq C_{\omega, E}\left\|T^{-1} \psi\right\| e^{-M\|\mathbf{x}\|} \quad \text { for all } \quad \mathrm{x} \in \mathbb{R}^{N d}
$$

In particular, each eigenfunction ψ of H_{ω}^{N} with eigenvalue $E \leq E^{(N)}$ is exponentially localized with the non-random rate of decay $M>0$.

Theorem (Localization for multi-particle Anderson Ham.)

Given $N \in \mathbb{N}$, there exists an energy $E^{(N)}>0$ such that:
(I) The following holds with probability one:

- (Anderson localization) H_{ω}^{N} has pure point spectrum in the interval [$0, E^{(N)}$]. Moreover, for all $E \leq E^{(N)}$ and $\psi \in \chi_{\{E\}}\left(H_{\omega}^{N}\right)$ we have

$$
\left\|\chi_{x} \psi\right\| \leq C_{\omega, E}\left\|T^{-1} \psi\right\| e^{-M\|x\|} \quad \text { for all } \quad \mathrm{x} \in \mathbb{R}^{N d} .
$$

In particular, each eigenfunction ψ of H_{ω}^{N} with eigenvalue $E \leq E^{(N)}$ is exponentially localized with the non-random rate of decay $M>0$.

- (Finite multiplicity of eigenvalues) The eigenvalues of H_{ω}^{N} in $\left[0, E^{(N)}\right]$ have finite multiplicity:

$$
\operatorname{tr} \chi_{\{E\}}\left(H_{\omega}^{N}\right)<\infty \quad \text { for all } E \leq E^{(N)} .
$$

Theorem-cont.

- (Summable Uniform Decay of Eigenfunction Correlations (SUDEC)). For every $\zeta \in(0,1)$ there exists a constant $C_{\omega, \zeta}$ such that for every $E \leq E^{(N)}$ and $\phi, \psi \in \operatorname{Ran} \chi_{\{E\}}\left(H_{\omega}^{N}\right)$ we have

$$
\left\|\chi_{\mathbf{x}} \phi\right\|\left\|\chi_{\mathbf{y}} \psi\right\| \leq C_{\omega, \zeta}\left\|T^{-1} \phi\right\|\left\|T^{-1} \psi\right\|\langle\mathbf{x}\rangle^{2 v} e^{-\left(d_{H}(\mathbf{x}, \mathbf{y})\right)^{\zeta}}
$$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{N d}$.

Theorem-cont.

- (Summable Uniform Decay of Eigenfunction Correlations (SUDEC)). For every $\zeta \in(0,1)$ there exists a constant $C_{\omega, \zeta}$ such that for every $E \leq E^{(N)}$ and $\phi, \psi \in \operatorname{Ran} \chi_{\{E\}}\left(H_{\omega}^{N}\right)$ we have

$$
\left\|\chi_{\mathrm{x}} \phi\right\|\left\|\chi_{\mathbf{y}} \psi\right\| \leq C_{\omega, \zeta}\left\|T^{-1} \phi\right\|\left\|T^{-1} \psi\right\|\langle\mathbf{x}\rangle^{2 v} e^{-\left(d_{H}(\mathbf{x}, \mathbf{y})\right)^{\zeta}}
$$ for all $x, y \in \mathbb{R}^{N d}$.

(II) (Dynamical Localization) For every $\zeta \in(0,1)$ and $\mathrm{y} \in \mathbb{R}^{N d}$ there exists a constant $C_{\zeta}(\mathbf{y})$ such that, letting $I=\left(-\infty, E^{(N)}\right]$,

$$
\mathbb{E}\left\{\sup _{\|g\|_{\infty} \leq 1}\left\|\chi_{\mathrm{x}} \chi_{l}\left(H_{\omega}^{N}\right) g\left(H_{\omega}^{N}\right) \chi_{\mathbf{y}}\right\|\right\} \leq C_{\zeta}(\mathrm{y}) e^{-\left(d_{H}(\mathrm{x}, \mathrm{y})\right)^{\zeta}} \text { for all } \mathrm{x} \in \mathbb{R}^{N d}
$$

the supremum being taken over all Borel functions g on \mathbb{R} with $\|g\|_{\infty}=\sup _{t \in \mathbb{R}}|g(t)| \leq 1$.

Theorem-cont.

- (Summable Uniform Decay of Eigenfunction Correlations (SUDEC)). For every $\zeta \in(0,1)$ there exists a constant $C_{\omega, \zeta}$ such that for every $E \leq E^{(N)}$ and $\phi, \psi \in \operatorname{Ran} \chi_{\{E\}}\left(H_{\omega}^{N}\right)$ we have

$$
\left\|\chi_{\mathrm{x}} \phi\right\|\left\|\chi_{\mathbf{y}} \psi\right\| \leq C_{\omega, \zeta}\left\|T^{-1} \phi\right\|\left\|T^{-1} \psi\right\|\langle\mathbf{x}\rangle^{2 v} e^{-\left(d_{H}(\mathbf{x}, \mathbf{y})\right)^{\zeta}}
$$ for all $\mathrm{x}, \mathrm{y} \in \mathbb{R}^{N d}$.

(II) (Dynamical Localization) For every $\zeta \in(0,1)$ and $\mathbf{y} \in \mathbb{R}^{N d}$ there exists a constant $C_{\zeta}(\mathrm{y})$ such that, letting $I=\left(-\infty, E^{(N)}\right]$,

$$
\mathbb{E}\left\{\sup _{\|g\|_{\infty} \leq 1}\left\|\chi_{\mathrm{x}} \chi_{l}\left(H_{\omega}^{N}\right) g\left(H_{\omega}^{N}\right) \chi_{\mathrm{y}}\right\|\right\} \leq C_{\zeta}(\mathrm{y}) e^{-\left(d_{H}(\mathrm{x}, \mathrm{y})\right)^{\zeta}} \text { for all } \mathrm{x} \in \mathbb{R}^{N d}
$$

the supremum being taken over all Borel functions g on \mathbb{R} with $\|g\|_{\infty}=\sup _{t \in \mathbb{R}}|g(t)| \leq 1$. In particular, we have

$$
\mathbb{E}\left\{\sup _{t \in \mathbb{R}}\left\|\chi_{\mathbf{x}} \chi_{l}\left(H_{\omega}^{N}\right) e^{i t H_{\omega}^{N}} \chi_{\mathbf{y}}\right\|\right\} \leq C_{\zeta}(\mathbf{y}) e^{-\left(d_{H}(\mathrm{x}, \mathrm{y})\right)^{\zeta}} \text { for all } \mathrm{x} \in \mathbb{R}^{N d}
$$

Comments

Comments

- Localization was proved for the (discrete) multi-particle Anderson model by Chulaevsky and Suhov, using a multiscale analysis, and by Aizenman and Warzel, using the fractional moment method.

Comments

- Localization was proved for the (discrete) multi-particle Anderson model by Chulaevsky and Suhov, using a multiscale analysis, and by Aizenman and Warzel, using the fractional moment method.
- Chulaevsky, Boutet de Monvel and Suhov extended the results of Chulaevsky and Suhov to the multi-particle Anderson Hamiltonian, obtaining localization at the bottom of the spectrum.

