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The most beautiful maps  

between beautiful spaces 

ought to be optimal 

in some specific mathematical sense, 

and then characterized by that optimality. 
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Haomin's Theorem.  The group multiplication map 

m: S
3
  S

3
    S

3
  is a Lipschitz constant minimizer 

in its homotopy class, uniquely so up to composition 

with isometries of domain and range.  

 

Remark.  The above theorem is easy (and fun) to 

prove for  S
1
 . 

 

Haomin's proof for  S
3
  also works for the multiplication 

map  m: S
7
  S

7
    S

7
  of unit Cayley numbers. 
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Lipschitz maps and constants. 

 

A map  f: X  Y  between metric spaces is a  

Lipschitz map if there is a constant  C  such that 

d(f(x), f(x'))    C d(x, x')  for all  x, x'  in  X .   

 

The smallest such constant  C  is called the  

Lipschitz constant of  f . 

 

There always exists a Lipschitz constant minimizer  

in the homotopy class of any Lipschitz map between 

compact metric spaces (by Arzela-Ascoli). 
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Background to Haomin's theorem.  Consider the Hopf 

fibrations of round spheres by parallel great subspheres: 
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1
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with the nonassociativity of the Cayley numbers 

responsible for the truncation of the third series. 

 

First one discovered by Hopf in 1931, rest by him in 1935. 

 

All Hopf projections have Lipschitz constant  1  when the  

base spaces are given the Riemannian submersion metric. 
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Hopf fibration of 3-sphere by great circles 
Lun-Yi Tsai     Charcoal and graphite on paper     2007 
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Thms (with Dennis DeTurck and Pete Storm, 2010). 
 
(1) Given a Hopf fibration of a round sphere by parallel 

great subspheres, the projection map to the base 

space is, up to isometries of domain and range, the 

unique Lipschitz constant minimizer in its homotopy 

class. 
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(2) When the fibres of a Hopf fibration are great circles, 

a unit vector field tangent to these circles is, up to 

isometries of domain and range, the unique Lipschitz 

constant minimizer in its homotopy class. 

 

            
                                    Pete Storm
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Tracing even further back... 

 

Theorem (with Wolfgang Ziller, 1986). 

On  S
3
 ,  the Hopf vector field is volume-minimizing 

in its homology class in the unit tangent bundle. 
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However ... (David Johnson, 1988). 

On  S
5
 ,  the Hopf vector field is not volume-minimizing 

in its homology class, not even a local minimum, though 

it is a critical "point" of the volume function. 
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Furthermore ... (Sharon Pedersen, 1988). 

As the Hopf vector field on  S
5
 ,  viewed as a cross- 

section of the unit tangent bundle  US
5
 ,  shrinks there 

trying to minimize volume, it appears to limit on the 

image of a vector field with singularities, suggesting 

that there is no vector field on  S
5
  whose image in 

US
5
  has minimum volume.  And likewise for  S

7
, S

9
, ... 
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Try again:  

 

Are Hopf vector fields energy minimizers? 
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Energy. 

 

The energy of a smooth map  f: M    N 

beween Riemannian manifolds (with  M  compact) 

is defined by 

 

E(f)  =  1/2  x M  ||dfx||
2
  d(vol) , 

 

where   ||dfx||
2
   is the sum of the squares of the entries 

in a matrix for  dfx  w.r.t. orthonormal bases. 
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Harmonic maps. 

 

A smooth map  f: M    N  between Riemannian 

manifolds (with  M  compact) is harmonic if it is a 

critical point of the energy function, that is, if 

 

dE(ft)|t=0  =  0 

 

for all one-parameter families  { ft }  of maps 

from  M    N  with  f0  =  f . 
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Hopf vector fields are harmonic maps. 

 

If a unit vector field is regarded as a map into the  

unit tangent bundle, then Hopf vector fields on all  

odd-dimensional spheres are harmonic maps, and  

on  S
3
 there are no other unit vector fields which  

are harmonic (Han and Yim, 1996). 

