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Motivation
◮ Goal: describe a crystal with random defects

infinitely many random classical nuclei (e.g.
perturbation of a lattice)

infinitely many interacting quantum electrons

◮ Disordered materials are

present in nature (amorphous materials, impurities,
aging solids)

industrially made (doped semiconductors, solar cells)

◮ What we have done:

appropriate math setting for mean-field (DFT) models

construction of electronic state for short range
interactions & Coulomb

Crystalline Silica

Vitreous Silica

Many open problems left!

É. Cancès, S. Lahbabi & M. L. Mean-field models for disordered crystals
J. Math. Pure Appl. 100(2) (2013), 241–274
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Nuclei: what you should have in mind

µ(ω, x) =
∑

k∈Z3

zk(ω) ν
(
x − k − δk(ω)

)
, ν ≥ 0,

ˆ

R3

ν = 1

with δk and zk i.i.d. random variables

Example: δk ∼ gaussian and zk ∼ Bernouilli
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Nuclei: general situation

measure-preserving action of Z3 y probability space (Ω,T ,P)

ergodicity: τkA = A, ∀k ∈ Z3 ⇒ P(A) = 0 or 1

a fn/measure is called stationary when f (ω, x + k) = f (τkω, x)

Lps := {f ∈ Lp(Ω, Lploc(R
3)) : f is stationary} ≃ Lp(Ω× Q) (Q unit cell)

◮ Ergodic theorem: for all f ∈ L1s ,

lim
n→∞

L−3

ˆ

LQ

f = E

ˆ

Q

f

in L1(Ω) and almost-surely

Nuclei
0 ≤ µ in Lps for some p ≥ 1

E

ˆ

Q

µ = average nuclear charge per unit cell
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Hartree for finitely many electrons

◮ N electrons = N orthonormal functions u1, ..., uN in L2(R3) = Slater det

Hartree (Kohn-Sham) equation (µ ∈ L
1(R3))







(

−∆+ V+∂Fxc

∂ρ

)

ui = λi ui

−∆V = 4π

( N∑

j=1

|uj |2 − µ

) λN

Ground state: λ1, ..., λN = N first eigenvals of −∆+ V . Min of energy

N
∑

j=1

ˆ

R3
|∇uj |

2 +
1

2

ˆ

R3

ˆ

R3

(

∑N
j=1 |uj |

2 − µ

)

(x)
(

∑N
j=1 |uj |

2 − µ

)

(y)

|x − y |
dx dy + Fxc





N
∑

j=1

|uj |
2





Hartree equation, density matrix γ =
∑N

j=1 |uj〉〈uj |
{

γ = 1 (−∆+ V ≤ λN)

−∆V = 4π (ργ − µ)
with ργ(x) = γ(x , x)
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Hartree equation for infinite random crystals







γ = 1 (−∆+ V ≤ λ)
−∆V+m2V = 4π (ργ(ω, x)− µ(ω, x))

E
´

Q
ργ = E

´

Q
µ

λ

◮ History:

µ periodic: Catto-Le Bris-Lions (2001), Cancès-Deleurence-M.L (2008)

µ periodic+local perturbation: Cancès-Deleurence-M.L (2008)

µ random: Cancès-Lahbabi-M.L. (2013)

µ periodic with gap + global perturb. small in L∞ (m > 0): Lahbabi (2013)

◮ Plan:

stationary operators γω with finite local kinetic energy

properties of ργ

Poisson’s equation & the stationary Laplacian

existence thms for Coulomb (m = 0) and Yukawa (m > 0)
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Stationary density matrices

stationary density matrix = operators (γω)ω∈Ω with 0 ≤ γω ≤ 1 a.s. and
TkγωT−k = γτkω, Tv f = f (·+ v). Spectrum: σ(γ) = Σ a.s.

If E tr(1Qγ1Q) < ∞ then ργ ∈ L1s and

tr(γ) := E

ˆ

Q

ργ = lim
L→∞

tr(1LQγ1LQ)

L3
= average # electrons per unit vol.

Similarly, tr(−∆)γ = average kinetic energy per unit vol.

Theorem (Density)

tr(−∆)γ ≥







C E

ˆ

Q

ρ1+2/d
γ ≥ C

(

tr(γ)
)1+2/d

(Lieb-Thirring)

E

ˆ

Q

|∇√
ργ |2 (Hoffmann-Ostenhof)

Proof: truncate, use the known inequalities, pass to the limit using ergodic thm
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Spectral projections

Theorem (Spectral projections)

Let V ∈ L2s with V− ∈ L
1+d/2
s . Then the spectral projections

γ = 1(−∆+ V ≤ λ)

are stationary density matrices satisfying

C
(

tr(γ)
)1+2/d

≤ tr (−∆)γ ≤ C

(

E

ˆ

Q

(V − λ)
1+d/2
−

)

.

Furthermore, the unique stationary solutions to

min
0≤γ≤1

(

tr(−∆− λ)γ + E

ˆ

Q

Vργ

)

are γ = 1(−∆+ V ≤ λ) + δ, with 0 ≤ δ ≤ 1(−∆+ V = λ).

If V ∈ L∞s , then δ = 0 a.s. (Bourgain-Klein ’13).

Think of matrices:

{

min0≤M≤1 tr(AM) = − trA−

argmin0≤M≤1 tr(AM) = {1(A < 0) + D}0≤D≤1ker(A)
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Small digression: representability

Fundamental question in Density Functional Theory: what is the set of all
the ρ’s arising from stationary γ’s with tr(−∆)γ < ∞?

Theorem (3D Representability)

Let ρ ∈ L3s with ∇√
ρ ∈ L2s . Then there exists a stationary 0 ≤ γ ≤ 1 such that

tr (1−∆)γ < ∞ and ρ = ργ .

