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Mechanism of Instability

Consider the three-body problem consisting of the Suntdy@ind
an Asteroid which moves on (approximate) ellipses.

A possible source of instabilities aoebital resonance$etween the
frequencies of Jupiter and the Asteroid.

Jupiter and the Asteroid are regularly in the same relatsstion.

Over a long time interval, Jupiter’s influence piles up andalmes
the eccentricity of the Asteroid.

According to Kepler’s third law, resonances take place when
semi-major axis satisfies




Kirkwood Gaps

e The Asteroid Belt is located between the orbits of Mars anadup
The distribution of asteroids presents several gaps @igas the
resonances.

Asteroid Main-Belt Distribution
Kirkwood Gaps
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Kirkwood Gaps
e |t is believed that these gaps are due to instability mecmas

e This motivates us to study the 3:1 resonance
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Theorem 1 (FGKR, 2011) Consider theelliptic RTBP with mass ratio
1 = 1073 and eccentricity of Jupitet, > 0.

For ey small enough, there exigt > 0 and a trajectory whose
eccentricitye(t) satisfies

e(0) < 0.55 and e(T') > 0.85,

while its semi-major axis stays almost constant

a(t) ~ 372/3,




Summary of Proof

1. Prove the existence of a normally hyperbolic invariatincler A,
which exists near the resonance.

. Establish transversality of its stable and unstableriamamanifolds.

. Compare inner and outer dynamics/oyand check that they do not
have invariant circles.

. Construct diffusing orbits by shadowing a compositioowater and
iInner maps.




e Whenyu > 0, all known analytical techniques fail to estimate the
splitting of separatrices (even feg = 0).

e We sety = 1072, and we show numerically that the splitting is not

too small.

e Since the splitting varies smoothly with respectgoit suffices to
estimate the splitting fo#y = 0 (i.e. for thecircular problem)!!




Ansatz 1 Consider thecircularRTBP with mass ratip. = 10~2 and
Hamiltonian H.

In each energy levell € |[H_, H, | there exists a hyperbolic periodic
orbit Ay (¢) which satisfies

Ly(t)—3"Y3| <50u  forall teRR.

Each)\y has two branches of stable and unstable invariant manifolds
W (Ag) andWJ (\y) for j = 1,2. For eachH < [H_, H,] either

WL () N W™ (\y) transversally

W2 (Ag) N W™2(\y) transversally.




Comments
We verify the Ansatz numerically.

Numerical analysis has several sources of error:
— roundoff errors in computer arithmetic,
— numerical approximation of ideal objects.

We evaluate such errors and check that they are approprsatelll.

Goal: to keep our numerics simple and convincing.

Roldan and Zgliczynski are working towards a fully rigorous
Computer-Assisted proof.




Choice of Coordinates

e Circular RTBP in rotating Cartesian coordinates

1 251

2
T%:<x_l’b )2+y27
ry = (x4 pm)* +y°,

e Sun is located to the left of the orgip; = p is the small mass and
o = 1 — p is the large mass.




Symmetries of the System

e The system is reversible with respect to the involution

R(x7y’p33’py> — (ZC, —Y, _p:E?y)

e Thus, a solution is symmetric if and only if it intersects the
symmetry plane




Conservation of Energy

The circular problem has a conserved quantity, the JacaotsitaotC'.

When the Hamiltonian is constatt = H,, we have

_C — M1 42

Hy = ;

We will refer to H, as theenergyof the system.

It is natural to fixH = H, and perform our analysis fdi,. Then,
we let H vary and repeat our computations #dre [H_, H|.




Computation of Periodic Orbits

Fix H = Hy, and look for an (almost) resonant periodic orkjf ()
In this level of energy.

As a first approximation, consider the 2BP and look for themast

periodic orbitS\H(t) in the level of energyHgp = Hj.

To simplify numerics, we choosesymmetrigoeriodic orbit.

Refine)y (t) into Ax (t) in the R3BP using a Newton method.



Poincare Map
Consider the RTBP in Cartesian coordinates.

Define thePoincare section

Z+:{y:0,y>0}

with Poincae map
P: X, =X,

On the section, the variabjg, can be elliminated. We can recover it
from the energy condition

H(x7y7pm7py) — H07

sinced, H =y # 0.

Hence, at each energy levét,= P(x, p,.) is a 2-dimensional
symplectic map.




Fixed Point Equation

In the rotating frame, a 3:1 resonant periodic orbit makasns
around the origin.

One can look for a periodic poiat= (x, p,.) of the Poincag map

a = P?(a),

or equivalently, a fixed point of thierated Poincaé mapP
a="P(a).

However, we want aymmetrigeriodic orbit. Thus, after half a
period, it must intersect the symmetry plajpe= 0, p, = 0}:

I, oP(a)=0.

Solve this 1-d equation using a Newton method.




Family of Periodic Orbits

e Finally, letH vary intherangeH_, H,| = [—1.733, —1.405] to
obtain the family of (almost) resonant periodic orbits

Ay = U 7.

He[H_ ,Hy]
e A Is afamily of symmetric periodic orbits around the Sun.

e Accuracy in the computation of periodic orbitsd—14.




Family of Periodic Orbits

H=-1.733, C=3.467




Family of Periodic Orbits

H=-1.729, C=3.460 —




Family of Periodic Orbits

H=-1.719, C=3.439 —




Family of Periodic Orbits

H=-1.640, C=3.281




Family of Periodic Orbits

H=-1.594, C=3.190 —




Family of Periodic Orbits

H=-1.535, C=3.071




Family of Periodic Orbits

H=-1.456, C=2.913
L1

+




Family of Periodic Orbits

H=-1.405, C=2.811
L1

+




In the Loop

WhenH ~ —1.6, the periodic orbit develops loops. The reason is the
following:

Near the apohelion, the sideral velocity of Asteroid becesraaller
than the velocity of rotating frame=- relative velocity is negative,
and orbit is direct.

At other parts of the orbit, the sideral velocity of Aster@darger
than the velocity of rotating frame=- relative velocity is positive,
and orbit is retrograde.

Loops are inherent to this resonant family of periodic @imtthe
rotating system, even for the 2BP.
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In the Loop

e When the loops appear, there is one more iterate of the Reinuap.
However, the family is continuous with respect to the pefigd

e This is an artifact produced by rotating coordinates. Omege rid
of this technical problem by redefining the Poireanap in a suitable
way.




|
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Numerical Bounds

e The period stays close to the resonant period of the unedur
system

Ty — 27| < 15u.

o Ly (t) stays close to the resonant vaRie'/3:

Li(t) — 3713 < 504
te%%]\ H(t) | I




Stability of Periodic Orbits

e Compute eigenvalues A\~ ! of DP(a).
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Stability of Periodic Orbits

e The family of periodic orbits is
— less hyperbolic whetd — H_, or equivalentlye — 0.
— more hyperbolic wheiti — H ., or equivalentlye — 1.

e Since the system is close to integralhlag small), one expects
eigenvalues\, A\~ ! close to unity.

e Nevertheless, non-integrability is noticeable in theymet This is
due to the effect of the perturbing body (Jupiter) on the Fste




Computation of Invariant Manifolds

Fix H = Hy, and look for the (1-d) invariant manifolds
W*(a), W#(a) of the hyperbolic fixed point in this level of energy.

Approximate the local invariant manifolds using a lineagreent.
The error commited in the linear approximation is controled

err(n) = |[|P(a+nv) — (a+ M)l € O(n?).

Globalize the manifolds using the Poineamap.

Choose a displacementsuch thaerr(n) < 10~ uniformly in H.



Invariant Manifolds for H = —1.733

unstalble mfld I
stable mfld
symmetry axis




New Poincare Section

Notice that the fixed points,, a, are in the symmetry plane by
construction.

Unfortunately, the homoclinic points am®tin the symmetry plane.

Consider the new Poinaasection

S_={y=0,4 <0}

In the new sectioX_, the fixed points:;, a are reversible:
R(a1) = as.

Hence, the homoclinic points are now in the symmetry plane.




Invariant Manifolds on the section X _

| unstable rlnfld —_—

stable mfld
symmetry axis




Homoclinic Points

Thanks to reversibility, the intersection of the manifoldgh the
symmetry axie, = 0 is a homoclinic point.

We consider two homoclinic points:
— 21 corresponds to the “inner” splitting,

— 2o corresponds to the “outer” splitting.

Computezy, zo using a standard bisection method.

We verify thatzy, 2, lie on the symmetry axis with toleran¢@—1"
uniformly in H.




Inner Splitting for H = —1.405

0.1 L L L L
-0.08708 -0.08707 -0.08706 -0.08705 -0.08704 -0.08703 -0.08702

X




Computation of Splitting Angle

e Look for the tangent vectors,, andw, to the manifolds at. The
splitting angleis the oriented angle between them.

e \We use two different methods to compute the tangent vectars a
This way we can validate the numerical accuracy of the smiitt

angle.




First Method

e Letpy € Wi (a) be the preimage of the homoclinic poinin the
local manifold

P"(po) = 2.

e Letvyy be the tangent vector to the manifoldpgt(i.e. the
eigenvector).

e Transporty by the JacobiaP at the successive iterates;nf

n—1
Wy, = H Dp(pz)vO
1=0




Second Method
Letz = («*,0) be the homoclinic point.
Look at the manifold?V*“(a) as a graph over the vertical line= z*.
Sample the manifolél“(a) at different values op,:
_ )
105°

Apply numerical differentiation to these values, usingtcan
differences centered at. = 0:

o #(0.00001) — (~0.00001)
L= 0.00002 !

Pa je(—2,-1,1,2).

~ 2(0.00002) — :(—0.00002)

do =

0.00004
Use Richardson extrapolation to improve the precision avdgve:
~ 4dy —d
— T

d




Splitting Angle (Inner Splitting)




Accuracy of Computations
e Let H = Hy = —1.405, for example.

e According to the first method, the splitting angle is
o) = —9.780327341442923¢ — 05.

e According to the second method,

Dz x"

—0.00002 | —8.703373796876306e — 02
—0.00001 | —8.703373845681261e — 02
0.00001 | —8.703373943484494¢e — 02
0.00002 | —8.703373992482412¢ — 02




d; = —4.890161608983589%¢ — 05
do = —4.890152657810453e — 05
d = —4.890164592707968e — 05

o3 = —9.780329177619804¢e — 05

e Compare the splitting angle computed using the two methods:

o) = —9.780327341442923¢ — 05,

) (2)
o'?) = —9.780329177619804¢ — 05.

They differ by less than0~1Y (total numerical error).




Validation of Splitting Angle

e The splitting angle is several orders of magnitude largan tine total
numerical error for a large range of energiéss [—1.6, —1.4].
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