

Spectral Transition for Random Quantum Walks on Trees*

Alain JOYE

* Joint work with Eman HAMZA, Cairo University

CMP, to appear

Warm up : Quantum Walk on $\mathbb{Z} = \mathcal{T}_2$

Quantum particle with spin 1/2 on 1-dim lattice, i.e. $\mathcal{K}_2 = l^2(\mathbb{Z}) \otimes \mathbb{C}^2$

Spin evol.: C unitary op. on \mathbb{C}^2 , "coin" space

Spin dependent shift:

Let S_{\pm} shift to the right/left on $l^2(\mathbb{Z})$, $|\pm\rangle\langle\pm|$ proj. on $|\pm\rangle\in\mathbb{C}^2$

 $S := S_+ \otimes |+\rangle \langle +| + S_- \otimes |-\rangle \langle -|$ on $l^2(\mathbb{Z}) \otimes \mathbb{C}^2$

One step dynamics:

$$\boxed{U := S(\mathbb{I} \otimes C)} \text{ s.t.}$$

 $U|x \otimes \pm \rangle = \langle -|C \pm \rangle |(x-1) \otimes - \rangle + \langle +|C \pm \rangle |(x+1) \otimes + \rangle$

Warm up : Quantum Walk on $\mathbb{Z} = \mathcal{T}_2$

Quantum particle with spin 1/2 on 1-dim lattice, i.e. $\mathcal{K}_2 = l^2(\mathbb{Z}) \otimes \mathbb{C}^2$

Spin evol.: C unitary op. on \mathbb{C}^2 , "coin" space

Spin dependent shift:

Let S_{\pm} shift to the right/left on $l^2(\mathbb{Z})$, $|\pm\rangle\langle\pm|$ proj. on $|\pm\rangle\in\mathbb{C}^2$

 $S := S_+ \otimes |+\rangle \langle +| + S_- \otimes |-\rangle \langle -|$ on $l^2(\mathbb{Z}) \otimes \mathbb{C}^2$

One step dynamics:

$$\boxed{U := S(\mathbb{I} \otimes C)} \text{ s.t.}$$

 $U|x \otimes \pm \rangle = \langle -|C \pm \rangle |(x-1) \otimes - \rangle + \langle +|C \pm \rangle |(x+1) \otimes + \rangle$

Analogy:

If
$$H = -\Delta + V$$
 then $U = e^{-iH}$ suggests $S \simeq e^{-i\Delta}$ and $C \simeq e^{iV}$

Quantum particle with spin 1/2 on 1-dim lattice, i.e. $\mathcal{K}_2 = l^2(\mathbb{Z}) \otimes \mathbb{C}^2$

Spin evol.: C unitary op. on \mathbb{C}^2 , "coin" space

Spin dependent shift:

Let S_{\pm} shift to the right/left on $l^2(\mathbb{Z})$, $|\pm\rangle\langle\pm|$ proj. on $|\pm\rangle\in\mathbb{C}^2$

 $S := S_+ \otimes |+\rangle \langle +| + S_- \otimes |-\rangle \langle -|$ on $l^2(\mathbb{Z}) \otimes \mathbb{C}^2$

One step dynamics:

$$\boxed{U := S(\mathbb{I} \otimes C)} \text{ s.t.}$$

 $U|x \otimes \pm \rangle = \langle -|C \pm \rangle |(x-1) \otimes - \rangle + \langle +|C \pm \rangle |(x+1) \otimes + \rangle$

Analogy:

If $H = -\Delta + V$ then $U = e^{-iH}$ suggests $S \simeq e^{-i\Delta}$ and $C \simeq e^{iV}$

Random Quantum Walk:

'10 J. - Merkli

$$C \rightsquigarrow \{C_{\omega}(x)\}_{x \in \mathbb{Z}}, \text{ i.i.d. set of } C_{\omega}(x) \in U(2)$$
$$U \rightsquigarrow U_{\omega} | x \otimes \pm \rangle = \langle -|C_{\omega}(x)) \pm \rangle | (x-1) \otimes - \rangle + \langle +|C_{\omega}(x)) \pm \rangle | (x+1) \otimes + \rangle$$

Homogeneous tree \mathcal{T}_3 with coord. number q = 3

 $A_3 = \{a, b, c\}$ generators of a group with unit e s.t. $a^2 = b^2 = c^2 = e$.