Proof follows the method of Lieb (1983)

Open problem

Is ∇√
ρ ∈ L2s and ρ ∈ L

5/3
s sufficient?
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Electrostatics

Open problem

For which stationary ρ ∈ Lps can one solve Poisson’s equation

−∆V = 4πρ

with V ∈ Lqs ? and with finite electrostatic energy, E

ˆ

Q

|∇V |2 < ∞?

Necessary condition: E

ˆ

Q

ρ = 0 (neutral)

It is easier to find electric field E = −∇V ∈ L2s than V itself
But we need to define −∆+ V ...

Lemma (Yukawa)

For all ρ ∈ Lps and m > 0, there exists a unique V ∈ Lps such that
(−∆+m2)V = 4πρ.

Reason: V (x) =

ˆ

R3

e−m|x−y|

|x − y |
︸ ︷︷ ︸

∈ℓ1(L1)

ρ(ω, y) dy
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Stationary Laplacian

Let (−∆)s be the Friedrichs extension in L2s of the operator
{

D(A) = L2s ∩ L2(Ω,C 2(R3)) ⊂ L2s
Af = −∆f , ∀f ∈ D(A).

Laplacian in x on Ω× Q with “stationary boundary conditions” , e.g.
f (τ1ω, 0) = f (ω, 1) ∀ω, in 1D

◮ Simple properties/examples:

0 is a simple eigenvalue with eigenfn f ≡ 1 (ergodicity);
σ(−∆)s contains σ(−∆)per;
If Ω is finite, then σ(−∆)s is discrete;
If Ω = SZ and τk is the shift, then σ(−∆)s = [0,∞)
If Ω = [0, 1] and τk (ω) = ω + ak (mod 1), a ∈ R \Q, then σp(−∆s) is dense
in [0,1]

 difficulty to solve −∆sV = 4πρ. V ∈ L2s requires ρ ∈ D(−∆)s

Open problem

Understand better the spectral properties of (−∆)s
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Energy: existence theorem

For ρ ∈ L1s , we define the Yukawa/Coulomb interaction energy per unit vol. as

Dm(ρ) :=
1

8π
E

ˆ

Q

|∇Vm|2 with (−∆+m2)Vm = 4πρ

D0(ρ) := lim
m→0

Dm(ρ)

and the total energy per unit vol. as

Em(γ) := tr(−∆)γ + Dm(ργ − µ)

Theorem (Existence of minimizers)

For µ ∈ L1s and m ≥ 0, the energy has at least one minimizer γ on the set
{

0 ≤ γ ≤ 1 stationary : tr(−∆)γ < ∞, Dm(ργ − µ) < ∞, tr(γ) = E

ˆ

Q

µ

}

(when not empty!). All the minimizers share the same density ργ .

Proof: convexity + weak topology
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Equation: existence theorem

◮ Main questions:

have we solved the original Hartree equation?

are we able to define the (one-particle) mean-field Hamiltonian −∆+ V ?

Theorem (Hartree equation, Yukawa case)

Let µ ∈ L2s ∩ L
5/2
s (L1) and m > 0. Then Vm ∈ L2s , (Vm)− ∈ L

5/2
s and −∆+ V is

a.s. essentially self-adjoint.

There exists λ ∈ R such that the minimizers are all of the form

γ = 1(−∆+ V ≤ λ) + δ, with 0 ≤ δ ≤ 1(−∆+ V = λ).

If furthermore µ ∈ L∞s , then ργ ,V ∈ L∞s , δ ≡ 0 and the minimizer is unique.

Open questions:

Is there enough screening in the Coulomb case?  V

What are the properties of −∆+ V (even in short range case)?
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Anderson Localization? Numerics

1D with Bernouilli (p = 0.5):

µ =
∑

k∈Z

qk(ω)
1√

0.02π
e−

(x−k−1/2)2

0.02 + (1− qk(ω))(1 − cos(2π(x − k)))

-2

-1

 0

 1

 2

 3

 4

 5

 0  2  4  6  8  10

One realization for µ

S. Lahbabi, PhD thesis, Univ. Cergy-Pontoise, 2013.
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Anderson Localization? Linear case

Box of size L = 240 with periodic b.c., 30× 240 Fourier modes, Yukawa (m = 1)
Drop interaction: V = −e−|x| ∗ µ

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0  2  4  6  8  10

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 50  100  150  200

1st eigenfn

Variance: 1
L2 inf0≤ℓ≤L

´ ℓ+L

ℓ
x2|u(x)|2 dx −

(
´ ℓ+L

ℓ
x |u(x)|2 dx

)2

∈ [0, 1
12 ]

Mathieu LEWIN (CNRS / Cergy) Stochastic crystals Banff, Oct 29, 2013 15 / 18



Anderson Localization? Nonlinear case

Box of size L = 160 with periodic b.c., 30× 160 Fourier modes, Yukawa (m = 1)
Self-consistent potential: V = e−|x| ∗ (ργ − µ), 1 e− per unit cell
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Thermodynamic limit in the short range case

Theorem (Thermodynamic limit, Yukawa)

The Yukawa model (m > 0) is the thermodynamic limit, in L1(Ω), of the
corresponding supercell Hartree problem.
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Summary

A nonlinear model for an infinite system of interacting quantum particles

Simple enough to investigate the effect of interactions

For Coulomb, screening is crucial, but not well understood yet

Localization need further investigation, even in short range case

◮ I have not talked about

the true N-body Schrödinger problem: existence of thermodynamic limit
known for random nuclei (Blanc & M.L. ’12), but no info on limit

the small p expansion of the Bernouilli nonlinear Hartree model, in gapped
case (Klopp ’95, Lahbabi ’13)
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