Comments

- Localization was proved for the (discrete) multi-particle Anderson model by Chulaevsky and Suhov, using a multiscale analysis, and by Aizenman and Warzel, using the fractional moment method.
- Chulaevsky, Boutet de Monvel and Suhov extended the results of Chulaevsky and Suhov to the multi-particle Anderson Hamiltonian, obtaining localization at the bottom of the spectrum.
- Our localization results are derived from a bootstrap multiscale analysis, an enhanced multiscale analysis developed in the one-particle case by Germinet and K.

Comments

- Localization was proved for the (discrete) multi-particle Anderson model by Chulaevsky and Suhov, using a multiscale analysis, and by Aizenman and Warzel, using the fractional moment method.
- Chulaevsky, Boutet de Monvel and Suhov extended the results of Chulaevsky and Suhov to the multi-particle Anderson Hamiltonian, obtaining localization at the bottom of the spectrum.
- Our localization results are derived from a bootstrap multiscale analysis, an enhanced multiscale analysis developed in the one-particle case by Germinet and K.
- Son Nguyen will describe this extension of bootstrap multiscale analysis in his talk.

Comments

- Localization was proved for the (discrete) multi-particle Anderson model by Chulaevsky and Suhov, using a multiscale analysis, and by Aizenman and Warzel, using the fractional moment method.
- Chulaevsky, Boutet de Monvel and Suhov extended the results of Chulaevsky and Suhov to the multi-particle Anderson Hamiltonian, obtaining localization at the bottom of the spectrum.
- Our localization results are derived from a bootstrap multiscale analysis, an enhanced multiscale analysis developed in the one-particle case by Germinet and K.
- Son Nguyen will describe this extension of bootstrap multiscale analysis in his talk.
- We extend the bootstrap multiscale analysis (and its consequences) to the multi-particle Anderson Hamiltonian without requiring a covering condition. This requires Wegner estimates without a covering condition, which will be described by Peter Hislop in his talk.

Unique continuation principle for spectral projections

Wegner estimates without a covering condition use a unique continuation principle for spectral projections, which we will now describe.

- AK, Unique continuation principle for spectral projections of Schrödinger operators and optimal Wegner estimates for non-ergodic random Schrödinger operators. Comm. Math Phys. 323, 1229-1246 (2013)
- Appendix to : AK and Son T. Nguyen, Bootstrap multiscale analysis and localization for multi-particle continuous Anderson Hamiltonians. Preprint (to be posted soon in the arXiv).

Schrödinger operators

We consider a Schrödinger operator

$$
H=-\Delta+V \quad \text { on } \quad \mathrm{L}^{2}\left(\mathbb{R}^{d}\right)
$$

where Δ is the Laplacian operator and V is a bounded potential.

Schrödinger operators

We consider a Schrödinger operator

$$
H=-\Delta+V \quad \text { on } \quad \mathrm{L}^{2}\left(\mathbb{R}^{d}\right)
$$

where Δ is the Laplacian operator and V is a bounded potential.

- We define balls and rectangles:

$$
\begin{aligned}
& \qquad B(x, \delta):=\left\{y \in \mathbb{R}^{d} ;|y-x|<\delta\right\} \text {, with }|x|:=|x|_{2}=\left(\sum_{j=1}^{d}\left|x_{j}\right|^{2}\right)^{\frac{1}{2}} ; \\
& \Lambda=\Lambda_{\mathrm{L}}(a):=a+\prod_{j=1}^{d}\left(-\frac{L_{j}}{2}, \frac{L_{j}}{2}\right)=\prod_{j=1}^{d}\left(a_{j}-\frac{L_{j}}{2}, a_{j}+\frac{L_{j}}{2}\right) \\
& \text { where } a \in \mathbb{R}^{d} \text { and } \mathrm{L}=\left(L_{1}, \ldots, L_{d}\right) \in(0, \infty)^{d} \text {. }
\end{aligned}
$$

Schrödinger operators

We consider a Schrödinger operator

$$
H=-\Delta+V \quad \text { on } \quad L^{2}\left(\mathbb{R}^{d}\right)
$$

where Δ is the Laplacian operator and V is a bounded potential.

- We define balls and rectangles:

$$
\begin{aligned}
& B(x, \delta):=\left\{y \in \mathbb{R}^{d} ;|y-x|<\delta\right\}, \text { with }|x|:=|x|_{2}=\left(\sum_{j=1}^{d}\left|x_{j}\right|^{2}\right)^{\frac{1}{2}} ; \\
\Lambda= & \Lambda_{\mathrm{L}}(a):=a+\prod_{j=1}^{d}\left(-\frac{L_{j}}{2}, \frac{L_{j}}{2}\right)=\prod_{j=1}^{d}\left(a_{j}-\frac{L_{j}}{2}, a_{j}+\frac{L_{j}}{2}\right)
\end{aligned}
$$

where $a \in \mathbb{R}^{d}$ and $\mathrm{L}=\left(L_{1}, \ldots, L_{d}\right) \in(0, \infty)^{d}$.

- H_{Λ} denotes the restriction of H to the the rectangle $\Lambda \subset \mathbb{R}^{d}$:

$$
H_{\Lambda}=-\Delta_{\Lambda}+V_{\Lambda} \quad \text { on } \quad L^{2}(\Lambda)
$$

- Δ_{\wedge} is the Laplacian on Λ with either Dirichlet or periodic bc.
- V_{Λ} is the restriction of V to Λ..

Unique continuation principle for spectral projections

A UCPSP on a rectangle Λ is an estimate of the form

$$
\chi_{I}\left(H_{\Lambda}\right) W_{\Lambda} \chi_{I}\left(H_{\Lambda}\right) \geq \kappa \chi_{I}\left(H_{\Lambda}\right) \quad \text { on } \quad \mathrm{L}^{2}(\Lambda)
$$

where χ_{I} is the characteristic function of an interval $I \subset \mathbb{R}, W \geq 0$ is a potential, and $\kappa>0$ is a constant.

Unique continuation principle for spectral projections

A UCPSP on a rectangle Λ is an estimate of the form

$$
\chi_{I}\left(H_{\Lambda}\right) W_{\Lambda} \chi_{I}\left(H_{\Lambda}\right) \geq \kappa \chi_{I}\left(H_{\Lambda}\right) \quad \text { on } \quad \mathrm{L}^{2}(\Lambda)
$$

where χ_{1} is the characteristic function of an interval $I \subset \mathbb{R}, W \geq 0$ is a potential, and $\kappa>0$ is a constant.

- If $W \geq \kappa>0$ (covering condition) the UCPSP is trivial.

Unique continuation principle for spectral projections

A UCPSP on a rectangle Λ is an estimate of the form

$$
\chi_{I}\left(H_{\Lambda}\right) W_{\Lambda} \chi_{I}\left(H_{\Lambda}\right) \geq \kappa \chi_{l}\left(H_{\Lambda}\right) \quad \text { on } \quad \mathrm{L}^{2}(\Lambda)
$$

where χ_{I} is the characteristic function of an interval $I \subset \mathbb{R}, W \geq 0$ is a potential, and $\kappa>0$ is a constant.

