

European Research Council

The mean-field approximation of stochastic crystals

Mathieu LEWIN

mathieu.lewin@math.cnrs.fr

(CNRS & Université de Cergy-Pontoise)

joint work with Éric Cancès & Salma Lahbabi

Banff workshop on Disordered quantum many-body systems, Oct 29, 2013

Mathieu LEWIN (CNRS / Cergy)

Motivation

- ► Goal: describe a crystal with random defects
 - infinitely many random classical nuclei (e.g. perturbation of a lattice)
 - infinitely many interacting quantum electrons
- Disordered materials are
 - present in nature (amorphous materials, impurities, aging solids)
 - industrially made (doped semiconductors, solar cells)

What we have done:

- appropriate math setting for mean-field (DFT) models
- construction of electronic state for short range interactions & Coulomb

Many open problems left!

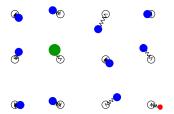
É. Cancès, S. Lahbabi & M. L. Mean-field models for disordered crystals *J. Math. Pure Appl.* **100**(2) (2013), 241–274

Stochastic crystals

Crystalline Silica

Vitreous Silica

Nuclei: what you should have in mind



$$\mu(\omega,x) = \sum_{k\in\mathbb{Z}^3} z_k(\omega) \;
uig(x-k-\delta_k(\omega)ig), \qquad
u\geq 0, \; \int_{\mathbb{R}^3}
u=1$$

with δ_k and z_k i.i.d. random variables

Example: $\delta_k \sim$ gaussian and $z_k \sim$ Bernouilli

Mathieu LEWIN (CNRS / Cergy)

Nuclei: general situation

- measure-preserving action of $\mathbb{Z}^3 \curvearrowright$ probability space $(\Omega, \mathscr{T}, \mathbb{P})$
- ergodicity: $au_k A = A$, $orall k \in \mathbb{Z}^3 \Rightarrow \mathbb{P}(A) = 0$ or 1
- a fn/measure is called **stationary** when $f(\omega, x + k) = f(\tau_k \omega, x)$
- $L_s^p := \{ f \in L^p(\Omega, L_{loc}^p(\mathbb{R}^3)) : f \text{ is stationary} \} \simeq L^p(\Omega \times Q) (Q \text{ unit cell})$
- ► Ergodic theorem: for all $f \in L^1_s$, $\lim_{n \to \infty} L^{-3} \int_{LQ} f = \mathbb{E} \int_Q f$

in $L^1(\Omega)$ and almost-surely

Nuclei•
$$0 \le \mu$$
 in L^p_s for some $p \ge 1$ • $\mathbb{E} \int_Q \mu$ = average nuclear charge per unit cell

Hartree for finitely many electrons

▶ N electrons = N orthonormal functions $u_1, ..., u_N$ in $L^2(\mathbb{R}^3)$ = Slater det

Hartree (Kohn-Sham) equation
$$(\mu \in L^{1}(\mathbb{R}^{3}))$$

$$\begin{cases} \left(-\Delta + V + \frac{\partial F_{sc}}{\partial \rho}\right) u_{i} = \lambda_{i} u_{i} \\ -\Delta V = 4\pi \left(\sum_{j=1}^{N} |u_{j}|^{2} - \mu\right) \end{cases}$$

Ground state: $\lambda_1, ..., \lambda_N = N$ first eigenvals of $-\Delta + V$. Min of energy $\sum_{i=1}^N \int_{\mathbb{R}^3} |\nabla u_j|^2 + \frac{1}{2} \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} \frac{\left(\sum_{j=1}^N |u_j|^2 - \mu\right)(x) \left(\sum_{j=1}^N |u_j|^2 - \mu\right)(y)}{|x - y|} dx \, dy + F_{xc} \left(\sum_{j=1}^N |u_j|^2\right)$

Hartree equation, density matrix $\gamma = \sum_{j=1}^{N} |u_j\rangle \langle u_j|$

$$\left\{egin{aligned} &\gamma = \mathbb{1}\left(-\Delta + V \leq \lambda_{N}
ight) \ &-\Delta V = 4\pi\left(
ho_{\gamma} - \mu
ight) \end{aligned}
ight.$$

with
$$ho_{\gamma}(x) = \gamma(x, x)$$

Hartree equation for infinite random crystals

$$\begin{array}{rcl} \gamma & = & \mathbb{1}\left(-\Delta+V\leq\lambda\right)\\ -\Delta V\!+\!m^2 V & = & 4\pi\left(\rho_\gamma(\omega,x)-\mu(\omega,x)\right)\\ \mathbb{E}\int_Q \rho_\gamma & = & \mathbb{E}\int_Q \mu \end{array}$$