Homogeneous tree \mathcal{T}_3 with coord. number q = 3

 $A_3 = \{a, b, c\}$ generators of a group with unit e s.t. $a^2 = b^2 = c^2 = e$.

 $\psi = \sum_{x \in \mathcal{T}_3} \psi(x) |x\rangle, \quad \sum_{x \in \mathcal{T}_3} |\psi(x)|^2 < \infty.$

Shifts on \mathcal{T}_3

Even / Odd: Sites x_e / x_o s.t. $|x_e|$ even / $|x_o|$ odd

Let
$$S_{ab} : l^2(\mathcal{T}_3) \to l^2(\mathcal{T}_3)$$

 $S_{ab} |x_e\rangle = |x_e a\rangle$
 $S_{ab} |x_o\rangle = |x_o b\rangle$

Shifts on \mathcal{T}_3

Even / Odd: Sites x_e / x_o s.t. $|x_e|$ even / $|x_o|$ odd

Shifts on \mathcal{T}_3

Even / Odd: Sites x_e / x_o s.t. $|x_e|$ even / $|x_o|$ odd

• Unitary evolution:

Particle with spin 1 on \mathcal{T}_3 jumping on nearest neighbors

- Hilbert space: $\mathcal{K}_3 = l^2(\mathcal{T}_3) \otimes \mathbb{C}^3$ ONB of \mathbb{C}^3 : $\{|a\rangle, |b\rangle, |c\rangle\}$,ONB of \mathcal{K}_3 : $\{x \otimes \tau = |x\rangle \otimes |\tau\rangle\}_{x \in \mathcal{T}_3, \tau \in A_3}$
- Spin dep. shift on \mathcal{K}_3 :

 $S = S_{bc} \otimes |a\rangle \langle a| + S_{ca} \otimes |b\rangle \langle b| + S_{ab} \otimes |c\rangle \langle c|$

• Spin update: For $C \in U(3)$ a unitary op. on \mathbb{C}^3 $\mathbb{I} \otimes C : \mathcal{K}_3 \to \mathcal{K}_3$ • Unitary evolution:

Particle with spin 1 on \mathcal{T}_3 jumping on nearest neighbors

- Hilbert space: $\mathcal{K}_3 = l^2(\mathcal{T}_3) \otimes \mathbb{C}^3$ ONB of \mathbb{C}^3 : $\{|a\rangle, |b\rangle, |c\rangle\}$,ONB of \mathcal{K}_3 : $\{x \otimes \tau = |x\rangle \otimes |\tau\rangle\}_{x \in \mathcal{T}_3, \tau \in A_3}$
- Spin dep. shift on \mathcal{K}_3 :

 $S = S_{bc} \otimes |a\rangle \langle a| + S_{ca} \otimes |b\rangle \langle b| + S_{ab} \otimes |c\rangle \langle c|$

- Spin update: For $C \in U(3)$ a unitary op. on \mathbb{C}^3 $\mathbb{I} \otimes C : \mathcal{K}_3 \to \mathcal{K}_3$
- Time one dynamics of the QW:

$$U(C) := S(\mathbb{I} \otimes C)$$

s.t.

$$U(C)\mathbf{x}_{e} \otimes a = C_{aa}\mathbf{x}_{e}b \otimes a + C_{ba}\mathbf{x}_{e}c \otimes b + C_{ca}\mathbf{x}_{e}a \otimes c$$
$$U(C)\mathbf{x}_{o} \otimes a = C_{aa}\mathbf{x}_{o}c \otimes a + C_{ba}\mathbf{x}_{o}a \otimes b + C_{ca}\mathbf{x}_{o}b \otimes c \quad \text{etc}$$