 

But harmonic maps from spheres to compact  

Riemannian mflds are always unstable (Xin, 1980). 
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What if we limit the competition? 

 

If we now only look at cross-sections of the unit  

tangent bundle, then the Hopf vector fields   

VH: S
n
    US

n
  are still unstable for  n  =  5, 7, 9, ...  

(Wood, 1997) ... 

 

...but for  n = 3  they are stable, and in fact a  

local minimum (Wood, 1999). 
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CONCLUSION 

 

Energy-minimization doesn't seem to work either. 
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More background: Schmuel Weinberger's question. 

 

Consider maps  f: S
3
    S

2
  of Hopf invariant  n .   

Let  L(n)  be the min Lipschitz constant of all such maps.  

Find the asymptotic growth of  L(n)  as  n   . 
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Pete Storm brought this question along when he visited  

Penn in 2006; the first step was to confirm that  L(1)  =  1 . 

 

We proved more:  Not only is  L(1) = 1, but the only  

maps  f : S
3
  S

2
  which are homotopic to the Hopf  

projection and have this minimum Lipschitz constant  

are the Hopf projection and its compositions with  

isometries of domain and range. 
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General hope: Many beautiful maps...for example,  

Riem. submersions of compact homogeneous spaces... 

are Lipschitz minimizers in their homotopy classes, unique  

up to composition with isometries of domain and range. 

 

The Hopf projections all have this feature. 

 

One more known instance.  The Stiefel projection 

V2R
4
    G2R

4
  is a Lipschitz constant minimizer in  

its homotopy class, unique up to composition with 

isometries of domain and range. 
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Remark.  Group multiplication  S
3
  S

3
    S

3
  is,  

up to scale, a Riemannian submersion of compact 

homogeneous spaces. 

 

 

In the following pages, we give some excerpts 

from Haomin's proof of his theorem.
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Back to  S
3
  with a preliminary result. 

 

 (1) Group multiplication  S
3
  S

3
    S

3
  has  

  Lipschitz constant  =  2 . 

 

This is a matter of observation, which we tackle in a 

moment. 

 

 (2) Any map  S
3
  S

3
    S

3
  homotopic to this has 

  Lipschitz constant    2 . 
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(1)  Group mult  m: S
3
  S

3
  S

3
  has  Lip(m) = 2. 

 

Proof.  In a Lie group with bi-invariant metric,  

group mult near all pairs of points are isometric. 
 

Enough to show the differential  m* : R
3
  R

3
  R

3
 

has Lipschitz constant (= operator norm) 2. 
 

At  (identity, identity),  m*  =  addition in  R
3
 . 

 

The matrix  A  of addition is the 3  6 matrix  I | I . 
 

Lip(A)  =  ||A||op  = (largest eigenvalue of  A
T 

A) 
 

The eigenvalues of  A
T 

A  are computed to be   

0, 0, 0, 2, 2, 2 ,  completing the proof.



 24

Preliminaries to the proof of (2). 

 

Definitions.  A map  f : S
n
    S

n
  is said to be 

    even if  f ( x)  =  f (x)  for all  x  S
n
 ; 

    odd if  f ( x)  =  f (x)  for all  x  S
n
 . 

 

Easy exercise.  An even map  S
n
    S

n
  has even 

degree. 

 

Theorem (Borsuk).  An odd map  S
n
    S

n
  has odd 

degree.  (For a proof, see Hatcher, "Algebraic Topology," 

pp. 174-176. 
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Corollary 1.  If  f : S
n
    S

n
  has even degree, then 

there is a pair of antipodal points  x  and  x  such that   

f (x)  =  f ( x) . 

 

Proof.  Suppose not.  Then we can homotope  f  by 

repulsion such that afterwards  f ( x)  =  f (x)  for every  

x  in  S
n
 . 

 

By Borsuk's Theorem, this implies that  f  has odd 

degree, contrary to assumption. 
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Corollary 2.  A degree-two map  f : S
n
    S

n
  must 

have  Lipschitz constant    2 . 