- If $W \geq \kappa>0$ (covering condition) the UCPSP is trivial.
- If V and W are bounded \mathbb{Z}^{d}-periodic potentials, $W \geq 0$ with $W>0$ on an open set, Combes, Hislop and Klopp (2003) proved the UCPSP for H_{Λ} with periodic boundary condition, for boxes $\Lambda=\Lambda_{L}\left(x_{0}\right) \subset \mathbb{R}^{d}$ with $L \in \mathbb{N}$ and arbitrary bounded intervals I, with a constant $\kappa>0$ depending on sup $/$ (and d, V, W), but not on the box Λ. Their proof uses the unique continuation principle and Floquet theory.

Unique continuation principle for spectral projections

A UCPSP on a rectangle Λ is an estimate of the form

$$
\chi_{I}\left(H_{\Lambda}\right) W_{\Lambda} \chi_{I}\left(H_{\Lambda}\right) \geq \kappa \chi_{I}\left(H_{\Lambda}\right) \quad \text { on } \quad L^{2}(\Lambda)
$$

where χ_{I} is the characteristic function of an interval $I \subset \mathbb{R}, W \geq 0$ is a potential, and $\kappa>0$ is a constant.

- If $W \geq \kappa>0$ (covering condition) the UCPSP is trivial.
- If V and W are bounded \mathbb{Z}^{d}-periodic potentials, $W \geq 0$ with $W>0$ on an open set, Combes, Hislop and Klopp (2003) proved the UCPSP for H_{Λ} with periodic boundary condition, for boxes $\Lambda=\Lambda_{L}\left(x_{0}\right) \subset \mathbb{R}^{d}$ with $L \in \mathbb{N}$ and arbitrary bounded intervals I, with a constant $\kappa>0$ depending on sup $/$ (and d, V, W), but not on the box Λ. Their proof uses the unique continuation principle and Floquet theory.
- Germinet and Klein (2013) proved a modified version of the CHK UCPSP, using Bourgain and Kenig's quantitative unique continuation principle and (some) Floquet theory, obtaining control of the constant κ in terms of the relevant parameters.

Theorem (UCPSP)

There exists a constant $M_{d}>0$, depending only on d, such that:

Theorem (UCPSP)

There exists a constant $M_{d}>0$, depending only on d, such that: - Let $H=-\Delta+V$ be a Schrödinger operator on $\mathrm{L}^{2}\left(\mathbb{R}^{d}\right)$.

Theorem (UCPSP)

There exists a constant $M_{d}>0$, depending only on d, such that:

- Let $H=-\Delta+V$ be a Schrödinger operator on $\mathrm{L}^{2}\left(\mathbb{R}^{d}\right)$.
- Given an energy $E_{0}>0$ and $\left.\delta \in\right] 0, \frac{1}{2}$], define $\gamma=\gamma(d, K, \delta)>0$ by

$$
\gamma^{2}=\frac{1}{2} \delta^{M_{d}\left(1+K^{\frac{2}{3}}\right)}, \quad \text { where } \quad K=K\left(V, E_{0}\right)=2\|V\|_{\infty}+E_{0}
$$

Theorem (UCPSP)

There exists a constant $M_{d}>0$, depending only on d, such that:

- Let $H=-\Delta+V$ be a Schrödinger operator on $\mathrm{L}^{2}\left(\mathbb{R}^{d}\right)$.
- Given an energy $E_{0}>0$ and $\left.\delta \in\right] 0, \frac{1}{2}$], define $\gamma=\gamma(d, K, \delta)>0$ by

$$
\gamma^{2}=\frac{1}{2} \delta^{M_{d}\left(1+K^{\frac{2}{3}}\right)}, \quad \text { where } \quad K=K\left(V, E_{0}\right)=2\|V\|_{\infty}+E_{0}
$$

Then, given

Theorem (UCPSP)

There exists a constant $M_{d}>0$, depending only on d, such that:

- Let $H=-\Delta+V$ be a Schrödinger operator on $\mathrm{L}^{2}\left(\mathbb{R}^{d}\right)$.
- Given an energy $E_{0}>0$ and $\left.\delta \in\right] 0, \frac{1}{2}$], define $\gamma=\gamma(d, K, \delta)>0$ by

$$
\gamma^{2}=\frac{1}{2} \delta^{M_{d}\left(1+K^{\frac{2}{3}}\right)}, \quad \text { where } \quad K=K\left(V, E_{0}\right)=2\|V\|_{\infty}+E_{0}
$$

Then, given

- $\left\{y_{k}\right\}_{k \in \mathbb{Z}^{d}} \subset \mathbb{R}^{d}$ with $B\left(y_{k}, \delta\right) \subset \Lambda_{1}(k)$ for all $k \in \mathbb{Z}^{d}$,

Theorem (UCPSP)

There exists a constant $M_{d}>0$, depending only on d, such that:

- Let $H=-\Delta+V$ be a Schrödinger operator on $\mathrm{L}^{2}\left(\mathbb{R}^{d}\right)$.
- Given an energy $E_{0}>0$ and $\left.\delta \in\right] 0, \frac{1}{2}$], define $\gamma=\gamma(d, K, \delta)>0$ by

$$
\gamma^{2}=\frac{1}{2} \delta^{M_{d}\left(1+K^{\frac{2}{3}}\right)}, \quad \text { where } \quad K=K\left(V, E_{0}\right)=2\|V\|_{\infty}+E_{0}
$$

Then, given

- $\left\{y_{k}\right\}_{k \in \mathbb{Z}^{d}} \subset \mathbb{R}^{d}$ with $B\left(y_{k}, \delta\right) \subset \Lambda_{1}(k)$ for all $k \in \mathbb{Z}^{d}$,
- a closed interval $\left.I \subset]-\infty, E_{0}\right]$ with $|I| \leq 2 \gamma$,

Theorem (UCPSP)

There exists a constant $M_{d}>0$, depending only on d, such that:

- Let $H=-\Delta+V$ be a Schrödinger operator on $\mathrm{L}^{2}\left(\mathbb{R}^{d}\right)$.
- Given an energy $E_{0}>0$ and $\left.\delta \in\right] 0, \frac{1}{2}$], define $\gamma=\gamma(d, K, \delta)>0$ by

$$
\gamma^{2}=\frac{1}{2} \delta^{M_{d}\left(1+K^{\frac{2}{3}}\right)}, \quad \text { where } \quad K=K\left(V, E_{0}\right)=2\|V\|_{\infty}+E_{0}
$$

Then, given

- $\left\{y_{k}\right\}_{k \in \mathbb{Z}^{d}} \subset \mathbb{R}^{d}$ with $B\left(y_{k}, \delta\right) \subset \Lambda_{1}(k)$ for all $k \in \mathbb{Z}^{d}$,
- a closed interval $\left.I \subset]-\infty, E_{0}\right]$ with $|I| \leq 2 \gamma$,
- a rectangle $\Lambda=\Lambda_{\mathrm{L}}\left(x_{0}\right)$ with $x_{0} \in \mathbb{R}^{d}$ and $L_{j} \geq 114 \sqrt{d}, j=1, \ldots, d$,

Theorem (UCPSP)

There exists a constant $M_{d}>0$, depending only on d, such that:

- Let $H=-\Delta+V$ be a Schrödinger operator on $\mathrm{L}^{2}\left(\mathbb{R}^{d}\right)$.
- Given an energy $E_{0}>0$ and $\left.\delta \in\right] 0, \frac{1}{2}$], define $\gamma=\gamma(d, K, \delta)>0$ by

$$
\gamma^{2}=\frac{1}{2} \delta^{M_{d}\left(1+K^{\frac{2}{3}}\right)}, \quad \text { where } \quad K=K\left(V, E_{0}\right)=2\|V\|_{\infty}+E_{0}
$$

Then, given

- $\left\{y_{k}\right\}_{k \in \mathbb{Z}^{d}} \subset \mathbb{R}^{d}$ with $B\left(y_{k}, \delta\right) \subset \Lambda_{1}(k)$ for all $k \in \mathbb{Z}^{d}$,
- a closed interval $\left.I \subset]-\infty, E_{0}\right]$ with $|I| \leq 2 \gamma$,
- a rectangle $\Lambda=\Lambda_{\mathrm{L}}\left(x_{0}\right)$ with $x_{0} \in \mathbb{R}^{d}$ and $L_{j} \geq 114 \sqrt{d}, j=1, \ldots, d$, we have

$$
\chi_{I}\left(H_{\Lambda}\right) W^{(\Lambda)} \chi_{I}\left(H_{\Lambda}\right) \geq \gamma^{2} \chi_{I}\left(H_{\Lambda}\right) \quad \text { on } \quad L^{2}(\Lambda)
$$

Theorem (UCPSP)

There exists a constant $M_{d}>0$, depending only on d, such that:

- Let $H=-\Delta+V$ be a Schrödinger operator on $\mathrm{L}^{2}\left(\mathbb{R}^{d}\right)$.
- Given an energy $E_{0}>0$ and $\left.\delta \in\right] 0, \frac{1}{2}$], define $\gamma=\gamma(d, K, \delta)>0$ by

$$
\gamma^{2}=\frac{1}{2} \delta^{M_{d}\left(1+K^{\frac{2}{3}}\right)}, \quad \text { where } \quad K=K\left(V, E_{0}\right)=2\|V\|_{\infty}+E_{0}
$$

Then, given

- $\left\{y_{k}\right\}_{k \in \mathbb{Z}^{d}} \subset \mathbb{R}^{d}$ with $B\left(y_{k}, \delta\right) \subset \Lambda_{1}(k)$ for all $k \in \mathbb{Z}^{d}$,
- a closed interval $\left.I \subset]-\infty, E_{0}\right]$ with $|I| \leq 2 \gamma$,
- a rectangle $\Lambda=\Lambda_{\mathrm{L}}\left(x_{0}\right)$ with $x_{0} \in \mathbb{R}^{d}$ and $L_{j} \geq 114 \sqrt{d}, j=1, \ldots, d$, we have

$$
\chi_{I}\left(H_{\Lambda}\right) W^{(\Lambda)} \chi_{I}\left(H_{\Lambda}\right) \geq \gamma^{2} \chi_{I}\left(H_{\Lambda}\right) \quad \text { on } \quad L^{2}(\Lambda)
$$

where

$$
W^{(\Lambda)}=\sum_{k \in \mathbb{Z}^{d}, \Lambda_{1}(k) \subset \Lambda} \chi_{B\left(y_{k}, \delta\right)}
$$

Comments on the UCPSP

- Rojas-Molina and Veselić (2013) proved, under the hypotheses of the Theorem, that for boxes $\Lambda=\Lambda_{L}\left(x_{0}\right)$ with $x_{0} \in \mathbb{Z}^{d}$ and $L \in \mathbb{N}_{\text {odd }}$, if ψ is an eigenfunction of H_{Λ} with eigenvalue $\left.\left.E \in\right]-\infty, E_{0}\right]$, then

$$
\left\|W^{(\Lambda)} \psi\right\|_{2}^{2} \geq \kappa_{E_{0}}\|\psi\|_{2}^{2} \quad \text { with } \quad \kappa_{E_{0}}>0
$$

Comments on the UCPSP

- Rojas-Molina and Veselić (2013) proved, under the hypotheses of the Theorem, that for boxes $\Lambda=\Lambda_{L}\left(x_{0}\right)$ with $x_{0} \in \mathbb{Z}^{d}$ and $L \in \mathbb{N}_{\text {odd }}$, if ψ is an eigenfunction of H_{Λ} with eigenvalue $\left.\left.E \in\right]-\infty, E_{0}\right]$, then

$$
\left\|W^{(\Lambda)} \psi\right\|_{2}^{2} \geq \kappa_{E_{0}}\|\psi\|_{2}^{2} \quad \text { with } \quad \kappa_{E_{0}}>0
$$

This is just the UCPSP when $I=\{E\}$.

Comments on the UCPSP

- Rojas-Molina and Veselić (2013) proved, under the hypotheses of the Theorem, that for boxes $\Lambda=\Lambda_{L}\left(x_{0}\right)$ with $x_{0} \in \mathbb{Z}^{d}$ and $L \in \mathbb{N}_{\text {odd }}$, if ψ is an eigenfunction of H_{Λ} with eigenvalue $\left.\left.E \in\right]-\infty, E_{0}\right]$, then

$$
\left\|W^{(\Lambda)} \psi\right\|_{2}^{2} \geq \kappa_{E_{0}}\|\psi\|_{2}^{2} \quad \text { with } \quad \kappa_{E_{0}}>0
$$

This is just the UCPSP when $I=\{E\}$. Their proof uses the quantitative unique continuation principle (Bourgain and Kenig).

Comments on the UCPSP

- Rojas-Molina and Veselić (2013) proved, under the hypotheses of the Theorem, that for boxes $\Lambda=\Lambda_{L}\left(x_{0}\right)$ with $x_{0} \in \mathbb{Z}^{d}$ and $L \in \mathbb{N}_{\text {odd }}$, if ψ is an eigenfunction of H_{Λ} with eigenvalue $\left.\left.E \in\right]-\infty, E_{0}\right]$, then

$$
\left\|W^{(\Lambda)} \psi\right\|_{2}^{2} \geq \kappa_{E_{0}}\|\psi\|_{2}^{2} \quad \text { with } \quad \kappa_{E_{0}}>0
$$

This is just the UCPSP when $I=\{E\}$. Their proof uses the quantitative unique continuation principle (Bourgain and Kenig).

- Our Theorem is derived from the quantitative unique continuation principle as in Bourgain and Klein using the "dominant boxes" introduced by Rojas-Molina and Veselić.

Comments on the UCPSP

- Rojas-Molina and Veselić (2013) proved, under the hypotheses of the Theorem, that for boxes $\Lambda=\Lambda_{L}\left(x_{0}\right)$ with $x_{0} \in \mathbb{Z}^{d}$ and $L \in \mathbb{N}_{\text {odd }}$, if ψ is an eigenfunction of H_{Λ} with eigenvalue $\left.\left.E \in\right]-\infty, E_{0}\right]$, then

$$
\left\|W^{(\Lambda)} \psi\right\|_{2}^{2} \geq \kappa_{E_{0}}\|\psi\|_{2}^{2} \quad \text { with } \quad \kappa_{E_{0}}>0
$$

This is just the UCPSP when $I=\{E\}$. Their proof uses the quantitative unique continuation principle (Bourgain and Kenig).

- Our Theorem is derived from the quantitative unique continuation principle as in Bourgain and Klein using the "dominant boxes" introduced by Rojas-Molina and Veselić.
- The UCPSP is a crucial ingredient for proving Wegner estimates for one and multi-particle Anderson Hamiltonians. The UCPSP replaces the covering condition.

Quantitative unique continuation principle (Bourgain-Klein)

Quantitative unique continuation principle (Bourgain-Klein)

Let $\Omega \subset \mathbb{R}^{d}$ open. Let $\psi \in \mathrm{H}^{2}(\Omega)$ and let $\zeta \in \mathrm{L}^{2}(\Omega)$ be defined by

$$
-\Delta \psi+V \psi=\zeta \quad \text { a.e. on } \quad \Omega,
$$

where V is a bounded real measurable function on $\Omega,\|V\|_{\infty} \leq K<\infty$.

Quantitative unique continuation principle (Bourgain-Klein)

Let $\Omega \subset \mathbb{R}^{d}$ open. Let $\psi \in \mathrm{H}^{2}(\Omega)$ and let $\zeta \in \mathrm{L}^{2}(\Omega)$ be defined by

$$
-\Delta \psi+V \psi=\zeta \quad \text { a.e. on } \quad \Omega,
$$

where V is a bounded real measurable function on $\Omega,\|V\|_{\infty} \leq K<\infty$. Let $\Theta \subset \Omega$ be a bounded measurable set where $\left\|\psi \chi_{\Theta}\right\|_{2}>0$.

Quantitative unique continuation principle (Bourgain-Klein)

Let $\Omega \subset \mathbb{R}^{d}$ open. Let $\psi \in \mathrm{H}^{2}(\Omega)$ and let $\zeta \in \mathrm{L}^{2}(\Omega)$ be defined by

$$
-\Delta \psi+V \psi=\zeta \quad \text { a.e. on } \quad \Omega,
$$

where V is a bounded real measurable function on $\Omega,\|V\|_{\infty} \leq K<\infty$. Let $\Theta \subset \Omega$ be a bounded measurable set where $\left\|\psi \chi_{\Theta}\right\|_{2}>0$. Set $Q(x, \Theta):=\sup _{y \in \Theta}|y-x| \quad$ for $\quad x \in \Omega$.

Quantitative unique continuation principle (Bourgain-Klein)

Let $\Omega \subset \mathbb{R}^{d}$ open. Let $\psi \in \mathrm{H}^{2}(\Omega)$ and let $\zeta \in \mathrm{L}^{2}(\Omega)$ be defined by

$$
-\Delta \psi+V \psi=\zeta \quad \text { a.e. on } \quad \Omega,
$$

where V is a bounded real measurable function on $\Omega,\|V\|_{\infty} \leq K<\infty$. Let $\Theta \subset \Omega$ be a bounded measurable set where $\left\|\psi \chi_{\theta}\right\|_{2}>0$.

Set $Q(x, \Theta):=\sup _{y \in \Theta}|y-x| \quad$ for $x \in \Omega$.
Let $x_{0} \in \Omega \backslash \bar{\Theta}$ satisfy $Q=Q\left(x_{0}, \Theta\right) \geq 1$ and $B\left(x_{0}, 6 Q+2\right) \subset \Omega$.

Quantitative unique continuation principle (Bourgain-Klein)

Let $\Omega \subset \mathbb{R}^{d}$ open. Let $\psi \in \mathrm{H}^{2}(\Omega)$ and let $\zeta \in \mathrm{L}^{2}(\Omega)$ be defined by

$$
-\Delta \psi+V \psi=\zeta \quad \text { a.e. on } \quad \Omega,
$$

where V is a bounded real measurable function on $\Omega,\|V\|_{\infty} \leq K<\infty$. Let $\Theta \subset \Omega$ be a bounded measurable set where $\left\|\psi \chi_{\Theta}\right\|_{2}>0$.

$$
\text { Set } Q(x, \Theta):=\sup _{y \in \Theta}|y-x| \quad \text { for } \quad x \in \Omega \text {. }
$$

Let $x_{0} \in \Omega \backslash \bar{\Theta}$ satisfy $Q=Q\left(x_{0}, \Theta\right) \geq 1 \quad$ and $\quad B\left(x_{0}, 6 Q+2\right) \subset \Omega$.
Then, given

$$
0<\delta \leq \min \left\{\operatorname{dist}\left(x_{0}, \Theta\right), \frac{1}{2}\right\}
$$

Quantitative unique continuation principle (Bourgain-Klein)

Let $\Omega \subset \mathbb{R}^{d}$ open. Let $\psi \in \mathrm{H}^{2}(\Omega)$ and let $\zeta \in \mathrm{L}^{2}(\Omega)$ be defined by

$$
-\Delta \psi+V \psi=\zeta \quad \text { a.e. on } \quad \Omega,
$$

where V is a bounded real measurable function on $\Omega,\|V\|_{\infty} \leq K<\infty$. Let $\Theta \subset \Omega$ be a bounded measurable set where $\left\|\psi_{\chi_{\theta}}\right\|_{2}>0$.

$$
\text { Set } Q(x, \Theta):=\sup _{y \in \Theta}|y-x| \text { for } x \in \Omega \text {. }
$$

Let $x_{0} \in \Omega \backslash \bar{\Theta}$ satisfy $Q=Q\left(x_{0}, \Theta\right) \geq 1$ and $B\left(x_{0}, 6 Q+2\right) \subset \Omega$.
Then, given

$$
0<\delta \leq \min \left\{\operatorname{dist}\left(x_{0}, \Theta\right), \frac{1}{2}\right\}
$$

we have

$$
\left(\frac{\delta}{Q}\right)^{m_{d}\left(1+K^{\frac{2}{3}}\right)\left(Q^{\frac{4}{3}}+\log \frac{\left\|\psi \chi_{\Omega}\right\|_{2}}{\left\|\psi \chi_{\Theta}\right\|_{2}}\right)}\left\|\psi \chi_{\Theta}\right\|_{2}^{2} \leq\left\|\psi \chi_{B\left(x_{0}, \delta\right)}\right\|_{2}^{2}+\left\|\zeta \chi_{\Omega}\right\|_{2}^{2},
$$

where $m_{d}>0$ is a constant depending only on d.

A corollary to the quantitative unique continuation principle

A corollary to the quantitative unique continuation principle

Corollary
There exists a constant $M_{d}>0$, depending only on d, such that:

A corollary to the quantitative unique continuation principle

Corollary
There exists a constant $M_{d}>0$, depending only on d, such that:

- Let $H=-\Delta+V$ be a Schrödinger operator on $L^{2}\left(\mathbb{R}^{d}\right)$, where V is a bounded potential with $\|V\|_{\infty} \leq K$.

A corollary to the quantitative unique continuation principle

Corollary
There exists a constant $M_{d}>0$, depending only on d, such that:

- Let $H=-\Delta+V$ be a Schrödinger operator on $L^{2}\left(\mathbb{R}^{d}\right)$, where V is a bounded potential with $\|V\|_{\infty} \leq K$.
- Fix $\left.\delta \in] 0, \frac{1}{2}\right]$ and sites $\left\{y_{k}\right\}_{k \in \mathbb{Z}^{d}} \subset \mathbb{R}^{d}$ with $B\left(y_{k}, \delta\right) \subset \Lambda_{1}(k)$ for all $k \in \mathbb{Z}^{d}$.

A corollary to the quantitative unique continuation principle

Corollary
There exists a constant $M_{d}>0$, depending only on d, such that:

- Let $H=-\Delta+V$ be a Schrödinger operator on $L^{2}\left(\mathbb{R}^{d}\right)$, where V is a bounded potential with $\|V\|_{\infty} \leq K$.
- Fix $\left.\delta \in] 0, \frac{1}{2}\right]$ and sites $\left\{y_{k}\right\}_{k \in \mathbb{Z}^{d}} \subset \mathbb{R}^{d}$ with $B\left(y_{k}, \delta\right) \subset \Lambda_{1}(k)$ for all $k \in \mathbb{Z}^{d}$.
- Consider a rectangle $\Lambda=\Lambda_{\mathrm{L}}\left(x_{0}\right)$ with $x_{0} \in \mathbb{R}^{d}$ and $L_{j} \geq 114 \sqrt{d}$, $j=1, \ldots, d$,

A corollary to the quantitative unique continuation principle

Corollary
There exists a constant $M_{d}>0$, depending only on d, such that:

- Let $H=-\Delta+V$ be a Schrödinger operator on $L^{2}\left(\mathbb{R}^{d}\right)$, where V is a bounded potential with $\|V\|_{\infty} \leq K$.
- Fix $\left.\delta \in] 0, \frac{1}{2}\right]$ and sites $\left\{y_{k}\right\}_{k \in \mathbb{Z}^{d}} \subset \mathbb{R}^{d}$ with $B\left(y_{k}, \delta\right) \subset \Lambda_{1}(k)$ for all $k \in \mathbb{Z}^{d}$.
- Consider a rectangle $\Lambda=\Lambda_{\mathrm{L}}\left(x_{0}\right)$ with $x_{0} \in \mathbb{R}^{d}$ and $L_{j} \geq 114 \sqrt{d}$, $j=1, \ldots, d$,
Then for all real-valued $\psi \in \mathscr{D}\left(\Delta_{\Lambda}\right)=\mathscr{D}\left(H_{\Lambda}\right)$ we have (on $\mathrm{L}^{2}(\Lambda)$)

A corollary to the quantitative unique continuation principle

Corollary
There exists a constant $M_{d}>0$, depending only on d, such that:

- Let $H=-\Delta+V$ be a Schrödinger operator on $L^{2}\left(\mathbb{R}^{d}\right)$, where V is a bounded potential with $\|V\|_{\infty} \leq K$.
- Fix $\left.\delta \in] 0, \frac{1}{2}\right]$ and sites $\left\{y_{k}\right\}_{k \in \mathbb{Z}^{d}} \subset \mathbb{R}^{d}$ with $B\left(y_{k}, \delta\right) \subset \Lambda_{1}(k)$ for all $k \in \mathbb{Z}^{d}$.
- Consider a rectangle $\Lambda=\Lambda_{\mathrm{L}}\left(x_{0}\right)$ with $x_{0} \in \mathbb{R}^{d}$ and $L_{j} \geq 114 \sqrt{d}$, $j=1, \ldots, d$,
Then for all real-valued $\psi \in \mathscr{D}\left(\Delta_{\Lambda}\right)=\mathscr{D}\left(H_{\Lambda}\right)$ we have (on $\mathrm{L}^{2}(\Lambda)$)

$$
\begin{aligned}
\delta^{M_{d}\left(1+K^{\frac{2}{3}}\right)}\|\psi\|_{2}^{2} & \leq \sum_{k \in \mathbb{Z}^{d}, \Lambda_{1}(k) \subset \Lambda}\left\|\psi \chi_{B\left(y_{k}, \delta\right)}\right\|_{2}^{2}+\delta^{2}\left\|H_{\Lambda} \psi\right\|_{2}^{2} \\
& =\left\|W^{(\Lambda)} \psi\right\|_{2}^{2}+\delta^{2}\left\|H_{\Lambda} \psi\right\|_{2}^{2} .
\end{aligned}
$$

Proof of the UCPSP

Proof of the UCPSP

Let $E_{0}>0$ and $\left.\left.I \subset\right]-\infty, E_{0}\right]$ a closed interval; set $\beta=\frac{1}{2}|I|$. Since $H_{\Lambda} \geq-\|V\|_{\infty}$ for any box Λ, without loss of generality we assume $I=[E-\beta, E+\beta]$ with $E \in\left[-\|V\|_{\infty}, E_{0}\right]$, so

$$
\|V-E\|_{\infty} \leq\|V\|_{\infty}+\max \left\{E_{0},\|V\|_{\infty}\right\} \leq K=2\|V\|_{\infty}+E_{0} .
$$

Proof of the UCPSP

Let $E_{0}>0$ and $\left.\left.I \subset\right]-\infty, E_{0}\right]$ a closed interval; set $\beta=\frac{1}{2}|I|$. Since $H_{\Lambda} \geq-\|V\|_{\infty}$ for any box Λ, without loss of generality we assume $I=[E-\beta, E+\beta]$ with $E \in\left[-\|V\|_{\infty}, E_{0}\right]$, so

$$
\|V-E\|_{\infty} \leq\|V\|_{\infty}+\max \left\{E_{0},\|V\|_{\infty}\right\} \leq K=2\|V\|_{\infty}+E_{0} .
$$

Moreover, for any box Λ we have

$$
\left\|\left(H_{\Lambda}-E\right) \psi\right\|_{2} \leq \beta\|\psi\|_{2} \quad \text { for } \quad \psi=\chi_{1}\left(H_{\Lambda}\right) \psi .
$$

Proof of the UCPSP

Let $E_{0}>0$ and $\left.\left.I \subset\right]-\infty, E_{0}\right]$ a closed interval; set $\beta=\frac{1}{2}|I|$. Since $H_{\Lambda} \geq-\|V\|_{\infty}$ for any box Λ, without loss of generality we assume $I=[E-\beta, E+\beta]$ with $E \in\left[-\|V\|_{\infty}, E_{0}\right]$, so

$$
\|V-E\|_{\infty} \leq\|V\|_{\infty}+\max \left\{E_{0},\|V\|_{\infty}\right\} \leq K=2\|V\|_{\infty}+E_{0} .
$$

Moreover, for any box Λ we have

$$
\left\|\left(H_{\Lambda}-E\right) \psi\right\|_{2} \leq \beta\|\psi\|_{2} \quad \text { for } \quad \psi=\chi_{1}\left(H_{\Lambda}\right) \psi .
$$

Let Λ be a box as in the Corollary and $\psi=\chi_{I}\left(H_{\Lambda}\right) \psi$ real-valued. It follows from the Corollary applied to $H-E$ that
$\delta^{M_{d}\left(1+K^{\frac{2}{3}}\right)}\|\psi\|_{2}^{2} \leq\left\|W^{(\Lambda)} \psi\right\|_{2}^{2}+\delta^{2}\left\|\left(H_{\Lambda}-E\right) \psi\right\|_{2}^{2} \leq\left\|W^{(\Lambda)} \psi\right\|_{2}^{2}+\beta^{2}\|\psi\|_{2}^{2}$.

Proof of the UCPSP

Let $E_{0}>0$ and $\left.\left.I \subset\right]-\infty, E_{0}\right]$ a closed interval; set $\beta=\frac{1}{2}|I|$. Since $H_{\Lambda} \geq-\|V\|_{\infty}$ for any box Λ, without loss of generality we assume $I=[E-\beta, E+\beta]$ with $E \in\left[-\|V\|_{\infty}, E_{0}\right]$, so

$$
\|V-E\|_{\infty} \leq\|V\|_{\infty}+\max \left\{E_{0},\|V\|_{\infty}\right\} \leq K=2\|V\|_{\infty}+E_{0} .
$$

Moreover, for any box Λ we have

$$
\left\|\left(H_{\Lambda}-E\right) \psi\right\|_{2} \leq \beta\|\psi\|_{2} \quad \text { for } \quad \psi=\chi_{1}\left(H_{\Lambda}\right) \psi .
$$

Let Λ be a box as in the Corollary and $\psi=\chi_{I}\left(H_{\Lambda}\right) \psi$ real-valued. It follows from the Corollary applied to $H-E$ that

$$
\delta^{M_{d}\left(1+K^{\frac{2}{3}}\right)}\|\psi\|_{2}^{2} \leq\left\|W^{(\Lambda)} \psi\right\|_{2}^{2}+\delta^{2}\left\|\left(H_{\Lambda}-E\right) \psi\right\|_{2}^{2} \leq\left\|W^{(\Lambda)} \psi\right\|_{2}^{2}+\beta^{2}\|\psi\|_{2}^{2}
$$

$$
\text { If } \beta^{2} \leq \gamma^{2}:=\frac{1}{2} \delta^{M_{d}\left(1+K^{\frac{2}{3}}\right)} \text {, i.e., }|I| \leq 2 \gamma \text {, we get }
$$

$$
\gamma^{2}\|\psi\|_{2}^{2} \leq\left\|W^{(\Lambda)} \psi\right\|_{2}^{2}, \quad \text { i.e., } \quad \gamma^{2} \chi_{l}\left(H_{\Lambda}\right) \leq \chi_{l}\left(H_{\Lambda}\right) W^{(\Lambda)} \chi_{l}\left(H_{\Lambda}\right)
$$

Proof of the Corollary

For simplicity we take a box $\Lambda=\Lambda_{L}(0)$ with $L \in \mathbb{N}_{\text {odd }}$. We extend functions φ on Λ to functions \widehat{V} and $\widetilde{\varphi}$ on \mathbb{R}^{d} and V to a potential \widehat{V} on \mathbb{R}^{d} so

$$
(-\widetilde{\Delta+V}) \psi=(-\Delta+\widehat{V}) \widetilde{\psi}
$$

Proof of the Corollary

For simplicity we take a box $\Lambda=\Lambda_{L}(0)$ with $L \in \mathbb{N}_{\text {odd }}$. We extend functions φ on Λ to functions \widehat{V} and $\widetilde{\varphi}$ on \mathbb{R}^{d} and V to a potential \widehat{V} on \mathbb{R}^{d} so

$$
(-\widetilde{\Delta+V}) \psi=(-\Delta+\widehat{V}) \widetilde{\psi}
$$

Take $Y \in \mathbb{N}_{\text {odd }}, 9 \leq Y<\frac{L}{2}$. Since L is odd, we have $\bar{\Lambda}=\bigcup_{k \in \Lambda \cap \mathbb{Z}^{d}} \overline{\Lambda_{1}(k)}$. It follows that for all $\varphi \in \mathrm{L}^{2}(\Lambda)$ we have

$$
\sum_{k \in \Lambda \cap \mathbb{Z}^{d}}\left\|\widetilde{\varphi}_{\wedge_{Y}(k)}\right\|_{2}^{2} \leq(2 Y)^{d}\left\|\varphi_{\wedge}\right\|_{2}^{2}
$$

Proof of the Corollary

For simplicity we take a box $\Lambda=\Lambda_{L}(0)$ with $L \in \mathbb{N}_{\text {odd }}$. We extend functions φ on Λ to functions \widehat{V} and $\widetilde{\varphi}$ on \mathbb{R}^{d} and V to a potential \widehat{V} on \mathbb{R}^{d} so

$$
(-\widetilde{\Delta+V}) \psi=(-\Delta+\widehat{V}) \widetilde{\psi}
$$

Take $Y \in \mathbb{N}_{\text {odd }}, 9 \leq Y<\frac{L}{2}$. Since L is odd, we have $\bar{\Lambda}=\bigcup_{k \in \Lambda \cap \mathbb{Z}^{d}} \overline{\Lambda_{1}(k)}$. It follows that for all $\varphi \in \mathrm{L}^{2}(\Lambda)$ we have

$$
\sum_{k \in \Lambda \cap \mathbb{Z}^{d}}\left\|\widetilde{\varphi}_{\wedge_{Y}(k)}\right\|_{2}^{2} \leq(2 Y)^{d}\left\|\varphi_{\wedge}\right\|_{2}^{2}
$$

We now fix $\psi \in \mathscr{D}\left(\Delta_{\Lambda}\right)$. Following Rojas-Molina and Veselić, we call a site $k \in \widehat{\Lambda}=\Lambda \cap \mathbb{Z}^{d}$ dominating (for ψ) if

$$
\left\|\psi_{\Lambda_{1}(k)}\right\|_{2}^{2} \geq \frac{1}{2(2 Y)^{d}}\left\|\widetilde{\psi}_{\Lambda_{Y}(k)}\right\|_{2}^{2}
$$

Proof of the Corollary

For simplicity we take a box $\Lambda=\Lambda_{L}(0)$ with $L \in \mathbb{N}_{\text {odd }}$. We extend functions φ on Λ to functions \widehat{V} and $\widetilde{\varphi}$ on \mathbb{R}^{d} and V to a potential \widehat{V} on \mathbb{R}^{d} so

$$
(-\widetilde{\Delta+V}) \psi=(-\Delta+\widehat{V}) \widetilde{\psi}
$$

Take $Y \in \mathbb{N}_{\text {odd }}, 9 \leq Y<\frac{L}{2}$. Since L is odd, we have $\bar{\Lambda}=\bigcup_{k \in \Lambda \cap \mathbb{Z}^{d}} \overline{\Lambda_{1}(k)}$. It follows that for all $\varphi \in \mathrm{L}^{2}(\Lambda)$ we have

$$
\sum_{k \in \Lambda \cap \mathbb{Z}^{d}}\left\|\widetilde{\varphi}_{\wedge_{Y}(k)}\right\|_{2}^{2} \leq(2 Y)^{d}\left\|\varphi_{\wedge}\right\|_{2}^{2}
$$

We now fix $\psi \in \mathscr{D}\left(\Delta_{\Lambda}\right)$. Following Rojas-Molina and Veselić, we call a site $k \in \widehat{\Lambda}=\Lambda \cap \mathbb{Z}^{d}$ dominating (for ψ) if

$$
\left\|\psi_{\Lambda_{1}(k)}\right\|_{2}^{2} \geq \frac{1}{2(2 Y)^{d}}\left\|\widetilde{\psi}_{\Lambda_{Y}(k)}\right\|_{2}^{2},
$$

and note that, letting $\widehat{D} \subset \wedge \cap \mathbb{Z}^{d}$ denote the collection of dominating sites,

$$
\sum_{k \in \widehat{D}}\left\|\psi_{\Lambda_{1}(k)}\right\|_{2}^{2} \geq \frac{1}{2}\left\|\psi_{\Lambda}\right\|_{2}^{2}
$$

Proof of the Corollary-continued

If $k \in \widehat{D}$ we apply the QUCP with $\Omega=\Lambda_{Y}(k)$ and $\Theta=\Lambda_{1}(k)$, obtaining

$$
\delta^{m_{d}^{\prime}\left(1+K^{\frac{2}{3}}\right)}\left\|\psi_{\Lambda_{1}(k)}\right\|_{2}^{2} \leq\left\|\psi_{B\left(y_{J(k)}, \delta\right)}\right\|_{2}^{2}+\delta^{2}\left\|\widetilde{\zeta}_{\Lambda_{Y}(k)}\right\|_{2}^{2},
$$

Proof of the Corollary-continued

If $k \in \widehat{D}$ we apply the QUCP with $\Omega=\Lambda_{Y}(k)$ and $\Theta=\Lambda_{1}(k)$, obtaining

$$
\delta^{m_{d}^{\prime}\left(1+K^{\frac{2}{3}}\right)}\left\|\psi_{\Lambda_{1}(k)}\right\|_{2}^{2} \leq\left\|\psi_{B\left(y_{J(k)}, \delta\right)}\right\|_{2}^{2}+\delta^{2}\left\|\widetilde{\zeta}_{\Lambda_{Y}(k)}\right\|_{2}^{2},
$$

where $\zeta=(-\Delta+V) \psi, Y$ is appropriately chosen, $Y \leq 40 \sqrt{d}<\frac{L}{2}$, and the map $J: \widehat{D} \rightarrow \wedge \cap \mathbb{Z}^{d}$ is defined appropriately so

$$
J(k) \in \Lambda_{Y}(k) \text { and } \# J^{-1}(\{j\}) \leq 2 \text { for all } j .
$$

Proof of the Corollary-continued

If $k \in \widehat{D}$ we apply the QUCP with $\Omega=\Lambda_{Y}(k)$ and $\Theta=\Lambda_{1}(k)$, obtaining

$$
\delta^{m_{d}^{\prime}\left(1+K^{\frac{2}{3}}\right)}\left\|\psi_{\Lambda_{1}(k)}\right\|_{2}^{2} \leq\left\|\psi_{B\left(y_{J(k)}, \delta\right)}\right\|_{2}^{2}+\delta^{2}\left\|\widetilde{\zeta}_{\Lambda_{Y}(k)}\right\|_{2}^{2}
$$

where $\zeta=(-\Delta+V) \psi, Y$ is appropriately chosen, $Y \leq 40 \sqrt{d}<\frac{L}{2}$, and the map $J: \widehat{D} \rightarrow \Lambda \cap \mathbb{Z}^{d}$ is defined appropriately so

$$
J(k) \in \Lambda_{Y}(k) \text { and } \# J^{-1}(\{j\}) \leq 2 \text { for all } j .
$$

Summing over $k \in \widehat{D}$ and using $\quad \sum_{k \in \hat{D}}\left\|\psi_{\Lambda_{1}(k)}\right\|_{2}^{2} \geq \frac{1}{2}\left\|\psi_{\wedge}\right\|_{2}^{2}$, we get

$$
\begin{aligned}
\frac{1}{2} \delta^{m_{d}^{\prime}\left(1+K^{\frac{2}{3}}\right)}\left\|\psi_{\Lambda}\right\|_{2}^{2} & \leq 2 \sum_{k \in \Lambda \cap \mathbb{Z}^{d}}\left\|\psi_{B\left(y_{k}, \delta\right)}\right\|_{2}^{2}+(2 Y)^{d} \delta^{2}\left\|\zeta_{\Lambda}\right\|_{2}^{2} \\
& \leq 2 \sum_{k \in \Lambda \cap \mathbb{Z}^{d}}\left\|\psi_{B\left(y_{k}, \delta\right)}\right\|_{2}^{2}+(80 \sqrt{d})^{d} \delta^{2}\left\|\zeta_{\Lambda}\right\|_{2}^{2}
\end{aligned}
$$

Proof of the Corollary-continued

If $k \in \widehat{D}$ we apply the QUCP with $\Omega=\Lambda_{Y}(k)$ and $\Theta=\Lambda_{1}(k)$, obtaining

$$
\delta^{m_{d}^{\prime}\left(1+K^{\frac{2}{3}}\right)}\left\|\psi_{\Lambda_{1}(k)}\right\|_{2}^{2} \leq\left\|\psi_{B\left(y_{J(k)}, \delta\right)}\right\|_{2}^{2}+\delta^{2}\left\|\widetilde{\zeta}_{\Lambda_{Y}(k)}\right\|_{2}^{2}
$$

where $\zeta=(-\Delta+V) \psi, Y$ is appropriately chosen, $Y \leq 40 \sqrt{d}<\frac{L}{2}$, and the map $J: \widehat{D} \rightarrow \Lambda \cap \mathbb{Z}^{d}$ is defined appropriately so

$$
J(k) \in \Lambda_{Y}(k) \text { and } \# J^{-1}(\{j\}) \leq 2 \text { for all } j .
$$

Summing over $k \in \widehat{D}$ and using $\quad \sum_{k \in \widehat{D}}\left\|\psi_{\Lambda_{1}(k)}\right\|_{2}^{2} \geq \frac{1}{2}\left\|\psi_{\Lambda}\right\|_{2}^{2}$, we get

$$
\begin{aligned}
\frac{1}{2} \delta^{m_{d}^{\prime}\left(1+K^{\frac{2}{3}}\right)}\left\|\psi_{\Lambda}\right\|_{2}^{2} & \leq 2 \sum_{k \in \Lambda \cap \mathbb{Z}^{d}}\left\|\psi_{B\left(y_{k}, \delta\right)}\right\|_{2}^{2}+(2 Y)^{d} \delta^{2}\left\|\zeta_{\Lambda}\right\|_{2}^{2} \\
& \leq 2 \sum_{k \in \Lambda \cap \mathbb{Z}^{d}}\left\|\psi_{B\left(y_{k}, \delta\right)}\right\|_{2}^{2}+(80 \sqrt{d})^{d} \delta^{2}\left\|\zeta_{\Lambda}\right\|_{2}^{2}
\end{aligned}
$$

which implies (with a different constant $M_{d}>0$)

$$
\delta^{M_{d}\left(1+K^{\frac{2}{3}}\right)}\left\|\psi_{\Lambda}\right\|_{2}^{2} \leq \sum_{k \in \Lambda \cap \mathbb{Z}^{d}}\left\|\psi \chi_{B\left(y_{k}, \delta\right)}\right\|_{2}^{2}+\delta^{2}\left\|\zeta_{\Lambda}\right\|_{2}^{2}
$$