Banff, 27/10-1/11 2013 - p.5/17

Random Environment \Rightarrow **RQW**

Spatial disorder Different coin op. C_{ω} at each site:

$$C \mapsto \{C_{\omega}(x)\}_{x \in \mathcal{T}_{3}} \text{ with } \begin{array}{l} C_{\omega}(x_{e})_{\tau,\sigma} = \exp(i\omega_{x_{e}\tau}^{\tau})C_{\tau,\sigma}, \\ C_{\omega}(x_{o})_{\tau,\sigma} = \exp(i\omega_{x_{o}\sigma}^{\tau})C_{\tau,\sigma}, \ \tau, \sigma \in \{a, b, c\}. \end{array}$$

Random Quantum Walk:

 $U(C) \mapsto U_{\omega}(C)$

Property: Set $\mathbb{D}(\omega) = \text{diag}(\exp(i\omega_x^{\tau}))$, then random time one dynamics

 $U_{\boldsymbol{\omega}}(\boldsymbol{C}) = \mathbb{D}(\boldsymbol{\omega})U(\boldsymbol{C})$

Random Environment \Rightarrow **RQW**

Spatial disorder Different coin op. C_{ω} at each site:

$$C \mapsto \{C_{\omega}(x)\}_{x \in \mathcal{T}_{3}} \text{ with } \begin{array}{l} C_{\omega}(x_{e})_{\tau,\sigma} = \exp(i\omega_{x_{e}\tau}^{\tau})C_{\tau,\sigma}, \\ C_{\omega}(x_{o})_{\tau,\sigma} = \exp(i\omega_{x_{o}\sigma}^{\tau})C_{\tau,\sigma}, \ \tau, \sigma \in \{a, b, c\}. \end{array}$$

• Random Quantum Walk:

 $U(C) \mapsto U_{\omega}(C)$

Property: Set $\mathbb{D}(\omega) = \text{diag}(\exp(i\omega_x^{\tau}))$, then random time one dynamics

$$U_{\boldsymbol{\omega}}(\boldsymbol{C}) = \mathbb{D}(\boldsymbol{\omega})U(\boldsymbol{C})$$

Assumptions:

• $\{\omega_x^{\tau}\}_{x\in\mathcal{T}_3}^{\tau\in A_3}$ are i.i.d. \mathbb{T} -valued random variables $\omega_x^{\tau}(\omega) \simeq d\mu(\theta) = l(\theta)d\theta$ with $l \in L^{\infty}$

Random Environment \Rightarrow **RQW**

Spatial disorder Different coin op. C_{ω} at each site:

$$C \mapsto \{C_{\omega}(x)\}_{x \in \mathcal{T}_{3}} \text{ with } \begin{array}{l} C_{\omega}(x_{e})_{\tau,\sigma} = \exp(i\omega_{x_{e}\tau}^{\tau})C_{\tau,\sigma}, \\ C_{\omega}(x_{o})_{\tau,\sigma} = \exp(i\omega_{x_{o}\sigma}^{\tau})C_{\tau,\sigma}, \ \tau, \sigma \in \{a, b, c\}. \end{array}$$

• Random Quantum Walk:

 $U(C) \mapsto U_{\omega}(C)$

Property: Set $\mathbb{D}(\omega) = \text{diag}(\exp(i\omega_x^{\tau}))$, then random time one dynamics

$$U_{\boldsymbol{\omega}}(\boldsymbol{C}) = \mathbb{D}(\boldsymbol{\omega})U(\boldsymbol{C})$$

Assumptions:

•
$$\{\omega_x^{\tau}\}_{x \in \mathcal{T}_3}^{\tau \in A_3}$$
 are i.i.d. \mathbb{T} -valued random variables $\omega_x^{\tau}(\omega) \simeq d\mu(\theta) = l(\theta)d\theta$ with $l \in L^{\infty}$

Remarks:

- The transition prob. $|\langle x \otimes \tau | U_{\omega}(C) | y \otimes \sigma \rangle|^2$ are deterministic.
- Spectral transition expected between "large" and "small" disorder regimes, Abou-Chacra, Anderson, Thouless '73, Kunz Souillard '83, Klein '94

Permutation mat.