 

Proof.  By Corollary 1, there exists a pair of antipodal 

points  x  and  x  such that  f (x)  =  f ( x) . 
 

Call this image point  y . 
 

Let  x'  be a point in  S
n
  such that  f (x')  =  y . 

 

Then  d(x', x)    /2   or   d(x', x)    /2 , 

yet  d(f (x'), f (x))  =  d(f (x'), f ( x))  =   . 
 

Hence  Lip(f )    2 .   
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Proof of (2): Any map  f : S
3
  S

3
    S

3
  which is 

homotopic to the multiplication map  m: S
3
  S

3
    S

3
  

has  Lip(f )  2 . 
 

The restriction of  m  to the diagonal   
 

D(S
3
)  =  {(x, x): x  S

3
}    S

3
 

 

has degree 2 ,  so the same must hold for  f . 
 

Since  D(S
3
)  is a round 3-sphere of radius  2 ,  it 

follows from Corollary 2 that  Lip(f |D(S3))    2 . 
 

Hence  Lip(f )    2 ,  as claimed. 



 28

Remark. At this point, we know that the multiplication 

map 

m: S
3
  S

3
    S

3 

 

has the minimum possible Lipschitz constant of  2   

in its homotopy class. 

 

The issue now is to show that the only other maps in 

this homotopy class with Lipschitz constant  2  are  

the compositions of  m  with isometries of domain and 

range. 
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The four steps of Haomin's proof of uniqueness. 

 

(1) Let  (x1, y1)  and  (x2, y2)  be two points in  S
3
  S

3
 

which have the same image in  S
3
  under  f . 
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The first step is to prove the following inequalities: 

 

   (2     d(x1 , x2))
2
  +  d(y1 , y2)

2
    2

2
  

 

   (2     d(y1 , y2))
2
  +  d(x1 , x2)

2
    2

2
 , 

 

which are at the heart of Haomin's argument. 
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We graph both inequalities together in the figure below, 

letting  x = d(x1 , x2)  and  y = d(y1 , y2) , both in  [0, ] . 

 

                                             
 

 

The shaded region above consists of the points  (x, y)  

satisfying both inequalities. 
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Haomin's approach to proving his inequalities. 

 

(i) Since the given map  f : S
3
  S

3
    S

3
  is homotopic 

to the group multiplication  m ,  it must take each  S
3
  b 

onto  S
3
 .  Thus for each  a  and  b  in  S

3
 ,  the set   

f
 –1

(a)    (S
3
  b)  must be non-empty. 

 

(ii) Haomin constructs a 3-sphere  S  through the two 

given points  (x1 , y1)  and  (x2 , y2)  in f
 –1

(a) ,  homotopic 

to  S
3
  b ,  so that  (i)  will hold for  S  in place of  S

3
  b . 

 

(iii) He then shows that if his inequalities are false, the 

3-sphere  S  will be disjoint from  f
 –1

( a) , contradicting (i). 
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(2) Use these inequalities to show that each  

inverse image  f
 –1

(a)  is the graph of some isometry   

ha: S
3
    S

3
 ,  and hence appears inside  S

3
  S

3
   

as a diagonal 3-sphere.  There are four steps: 

 

Step 1.  Let  (x1 , y1)  and  (x2 , y2)  be points in  f
 –1

(a) . 

If  x2 = x1 ,  then  y2 = y1 ,  and conversely. 

 

Step 2.  f
 –1

(a)  is the graph of a bijection  ha: S
3
  S

3
 . 

 

Step 3.  The map  ha: S
3
  S

3
  has Lipschitz const  1. 

 

Step 4.  The map  ha: S
3
  S

3
  is an isometry. 
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(3) Show that these diagonal 3-spheres are mutually 

parallel. 

 

Start with any pair of antipodal points  a  and  a  on 

the range  S
3
 ,  where their distance apart is   . 

