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The concept of BEC

Let a(ϕ)†, a(ϕ) be creation and annihilation operators for a 1-particle
state ϕ of bosons and let 〈 · 〉 be some many-particle state (pure or
mixed).

The average occupation number of ϕ in the state 〈 · 〉 is

Nϕ = 〈a(ϕ)†a(ϕ)〉.

Bose-Einstein Condensation (BEC) in the many particle state 〈 · 〉
means that for some 1-particle state ϕ,

〈a(ϕ)†a(ϕ)〉 = O(N).

for N →∞, more precisely,

Nϕ/N ≥ c > 0

for all (large enough) N . Here N is the (average) particle number in
the state 〈 · 〉.
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The concept of BEC (cont.)

Important remark:

The definition is only precise if the dependence of the many body state
〈 · 〉 on N is specified. There may be more than one physically relevant
possibilities (thermodynamic limit, Gross-Pitaevskii (GP) limit,
mean-field limit. . . )

Note also that the 1-particle state ϕ used to test for BEC may depend
on N
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The concept of BEC (cont.)

More concrete description for 1-particle Hilbert space L2(Rd) (or
`2(Zd)): Consider the 1-particle density matrix

ρ(1)(x,x′) = 〈a(x)†a(x′)〉

If 〈 · 〉 is a pure state given by a wave function Ψ, then

ρ(1)(x,x′) = N

∫
Ψ(x,x2, . . .xN )Ψ(x′,x2, . . .xN )∗dx2 · · · dxN .

More generally, ρ(1)(x,x′) is a superposition of such expressions.
Spectral decomposition:

ρ(1)(x,x′) =
∑
i

Niϕi(x)ϕ∗i (x
′)

with N0 ≥ N1 ≥ . . . and orthonormal ϕi.
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The concept of BEC (cont.)

BEC in the state 〈 · 〉 means that

N0 = O(N)

while other Ni are of lower order. The condensate fraction is defined
as nBEC = N0/N .
The eigenfunction ϕ0(x) of the integral kernel ρ(1)(x,x′) is referred to
as the wave function of the condensate.

Fragmented condensation means that there are 1 < k << N modes
with a macroscopic occupation.
There is also the even more general concept of condensation where in
the thermodynamic limit no single mode has macroscopic occupation
but there is still macroscopic occupation in an infinitesimal energy
interval near the bottom of the spectrum (generalized, or “type III”
condensation.).
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Superfluidity, definition

Let E0 denote the ground state energy of the system in the rest frame
and E0(v) the ground state energy, measured in the moving frame,
when a velocity field v is imposed. Then for small v and uniformly in N

E0(v)

N
=
E0

N
+ (ρs/ρ)12mv2 +O(|v|4) (∗)

where N is the particle number and m the particle mass. This defines
the superfluid fraction nSF = ρs/ρ. At positive temperatures the
ground state energy should be replaced by the free energy.

Remark: It is important here that (*) holds uniformly for all large N ;
i.e., that the error term O(|v|4) can be bounded independently of N .
For fixed N and a finite box, (*) with nSF = 1 always holds for a Bose
gas with an arbitrary interaction if v is small enough, owing to the
discreteness of the energy spectrum.

Jakob Yngvason (Uni Vienna) BEC, Interactions and Disorder 7 / 32



Superfluidity, definition

Let E0 denote the ground state energy of the system in the rest frame
and E0(v) the ground state energy, measured in the moving frame,
when a velocity field v is imposed. Then for small v and uniformly in N

E0(v)

N
=
E0

N
+ (ρs/ρ)12mv2 +O(|v|4) (∗)

where N is the particle number and m the particle mass. This defines
the superfluid fraction nSF = ρs/ρ. At positive temperatures the
ground state energy should be replaced by the free energy.

Remark: It is important here that (*) holds uniformly for all large N ;
i.e., that the error term O(|v|4) can be bounded independently of N .
For fixed N and a finite box, (*) with nSF = 1 always holds for a Bose
gas with an arbitrary interaction if v is small enough, owing to the
discreteness of the energy spectrum.

Jakob Yngvason (Uni Vienna) BEC, Interactions and Disorder 7 / 32



Superfluidity, definition (cont.)