For
$$\pi \in \mathfrak{S}_3$$
 on $A_3 = \{a, b, c\}$ set $C_{\pi} = \sum_{\tau \in A_3} |\pi(\tau)\rangle \langle \tau |$

Consider

$$U_{\boldsymbol{\omega}}(C_{\pi}) = \mathbb{D}(\boldsymbol{\omega})U(C_{\pi})$$

Permutation mat. For $\pi \in \mathfrak{S}_3$ on $A_3 = \{a, b, c\}$ set $C_{\pi} = \sum_{\tau \in A_3} |\pi(\tau)\rangle \langle \tau |$ Consider $U_{\omega}(C_{\pi}) = \mathbb{D}(\omega)U(C_{\pi})$ $\Rightarrow U_{\omega}(\mathbb{I}) = \mathbb{D}(\omega)S \simeq S$ a.c. \leftrightarrow deloc.

Permutation mat. For
$$\pi \in \mathfrak{S}_3$$
 on $A_3 = \{a, b, c\}$ set $C_{\pi} = \sum_{\tau \in A_3} |\pi(\tau)\rangle \langle \tau$
Consider
 $U_{\omega}(C_{\pi}) = \mathbb{D}(\omega)U(C_{\pi})$
• $C_{(a)(b)(c)} = \mathbb{I}$ $\Rightarrow U_{\omega}(\mathbb{I}) = \mathbb{D}(\omega)S \simeq S$ a.c. \leftrightarrow deloc.
• $C_{(abc)} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \Rightarrow U_{\omega}(C_{(abc)}) \text{ p.p. } \leftrightarrow \text{ loc.}$ (as is $U_{\omega}(C_{(acb)})$)

 $\mathcal{H}_{x_0} = \operatorname{span}\{x_0 \otimes a, \ x_0 a \otimes b, \ x_0 \otimes c, \ x_0 c \otimes a, \ x_0 \otimes b, \ x_0 b \otimes c\}$ invariant under $U_{\omega}(C_{(abc)})$, $\forall x_o \in \mathcal{T}_3$

Permutation mat. For
$$\pi \in \mathfrak{S}_{3}$$
 on $A_{3} = \{a, b, c\}$ set $C_{\pi} = \sum_{\tau \in A_{3}} |\pi(\tau)\rangle \langle \tau$
Consider
 $U_{\omega}(C_{\pi}) = \mathbb{D}(\omega)U(C_{\pi})$
• $C_{(a)(b)(c)} = \mathbb{I}$ $\Rightarrow U_{\omega}(\mathbb{I}) = \mathbb{D}(\omega)S \simeq S$ a.c. \leftrightarrow deloc.
• $C_{(abc)} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ $\Rightarrow U_{\omega}(C_{(abc)})$ p.p. \leftrightarrow loc. (as is $U_{\omega}(C_{(acb)})$)
 $\mathcal{H}_{x_{0}} = \operatorname{span}\{x_{0} \otimes a, x_{0}a \otimes b, x_{0} \otimes c, x_{0}c \otimes a, x_{0} \otimes b, x_{0}b \otimes c\}$
invariant under $U_{\omega}(C_{(abc)})$, $\forall x_{o} \in \mathcal{T}_{3}$
• $C_{(c)(ab)} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $\Rightarrow U_{\omega}(C_{(c)(ab)}) \simeq$ p.p. \oplus a.c. \leftrightarrow mixed
(as are $U_{\omega}(C_{(a)(bc)}), U_{\omega}(C_{(b)(ac)})$)
 $\mathcal{H}_{x_{0}} = \operatorname{span}\{\cdots, x_{o}ba \otimes a, x_{o}b \otimes b, x_{o} \otimes a, x_{o}a \otimes b, x_{0}ab \otimes a, \cdots\}$
 $\mathcal{H}_{x_{e}} = \operatorname{span}\{x_{e} \otimes a, x_{e}c \otimes b\}$ invar. under $U_{\omega}(C_{(ab)(c)}), \forall x_{e}, x_{o} \in \mathcal{T}_{3}$