 

Then the great 3-spheres  f
 –1

(a)  and  f
 –1

( a)  must 

have distance apart    / 2  in  S
3
  S

3
 ,  since the 

Lipschitz constant of  f  is  2 . 
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But the open nbhd of radius  / 2  about a great  

3-sphere in  S
3
  S

3
  is almost the entire space, 

and omits only the orthogonal great 3-sphere, 

which must be  f
 –1

( a) . 

 

In like spirit, if we pick another point  b  S
3
 , 

we learn that  f
 –1

(b)  must be parallel to  f
 –1

(a)  

at distance  d(a, b) / 2  from it, completing the 

argument that the great 3-sphere fibres of  f  are 

parallel to one another. 
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(4) Use classical results to finish the proof. 

 

Proposition (Y-C Wong 1961, Joseph Wolf 1963). 

Any fibration of an open set on  S
3
  S

3
  by parallel 

great 3-spheres extends to a fibration of all of  S
7
( 2) 

by parallel great 3-spheres, and any two of these are 

isometric to one another. 

 

It follows that any two fibrations of  S
3
  S

3
  by parallel 

great 3-spheres can be taken, one to the other, by an 

isometry of  S
3
  S

3
 . 
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Perform this isometry, so that now the fibres of 

f: S
3
  S

3
    S

3
  coincide with the fibres of the 

multiplication map  m: S
3
  S

3
    S

3
 . 

 

Since  f  and  m  are now both Riemannian 

submersions (up to scale) of  S
3
  S

3
    S

3
 

having the same fibres, the map of  S
3
  to itself 

which takes  f(x, y)  to  m(x, y)  is an isometry. 

 

This completes the proof of Haomin's theorem. 
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What's next? 

 

Test question #1: Try to show that the bundle map 

 

SO(n)    S
n–1

 

 

is a Lipschitz constant minimizer in its homotopy class, 

unique up to composition with isometries of domain 

and range. 

 

This can be shown for  n  4  on the basis of known 

results, so the first challenge is for  n = 5 . 
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Test question #2: Show that the projection map 

 

SU(3)    S
5
 

 

is a Lipschitz constant minimizer in its homotopy class, 

unique up to composition with isometries of domain 

and range. 
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Test question #3:  Show that the projection map 
of the Stiefel bundle 
 

V2R
n
    G2R

n 

 

is a Lipschitz constant minimizer in its homotopy class, 

unique up to composition with isometries of domain 

and range. 

 

This is also known for  n  4 ,  so the first challenge 

is for  n = 5 . 
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Test question #4: Geometry of real Grassmann mflds. 
 
Let  GkR

n
 = set of oriented k-planes thru origin in  R

n
 . 

 
GkR

n
  =  SO(n) / (SO(k)  SO(n k)) = k(n  k) dim'l mfld.  

 
  G5R

6
    G5R

7
    G5R

8
    G5R

9
    G5R

10
   ... 

                                                      
  G4R

5
    G4R

6
    G4R

7
    G4R

8
    G4R

9
    ... 

                                                      
  G3R

4
    G3R

5
    G3R

6
    G3R

7
    G3R

8
    ... 

                                                      
  G2R

3
    G2R

4
    G2R

5
    G2R

6
    G2R

7
    ... 

                                                      
  G1R

2
    G1R

3
    G1R

4
    G1R

5
    G1R

6
    ... 
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        G3R
4
    G3R

5
    G3R

6
 

                                          
      G2R

3
    G2R

4
    G2R

5
 

                                 
      G1R

2
    G1R

3
    G1R

4
  

 
The 9-dim'l Grassmann manifold  G3R

6
  has the rational 

homotopy type of  S
4
  S

5
 ,  and the subGrassmannian  

G2R
4
  generates its 4-dim'l homology. 

 
But (with Dana Mackenzie and Frank Morgan, 1995) ...   
G2R

4
  is only a local volume-minimizer in its homology 

class in  G3R
6
 ,  not a global volume-minimizer. 

 
Test question #4.  Is the inclusion of  G2R

4
  in  G3R

6
   

a Lipschitz minimizer in its homotopy class? 