History:

- μ periodic: Catto-Le Bris-Lions (2001), Cancès-Deleurence-M.L (2008)
- μ periodic+local perturbation: Cancès-Deleurence-M.L (2008)
- μ random: Cancès-Lahbabi-M.L. (2013)
- μ periodic with gap + global perturb. small in L^{∞} (m > 0): Lahbabi (2013)

Plan:

- stationary operators γ_{ω} with finite local kinetic energy
- properties of ρ_{γ}
- Poisson's equation & the stationary Laplacian
- existence thms for Coulomb (m = 0) and Yukawa (m > 0)

Stationary density matrices

- stationary density matrix = operators $(\gamma_{\omega})_{\omega \in \Omega}$ with $0 \le \gamma_{\omega} \le 1$ a.s. and $T_k \gamma_{\omega} T_{-k} = \gamma_{\tau_k \omega}, T_v f = f(\cdot + v)$. Spectrum: $\sigma(\gamma) = \Sigma$ a.s.
- If $\mathbb{E} \operatorname{tr}(\mathbb{1}_Q \gamma \mathbb{1}_Q) < \infty$ then $\rho_{\gamma} \in L^1_s$ and $\underline{\operatorname{tr}}(\gamma) := \mathbb{E} \int_Q \rho_{\gamma} = \lim_{L \to \infty} \frac{\operatorname{tr}(\mathbb{1}_{LQ} \gamma \mathbb{1}_{LQ})}{L^3} = \operatorname{average} \# \text{ electrons per unit vol.}$
- Similarly, $\underline{tr}(-\Delta)\gamma = average$ kinetic energy per unit vol.

Theorem (Density)

$$\underline{\operatorname{tr}}(-\Delta)\gamma \geq \begin{cases} C \mathbb{E} \int_{Q} \rho_{\gamma}^{1+2/d} \geq C\left(\underline{\operatorname{tr}}(\gamma)\right)^{1+2/d} & (\text{Lieb-Thirring}) \\ \mathbb{E} \int_{Q} |\nabla \sqrt{\rho_{\gamma}}|^{2} & (\text{Hoffmann-Ostenhof}) \end{cases}$$

Proof: truncate, use the known inequalities, pass to the limit using ergodic thm

Mathieu LEWIN (CNRS / Cergy)

Spectral projections

Theorem (Spectral projections)

Let $V \in L^2_s$ with $V_- \in L^{1+d/2}_s$. Then the spectral projections $\gamma = \mathbb{1}(-\Delta + V \le \lambda)$

are stationary density matrices satisfying

$$C\left(\underline{\operatorname{tr}}(\gamma)\right)^{1+2/d} \leq \underline{\operatorname{tr}}(-\Delta)\gamma \leq C \left(\mathbb{E}\int_{Q} (V-\lambda)^{1+d/2}_{-}\right)$$

Furthermore, the unique stationary solutions to

$$\min_{\substack{0 \le \gamma \le 1}} \left(\underline{\operatorname{tr}}(-\Delta - \lambda)\gamma + \mathbb{E} \int_{Q} V \rho_{\gamma} \right)$$
$$(-\Delta + V \le \lambda) + \delta, \text{ with } 0 \le \delta \le \mathbb{1}(-\Delta + V = \lambda)$$

If $V \in L_s^{\infty}$, then $\delta = 0$ a.s. (Bourgain-Klein '13).

hink of matrices:
$$\begin{cases} \min_{0 \le M \le 1} \operatorname{tr}(AM) = -\operatorname{tr} A_{-} \\ \operatorname{argmin}_{0 \le M \le 1} \operatorname{tr}(AM) = \{\mathbb{1}(A < 0) + D\}_{0 \le D \le \mathbb{1}_{\ker(A)}} \end{cases}$$

Mathieu LEWIN (CNRS / Cergy)

are $\gamma = 1$

Small digression: representability

Fundamental question in Density Functional Theory: what is the set of all the ρ 's arising from stationary γ 's with $\underline{tr}(-\Delta)\gamma < \infty$?

Theorem (3D Representability)

Let $\rho \in L^3_s$ with $\nabla \sqrt{\rho} \in L^2_s$. Then there exists a stationary $0 \le \gamma \le 1$ such that $\underline{tr}(1-\Delta)\gamma < \infty$ and $\rho = \rho_{\gamma}$.

Proof follows the method of Lieb (1983)

Open problem

Is $\nabla \sqrt{\rho} \in L^2_s$ and $\rho \in L^{5/3}_s$ sufficient?

Electrostatics

Open problem

For which stationary $\rho \in L^{p}_{s}$ can one solve Poisson's equation

 $-\Delta V = 4\pi\rho$

with $V \in L_s^q$? and with finite electrostatic energy, $\mathbb{E} \int_{Q} |\nabla V|^2 < \infty$?

• Necessary condition:
$$\mathbb{E} \int_{Q} \rho = 0$$
 (neutral)

• It is easier to find electric field $E = -\nabla V \in L_s^2$ than V itself But we need to define $-\Delta + V...$

Lemma (Yukawa)

For all $\rho \in L_s^p$ and m > 0, there exists a unique $V \in L_s^p$ such that $(-\Delta + m^2)V = 4\pi\rho$.

Reason:
$$V(x) = \int_{\mathbb{R}^3} \underbrace{\frac{e^{-m|x-y|}}{|x-y|}}_{\in \ell^1(L^1)} \rho(\omega, y) \, dy$$

Stationary Laplacian

Let $(-\Delta)_s$ be the Friedrichs extension in L_s^2 of the operator $\begin{cases}
D(A) = L_s^2 \cap L^2(\Omega, C^2(\mathbb{R}^3)) \subset L_s^2 \\
Af = -\Delta f, \quad \forall f \in D(A).
\end{cases}$

Laplacian in x on $\Omega \times Q$ with "stationary boundary conditions", e.g. $f(\tau_1\omega, 0) = f(\omega, 1) \ \forall \omega$, in 1D

► Simple properties/examples:

- 0 is a simple eigenvalue with eigenfn $f \equiv 1$ (ergodicity);
- $\sigma(-\Delta)_s$ contains $\sigma(-\Delta)_{per}$;
- If Ω is finite, then $\sigma(-\Delta)_s$ is discrete;
- If $\Omega = S^{\mathbb{Z}}$ and τ_k is the shift, then $\sigma(-\Delta)_s = [0,\infty)$
- If $\Omega = [0,1]$ and $\tau_k(\omega) = \omega + ak \pmod{1}$, $a \in \mathbb{R} \setminus \mathbb{Q}$, then $\sigma_p(-\Delta_s)$ is dense in [0,1]

 \rightsquigarrow difficulty to solve $-\Delta_s V = 4\pi \rho$. $V \in L^2_s$ requires $\rho \in D(-\Delta)_s$

Open problem

Understand better the spectral properties of $(-\Delta)_s$

Energy: existence theorem

For $\rho \in L^1_s$, we define the Yukawa/Coulomb interaction energy per unit vol. as

$$D_m(\rho) := \frac{1}{8\pi} \mathbb{E} \int_Q |\nabla V_m|^2 \quad \text{with} \quad (-\Delta + m^2) V_m = 4\pi\rho$$
$$D_0(\rho) := \lim_{m \to 0} D_m(\rho)$$

and the total energy per unit vol. as

$$\mathcal{E}_m(\gamma) := \underline{\operatorname{tr}}(-\Delta)\gamma + D_m(\rho_\gamma - \mu)$$

Theorem (Existence of minimizers)

For $\mu \in L^1_s$ and $m \ge 0$, the energy has at least one minimizer γ on the set $\left\{ 0 \le \gamma \le 1 \text{ stationary } : \underline{\operatorname{tr}}(-\Delta)\gamma < \infty, \ D_m(\rho_\gamma - \mu) < \infty, \ \underline{\operatorname{tr}}(\gamma) = \mathbb{E} \int_Q \mu \right\}$ (when not empty!). All the minimizers share the same density ρ_γ .

Proof: convexity + weak topology

Equation: existence theorem

Main questions:

- have we solved the original Hartree equation?
- are we able to define the (one-particle) mean-field Hamiltonian $-\Delta + V$?

Theorem (Hartree equation, Yukawa case)

Let $\mu \in L^2_s \cap L^{5/2}_s(L^1)$ and m > 0. Then $V_m \in L^2_s$, $(V_m)_- \in L^{5/2}_s$ and $-\Delta + V$ is a.s. essentially self-adjoint.

There exists $\lambda \in \mathbb{R}$ such that the minimizers are all of the form

 $\gamma = \mathbb{1}(-\Delta + V \le \lambda) + \delta,$ with $0 \le \delta \le \mathbb{1}(-\Delta + V = \lambda).$

If furthermore $\mu \in L_s^{\infty}$, then $\rho_{\gamma}, V \in L_s^{\infty}$, $\delta \equiv 0$ and the minimizer is unique.

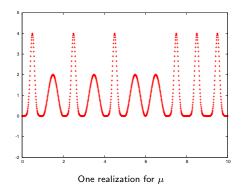
Open questions:

- Is there enough screening in the Coulomb case? $\rightsquigarrow V$
- What are the properties of $-\Delta + V$ (even in short range case)?

Anderson Localization? Numerics

1D with Bernouilli (p = 0.5):

$$\mu = \sum_{k \in \mathbb{Z}} q_k(\omega) \frac{1}{\sqrt{0.02\pi}} e^{-\frac{(x-k-1/2)^2}{0.02}} + (1-q_k(\omega))(1-\cos(2\pi(x-k)))$$

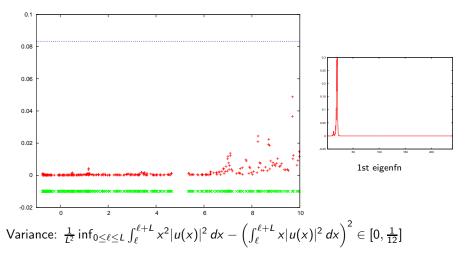


S. Lahbabi, PhD thesis, Univ. Cergy-Pontoise, 2013.

Mathieu LEWIN (CNRS / Cergy)

Anderson Localization? Linear case

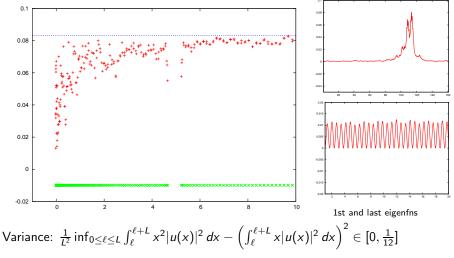
Box of size L = 240 with periodic b.c., 30×240 Fourier modes, Yukawa (m = 1)Drop interaction: $V = -e^{-|x|} * \mu$



Mathieu LEWIN (CNRS / Cergy)

Anderson Localization? Nonlinear case

Box of size L = 160 with periodic b.c., 30×160 Fourier modes, Yukawa (m = 1)Self-consistent potential: $V = e^{-|x|} * (\rho_{\gamma} - \mu)$, $1 e^{-}$ per unit cell



Mathieu LEWIN (CNRS / Cergy)

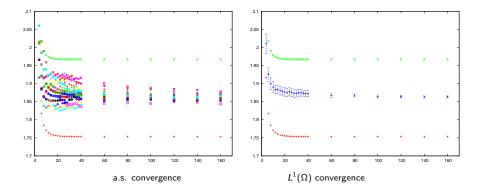
Stochastic crystals

Banff, Oct 29, 2013 16 / 18

Thermodynamic limit in the short range case

Theorem (Thermodynamic limit, Yukawa)

The Yukawa model (m > 0) is the thermodynamic limit, in $L^1(\Omega)$, of the corresponding supercell Hartree problem.



Mathieu LEWIN (CNRS / Cergy)

Summary

- A nonlinear model for an infinite system of interacting quantum particles
- Simple enough to investigate the effect of interactions
- For Coulomb, screening is crucial, but not well understood yet
- Localization need further investigation, even in short range case

► I have not talked about

- the true *N*-body Schrödinger problem: existence of thermodynamic limit known for random nuclei (Blanc & M.L. '12), but no info on limit
- the small *p* expansion of the Bernouilli nonlinear Hartree model, in gapped case (Klopp '95, Lahbabi '13)