Banff, 27/10-1/11 2013 - p.7/17

Spectral Phase Diagram

Interpolating Matrices I

Localizing Matrices: For $0 \le r \le 1$ and $t = \sqrt{1 - r^2}$, $C_1^l(r) = \begin{pmatrix} 0 & r & t \\ 1 & 0 & 0 \\ 0 & t & -r \end{pmatrix}$ s.t. $C_1^l(1) \simeq C_{(c)(ab)}$ and $C_1^l(0) = C_{(abc)}$ and similar $C_2^l(r), C_3^l(r), \dots, C_6^l(r)$.

Banff, 27/10-1/11 2013 - p.9/17

Interpolating Matrices I

Reduction to 1D model

For $V_{\omega}(r) = \mathbb{D}(\omega) \begin{pmatrix} \cdot & 0 & & & & \\ 0 & 0 & 1 & & & \\ 0 & 0 & 0 & t & 0 & r & & \\ r & -t & 0 & 0 & 0 & 0 & \\ & 0 & 0 & 0 & 0 & t & r & \\ & 1 & 0 & 0 & 0 & 0 & 0 & \\ & & r & -t & 0 & 0 & \\ & & & 0 & 0 & 0 & t & \\ & & & r & -t & 0 & \ddots & \\ \end{pmatrix}$ rields localizati For each $x_e \in \mathcal{T}_3$, $U_{\omega}(C_1^l(r))|_{\mathcal{H}_{x_e \otimes a}} \simeq V_{\omega}(r)$ Property where

Allows for Transfer Matrix based analysis that yields localization $\forall r \in [0, 1)$.

Interpolating Matrices II

Delocalizing Matrices: For $0 \le r \le 1$ and $t = \sqrt{1 - r^2}$, $C_1^d(r) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & r & t \\ 0 & -t & r \end{pmatrix}$ s.t. $C_1^d(0) \simeq C_{(a)(bc)}$ and $C_1^d(1) = C_{(a)(b)(c)} = \mathbb{I}$

and similar $C_2^d(r), C_3^d(r)$.

Interpolating Matrices II

 $\begin{array}{ll} \text{Delocalizing Matrices:} & \text{For } 0 \leq r \leq 1 \, \text{ and } t = \sqrt{1 - r^2} \,, \\ \\ C_1^d(r) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & r & t \\ 0 & -t & r \end{pmatrix} \, \text{ s.t. } C_1^d(0) \simeq C_{(a)(bc)} \, \text{ and } C_1^d(1) = C_{(a)(b)(c)} = \mathbb{I} \end{array}$

and similar $C_2^d(r), C_3^d(r)$.

Prop: $U_{\omega}(C_1^d(r))$ is purely ac. $\forall r \in (0,1]$, and $\forall \omega$

Interpolating Matrices II

Delocalizing Matrices: For $0 \le r \le 1$ and $t = \sqrt{1 - r^2}$, $C_1^d(r) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & r & t \\ 0 & -t & r \end{pmatrix}$ s.t. $C_1^d(0) \simeq C_{(a)(bc)}$ and $C_1^d(1) = C_{(a)(b)(c)} = \mathbb{I}$

and similar $C_2^d(r), C_3^d(r)$.

Prop: $U_{\omega}(C_1^d(r))$ is purely ac. $\forall r \in (0,1]$, and $\forall \omega$

Path counting argument:

 $\sum_{n \in \mathbb{Z}} |\langle x \otimes \tau | U^n x \otimes \tau \rangle|^2 < \infty \implies x \otimes \tau \in \text{a.c. spectral subspace of } U.$

$$\langle x \otimes \tau | U^n x \otimes \tau \rangle = \sum_{\substack{y_j \in \tau_3 \\ \sigma_j \in A_3}} \langle x \otimes \tau | Uy_1 \otimes \sigma_1 \rangle \langle y_1 \otimes \sigma_1 | Uy_2 \otimes \sigma_2 \rangle \cdots \langle y_{n-1} \otimes \sigma_{n-1} | Ux \otimes \tau \rangle$$
Spin $|b\rangle$ or $|c\rangle$:

s.t. $x_e \mapsto x_e c$ or $x_e a$ whereas $x_o \mapsto x_o a$ or $x_o b$.