Equivalent definition in terms of twisted boundary conditions:

Consider the system on a torus, i.e., on a cube of side length L with
boundary conditions

Ψ0((L,0),x2, . . . ,xN ) = eiθΨ0((0,0),x2, . . . ,xN )

Then the energy in dependence of θ is

EN (θ)

N
=
EN (0)

N
+ (ρs/ρ)

~2

2m

θ2

L2
+O(θ4)

Remark: nSF ≤ 1 follows by taking eiθx1/LΨ0 as a trial function.

Jakob Yngvason (Uni Vienna) BEC, Interactions and Disorder 8 / 32



Superfluidity, definition (cont.)

Equivalent definition in terms of twisted boundary conditions:

Consider the system on a torus, i.e., on a cube of side length L with
boundary conditions

Ψ0((L,0),x2, . . . ,xN ) = eiθΨ0((0,0),x2, . . . ,xN )

Then the energy in dependence of θ is

EN (θ)

N
=
EN (0)

N
+ (ρs/ρ)

~2

2m

θ2

L2
+O(θ4)

Remark: nSF ≤ 1 follows by taking eiθx1/LΨ0 as a trial function.

Jakob Yngvason (Uni Vienna) BEC, Interactions and Disorder 8 / 32



Relation between BEC and SF

There is no simple relation between BEC and SF, although
(experimentally) in homogeneous systems the two usually come
together with nBEC ≤ nSF.

In liquid He4 near absolute zero experiments and numerical
computations indicate nSF ≈ 1 but nBEC ≈ 0.1.

In 2D (thin He4 films) one has nBEC = 0 but nSF > 0 is possible.

In random external potentials one expects the possibility that nBEC > 0
while nSF = 0 (Bose Glass phase, to be discussed.)
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Models

BEC and SF have been studied in a variety of models and with a
variety of methods:

Ideal gases
Particles in a box with short range interactions in the
thermodynamic limit
Various approximations of such models, sometimes exactly
soluble: Bogoliubov approximation, mean field models,
infinite-range hopping Hubbard model
Trapped gases in the Gross-Pitaevskii and related limits
The models can be continuous or discrete, and the dimension can
be 3, 2 or 1
External random potentials of various types can be added
The temperature can be T > 0 or T = 0 (ground state)
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Mathematical status of BEC and Superfluidity
(non-random potentials)

BEC has so far been rigorously proved in the following cases
Ideal gases (Einstein, ..., Lewis, Pulé, Verbeure, Zagrebnov,...)
Some variants of the Bogoliubov Hamiltonian (Lewis, Pulé,
Verbeure, Zagrebnov,...)
Bose-Hubbard model with infinite-range hopping (Dorlas, Bru)
Hard core lattice gases at half filling, also with a weak periodic
potential (Dyson, Lieb, Simon 1978; Kennedy, Lieb and Shastry
1988; Aizenman, Lieb, Seiringer, Solovej, JY 2004).
In the GP limit (Lieb, Seiringer 2002).

In the first four cases BEC is proved in the thermodynamic limit and for
positive temperatures (below a critical value).
Superfluidity has been proved for a homogeneous Bose gas in the GP
limit (Lieb, Seiringer, JY 2003)
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Some variants of the Bogoliubov Hamiltonian (Lewis, Pulé,
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What we would like to know

The principal questions concern

The effects of interactions on BEC and SF
The effects of disorder on BEC and SF

Among physicists there is reasonable consensus that
Interactions may enhance BEC in the sense that in a
homogeneous system, the transition temperature for BEC is
higher with interaction than for an ideal gas. On the other hand, in
the ground state, interactions may lower the condensate fraction
Disorder may enhance BEC (in a generalized sense) for ideal
gases, but destroy both BEC and SF in interacting systems. BEC
is, however, more robust than SF
Disorder may induce Anderson localization in BE condensates

Can these points be confirmed or rejected by rigorous analysis?
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Bose-Hubbard model

One model that has received particular attention of physicists is the
Bose-Hubbard model of a lattice gas with Hamiltonian

HBH = −1
2

∑
〈xy〉

(a†xay + axa
†
y) + U

∑
x

a†xax(a†xax − 1).

The seminal paper of M.Fisher et al (1989) predicted a phase diagram
with a BEC/SF phase and a Mott insulator phase and, in the presence
of randomness, a glassy phase with BEC but no SF.

Systems of this kind (mostly without a random potential) have for more
than 10 years been realized experimentally in optical lattices with
tunable parameters, and the Mott/SF transition has been observed, but
the glassy phase is still elusive.

There is also considerable numerical work on this model (Prokof’ef,
Svistunov, Troyer et al, 2009)
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tunable parameters, and the Mott/SF transition has been observed, but
the glassy phase is still elusive.

There is also considerable numerical work on this model (Prokof’ef,
Svistunov, Troyer et al, 2009)
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Bose-Hubbard model (cont.)

There are some rigorous results on the BH model (without
randomness), in particular by Fröhlich and Ueltschi (2006), confirming
the existence of a Mott phase, but so far not BEC.

The BH model with infinite-range hopping has been studied by Bru and
Dorlas (2001-2003) without randomness, and by Zagrebnov with
randomness (lecture of VZ!)

The 1D model can be regarded as a discrete version of the
Lieb-Liniger model. This model has been studied by Bishop and Wehr
(2013) for weak interactions and with Bernoulli disorder. (The
continuum LL model with Poisson disorder will be disused below).
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Hard core lattice gas

Another model that has some features in common with the BH model
is a lattice gas of hard bosons in a tunable periodic potential. The
Hamiltonian is

H = −1
2

∑
〈xy〉

(a†xay + axa
†
y) + λ

∑
x

(−1)xa†xax.

The operators a#x in this model commute at different sites as
appropriate for Bosons but satisfy anti-commutation relations on the
same site, reflecting the hard-core condition.

At half filling (which is in paricular a strongly interacting case) this has
been studied rigorously by Aizenman, Lieb, Solovej, Seiringer, JY
(2003), proving BEC for small λ and a Mott phase for large λ.

It is natural to study this model also with the fixed λ replaced by
random potential strengths λωx . Some results on this have been
obtained by a student of Simone Warzel.
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(at low T)

exp. decay of correlations

no BEC



Gross-Pitaevskii theory

The time independent Gross-Pitaevskii equation in Rd

−1

2
∆ψ + V ψ + g|ψ|2ψ = λψ

with an external confining potential V (possibly including a random
part), is the variational equation for the energy functional

E [ψ] =

∫
Rd

{
1

2
|∇ψ|2 + V |ψ|2 +

g

2
|ψ|4

}

with an L2-normalization condition,
∫
Rd |ψ|2 = N.

The time dependent GP equation can be written as

i∂ψt(x)/∂t = δE [ψt]/δψ̄t(x).
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Gross-Pitaevskii theory (cont.)

Basic fact behind the nonlinear term: For a dilute homogeneous gas of
Bosons in 3D, interacting with a repulsive short range 2-body potential
with scattering length a the ground state energy density is ≈ 4πaρ2

where ρ is the particle density (Lieb, JY 1998). Dilute means here that

a3ρ� 1

i.e. a is much smaller than the mean particle distance ρ−1/3.

Interpreting ρ(x) = |ψ(x)|2 as a local particle density makes the energy
functional and hence the GP equation plausible with g = 8πa.

Rigorous derivations of the GP equation from the many body
Hamiltonian have be obtained in the time independent case by Lieb,
Seiringer and JY (1998-2003), and in the time dependent case by
Erdős, Yau and Schlein (2005–2008).
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Gross-Pitaevskii theory (cont.)

Formally, the GP can be regarded as a mean-field Hartree
approximation with the 2-body interaction potential replaced by a delta
function, but in 3D this is a wrong picture since there are no genuine
delta potentials in 3D! (And also not in 2D.)

In 1D on the other hand, the GP equation is obtained in a high density
limit, and for δ-interactions it is, indeed, a mean field limit.

The 3D time independent GP equation has been derived rigorously
from the full many body problem in the N →∞ limit, provided
a3ρ̄→ 0, in particular in the GP limit where the GP parameter

Na/L

with L the length scale of V is kept constant (Lieb, Seiringer, JY
(2000)).

Remark: If a is fixed L must scale proportional to N and not N1/3.
Hence this is not a thermodynamic limit at positive density in 3D.
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BEC and SF in the GP limit

In the GP limit there is complete BEC in the ground state (Lieb,
Seiringer 2002).

If the trapping potential is homogeneous in the direction of the
imposed velocity (periodic box, or rotational symmetry) there is also
complete superfluidity in the same limit (Lieb, Seiringer, JY 2003).

Principal mathematical tools for the proofs are
A lemma of Dyson (1957) transforming ‘hard’ potentials into ‘soft’
ones
Generalized Poincaré inequalites

For the proof of SF also the diamagnetic inequality is used.
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A 1D model (Seiringer, JY, Zagrebnov 2012)

The model is the Lieb-Liniger model of bosons with contact interaction
on the unit interval but with an additional external random potential V ω.
The Hamiltonian on the Hilbert space L2([0, 1], dz)⊗sN is

H =

N∑
i=1

(
−∂2zi + V ω(zi)

)
+
γ

N

∑
i<j

δ(zi − zj)

with γ ≥ 0 and periodic boundary conditions.

The random potential is taken to be

V ω(z) = σ
∑
j

δ(z − zωj )

with σ ≥ 0 independent of the random sample ω while the obstacles
{zωj } are Poisson distributed with density ν � 1.

Jakob Yngvason (Uni Vienna) BEC, Interactions and Disorder 20 / 32



A 1D model (Seiringer, JY, Zagrebnov 2012)

The model is the Lieb-Liniger model of bosons with contact interaction
on the unit interval but with an additional external random potential V ω.
The Hamiltonian on the Hilbert space L2([0, 1], dz)⊗sN is

H =

N∑
i=1

(
−∂2zi + V ω(zi)

)
+
γ

N

∑
i<j

δ(zi − zj)

with γ ≥ 0 and periodic boundary conditions.

The random potential is taken to be

V ω(z) = σ
∑
j

δ(z − zωj )

with σ ≥ 0 independent of the random sample ω while the obstacles
{zωj } are Poisson distributed with density ν � 1.

Jakob Yngvason (Uni Vienna) BEC, Interactions and Disorder 20 / 32



A 1D model (cont.)

Our model is formulated in the fixed interval [0, 1] so that the particle
density ρ tends to infinity as N →∞. The parameters γ, ν and σ will
also be allowed to tend to infinity as N →∞, but BEC requires that
they can only grow rather slowly. In particular, the coupling constant
γ/N will tend to zero as N →∞.

Instead of fixing the interval we could consider the model in an interval
[−L/2, L/2] and take N and L→∞ with ρ = N/L fixed
(thermodynamic Limit).

The two viewpoints are connected by simple scaling of the parameters.
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BEC in the 1D model

For fixed γ, σ and ω there is complete BEC in the ground state in the
sense that the 1-particle density matrix/N converges to a one
dimensional projector as N →∞. The corresponding wave function of
the condensate is the normalized minimizer of the Gross-Pitaevskii
(GP) energy functional

EGP
ω [ψ] =

∫ 1

0

{
|ψ′(z)|2 + V ω(z)|ψ(z)|2 + (γ/2)|ψ(z)|4

}
dz

We want, however, to consider ν, σ and γ large. Hence it is important
to estimate also the rate of the convergence of the 1-particle density
matrix as N →∞, in dependence of the parameters and of ω.
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Remarks

BEC in the LL model is not expected if γ & N2. Our proof of BEC
requires γ � N2/3 (in fact, an even stronger condition). The case
γ � N2 corresponds to the Girardeau-Tonks regime.

The proof of BEC for the LL model (for γ fixed or not increasing
too fast with N ) is simpler than the proof of Lieb and Seiringer
(2002) of the corresponding result for 3D bosons with a general
(positive, short range) interaction. But it is still nontrivial, and the
random potential adds some twist.
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The Proof of BEC (sketch)

The proof of BEC is based on energy bounds:
An upper bound to the many-body ground state energy EQM

0 by
taking ψ⊗N0 as a trial function for H where ψ0 is the minimizer of
the GP energy functional, normalized so that ‖ψ0‖2 = 1. This
gives

EQM
0 ≤ Ne0

where e0 = EGP[ψ0] is the g.s.e. of the GP functional.
An operator lower bound for the many-body Hamiltonian H, up to
controlled errors, in terms of the 1-particle mean-field Hamiltonian

h = −∂2z + V ω(z) + γ|ψ0(z)|2 − (γ/2)

∫
|ψ0|4

which has ψ0 as ground state with energy e0.
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BEC follows from the upper and lower bounds and the fact that there is
an energy gap between e0 and the next lowest eigenvalue, e1, of the
mean-field Hamiltonian h:
Let

N0 = 〈Ψ0|a†(ψ0)a(ψ0)|Ψ0〉

be the occupation number of the GP ground state ψ0 in the
many-body ground state Ψ0. Then the energy bounds give

N0e0 + (N −N0)e1 − o(1)Ne0 ≤ EQM
0 ≤ Ne0 .

where the o(1) = N−1/3 min{γ1/2, γ}. Hence

Theorem (BEC).(
1− N0

N

)
≤ C e0

e1 − e0
N−1/3 min{γ1/2, γ}.
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Fragmented condensate for finite N

If N<k denotes the occupation of the k lowest eigenstates with
eigenvalues e0, . . . , ek−1 then more generally(

1− N<k

N

)
≤ C e0

ek − e0
N−1/3 min{γ1/2, γ}.

This can be useful for finite N because ek − e0 � e1 − e0 is possible,
even if k � N .

Thus, if the gap e1 − e0 is very small and N not too large, the picture of
a fragmented condensate may be more appropriate.

Condensation into a single state (the ground state of h) occurs,
however, in the limit N →∞.)
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The energy gap

Consider a one-dimensional Schrödinger operator −∂2z +W (z) with
Dirichlet boundary conditions and a nonnegative potential W .

Proposition (Gap).

Define η > 0 by η2 = π2 + 3
∫ 1
0 W (z)dz. Then

e1 − e0 ≥ η ln
(
1 + πe−2η

)

The proof is based on a modification of a result of Kirsch and Simon
(1985), that involves the sup norm of W instead of the integral.

In our case η = ηω =
√
π2 + 3mωσ + 3γ where mω is the number of

obstacles in [0, 1], that is almost surely equal to ν, in the limit ν →∞.
For large σmω we expect e1 − e0 ∼ (σmω)−1.
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The wave function of the condensate

Analysis of the GP equation with the random potential leads to the
following picture:

The random potential may lead to localization of the wave function of
the condensate in subintervals. The interparticle interaction
counteracts this effect, however, and can lead to complete
delocalization (the condensate extends over the whole unit interval) if
the interaction is strong enough.

When the three parameters, γ, ν and σ all tend to infinity in a certain
way that guarantees that the GP energy becomes deterministic, a
transition between localization and delocalization occurs when γ ∼ ν2.

For γ . ν/(ln ν)2 a the condensate is localized in a fragmented subset
of the unit interval.
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γ � ν2

•• • • ••• • • • •• • • •• • •

γ . ν2

•• • • ••• • • • •• • • •• • •

γ . ν/(ln ν)2

•• • • ••• • • • •• • • •• • •
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Loss of superfluidity

While there is complete BEC in the model in the limit considered,
superfluidity may get lost due to gaps in the wave function.

An upper bound on the effect of twisting the boundary condition can be
obtained with a trial function

ψ(x) = eiφ(z)ψ0(z)

with φ real valued and φ(0) = 0, φ(1) = θ. Then

EGP[ψ]− EGP[ψ0] =

∫ 1

0
|∇φ(z)|2|ψ0(z)|2dz.
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While there is complete BEC in the model in the limit considered,
superfluidity may get lost due to gaps in the wave function.

An upper bound on the effect of twisting the boundary condition can be
obtained with a trial function

ψ(x) = eiφ(z)ψ0(z)

with φ real valued and φ(0) = 0, φ(1) = θ. Then

EGP[ψ]− EGP[ψ0] =

∫ 1

0
|∇φ(z)|2|ψ0(z)|2dz.
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Now suppose |ψ0(z)|2 ≤ ε on a subinterval [a, b] of length `. Then, with

φ(z) =

{
0 if z < a or z > b
θ
` (z − a) if z ∈ [a, b]

we obtain
EGP[ψ]− EGP[ψ0] =

ε

`
θ2.

Hence, nSF ≤ ε/`, and if ε/` < 1, superfluidity is suppressed.

More generally, if there are k intervals where |ψ0(z)|2 ≤ ε one can
divide the twist between the intervals and obtain

nSF ≤ ε/(k`)

.
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If γ . ν2 the total length k` of intervals where |ψ0|2 is small is O(1),
and ε can be estimated as (σν)−1 times the GP energy for σ →∞,
which is ν2/(ln ν)2. Hence, for γ . ν2,

nSF ≤
ν

σ(ln ν)2

which can be arbitrarily close to zero if σ is large. On the other hand
we still have nBEC → 1 in the N →∞ limit, provided σνN−1/3γ → 0.
So, mathematically at least, a Bose glass is possible in this model as a
limiting case.
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