Only possibility for return in 2n steps $x \mapsto xaaa \dots a \rightsquigarrow \sum_{n \in \mathbb{N}} t^{2n} < \infty$.

Banff, 27/10-1/11 2013 - p.11/17

Neighborhood of $C_{(a)(b)(c)} = \mathbb{I}$

Perturbation: $C = \mathbb{I} + E$, with $||E|| \le \epsilon$ $C_{\tau\tau} = O(1), \ C_{\tau\sigma} = O(\epsilon), \ \tau \neq \sigma$

Path counting argument to show $\langle x \otimes \tau | U^n_{\omega}(C) | x \otimes \tau \rangle \in l^2(\mathbb{Z})$ if ϵ small

Expansion \rightsquigarrow

Path: $x = x y_1 y_2 y_3 \cdots y_{2n} \leftrightarrow$ Weight: $|C_{\tau\sigma_1}C_{\sigma_1\sigma_2}\cdots C_{\sigma_{2n\tau}}|$

Neighborhood of $C_{(a)(b)(c)} = \mathbb{I}$

Perturbation: $C = \mathbb{I} + E$, with $||E|| \le \epsilon$ $C_{\tau\tau} = O(1), \ C_{\tau\sigma} = O(\epsilon), \ \tau \neq \sigma$

Path counting argument to show $\langle x \otimes \tau | U^n_{\omega}(C) | x \otimes \tau \rangle \in l^2(\mathbb{Z})$ if ϵ small

Expansion \rightsquigarrow

Path:
$$x = x y_1 y_2 y_3 \cdots y_{2n} \leftrightarrow$$
 Weight: $|C_{\tau\sigma_1}C_{\sigma_1\sigma_2}\cdots C_{\sigma_{2n\tau}}|$

Lemma:

Weight of length 2n path from x to x contains at least n off diag. terms

Argument:

Strings with of m consecutive diag. elemts cannot reduce one another \Rightarrow the need for enough off-diag. elemts to ensure reduction.

Then: Weight $\leq \epsilon^n$, #{contrib. paths} $\leq k^n$, $k \simeq 72 \Rightarrow$

 $\sum_{n \in \mathbb{N}} |\langle x \otimes \tau | U_{\omega}^{n}(C) | x \otimes \tau \rangle|^{2} \leq \sum_{n \in \mathbb{N}} (\epsilon k)^{n} < \infty \text{, if } \epsilon > 0 \text{ small enough.}$

Neighborhoods of $C_{(abc)}$ and $C_{(acb)}$

Theorem

Let $\pi \in \{(abc), (acb)\}$, C_{π} and $U_{\omega}(C)$ be as above and $\mathbb{U} := \{|z| = 1\}$. For all $\gamma > 0$, there exists $\delta > 0$, $K < \infty$, s.t. $\forall C \in U(3)$, $\|C - C_{\pi}\| < \delta \implies \forall x, y \in \mathcal{T}_3 \text{ and } \forall \sigma, \tau \in A_3$

$$\mathbb{E}\left[\sup_{f\in C(\mathbb{U}), \|f\|_{\infty}\leq 1} |\langle x\otimes \tau | f(U_{\omega}(C)) y\otimes \sigma \rangle|\right] \leq Ke^{-\gamma d(x,y)}$$

à la "Aizenman-Molchanov" '09 Hamza-J.-Stolz Similar approach Asch, Bourget, J. '11, J. '12

Neighborhoods of $C_{(abc)}$ and $C_{(acb)}$

Theorem

Let $\pi \in \{(abc), (acb)\}$, C_{π} and $U_{\omega}(C)$ be as above and $\mathbb{U} := \{|z| = 1\}$. For all $\gamma > 0$, there exists $\delta > 0$, $K < \infty$, s.t. $\forall C \in U(3)$, $\|C - C_{\pi}\| < \delta \implies \forall x, y \in \mathcal{T}_3$ and $\forall \sigma, \tau \in A_3$

$$\mathbb{E}\left[\sup_{f\in C(\mathbb{U}), \, \|f\|_{\infty}\leq 1} |\langle x\otimes \tau | f(U_{\omega}(C)) \, y\otimes \sigma \rangle|\right] \leq K e^{-\gamma d(x,y)}$$

à la "Aizenman-Molchanov" '09 Hamza-J.-Stolz Similar approach Asch, Bourget, J. '11, J. '12

 \Rightarrow Spectral localization:

 $\sigma(U_{\omega}(C))$ is pure point, a.s. (Enss-Veselic '83)

• Generalizations to homog. trees of coord. number $q \ge 3$:

 \exists open sets $\mathcal{L} \subset \mathbb{C}^q$, resp. $\mathcal{D} \subset \mathbb{C}^q$ s.t. $C \in \mathcal{L} \Rightarrow \sigma(U_{\omega}(C))$ is p.p., resp. $C \in \mathcal{D} \Rightarrow \sigma(U_{\omega}(C))$ is a.c.

RQW "analog" of weak disorder Anderson deloc. on trees '94 Klein
q = 1: ⇒ dyn. localization ∀ non-diag. C. '10 J.-Merkli,
Large disorder localization: RQW on Z^d: '12 J.
Spectral analysis for the deterministic case (q = 3) '13 J.-Marin

 $S = S_a \otimes |a\rangle \langle a| + S_b \otimes |b\rangle \langle b| + S_{a^{-1}} \otimes |a^{-1}\rangle \langle a^{-1}| + S_{b^{-1}} \otimes |b^{-1}\rangle \langle b^{-1}|$

$$S = S_a \otimes |a\rangle \langle a| + S_b \otimes |b\rangle \langle b| + S_{a^{-1}} \otimes |a^{-1}\rangle \langle a^{-1}| + S_{b^{-1}} \otimes |b^{-1}\rangle \langle b^{-1}|$$

• Spin update: Via $C \in U(4)$

• RQW: $U_{\boldsymbol{\omega}}(C) := \mathbb{D}(\boldsymbol{\omega})S(\mathbb{I}\otimes C)$

•
$$C_{(a)(b)(a^{-1})(b^{-1})} = \mathbb{I} \Rightarrow \text{a.c.} \qquad U_{\omega}(\mathbb{I}) \simeq S$$
.

•
$$C_{(aa^{-1})(bb^{-1})} \Rightarrow p.p.$$
 same for $C_{(abb^{-1}a^{-1})}$, etc...
 $\mathcal{H}_x^a = \operatorname{span}\{x \otimes a, xa^{-1} \otimes a^{-1}\}$
 $\mathcal{H}_x^b = \operatorname{span}\{x \otimes b, xb^{-1} \otimes b^{-1}\}$ invar. under $U_{\omega}(C_{(aa^{-1})(bb^{-1})})$, $\forall x \in \mathcal{T}_4$.

•
$$C_{(a)(b)(a^{-1})(b^{-1})} = \mathbb{I} \Rightarrow \text{a.c.} \qquad U_{\omega}(\mathbb{I}) \simeq S$$
.

•
$$C_{(aa^{-1})(bb^{-1})} \Rightarrow p.p.$$
 same for $C_{(abb^{-1}a^{-1})}$, etc...
 $\mathcal{H}_x^a = \operatorname{span}\{x \otimes a, xa^{-1} \otimes a^{-1}\}$
 $\mathcal{H}_x^b = \operatorname{span}\{x \otimes b, xb^{-1} \otimes b^{-1}\}$ invar. under $U_{\omega}(C_{(aa^{-1})(bb^{-1})})$, $\forall x \in \mathcal{T}_4$.

QRW in \mathcal{T}_4 : Highlights

Theorem:

