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Filling area

If T is an integral 1-cycle in Rn, let FA(T ) be the minimal area of
an integral 2-chain with boundary T .

For all T , FA(2T ) ≤ 2 FA(T ).

I If T is a curve in R2, then FA(2T ) = 2 FA(T ).

I (Federer, 1974) If T is a curve in R3, then
FA(2T ) = 2 FA(T ).

I (L. C. Young, 1963) For any ε > 0, there is a curve T ∈ R4

such that
FA(2T ) ≤ (1 + 1/π + ε) FA(T )
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L. C. Young’s example

Let K be a Klein bottle

and let T be the sum of 2k + 1 loops in
alternating directions.
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L. C. Young’s example

I T can be filled with k
bands and one extra disc D

I FA(T ) ≈ areaK
2 + area D

I 2T can be filled with
2k + 1 bands

I FA(2T ) ≈ area K — less
than 2 FA(T ) by 2 area D!
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The main theorem

Q: Is there a c > 0 such that FA(2T ) ≥ c FA(T )?

Theorem (Y.)

Yes! For any d, n, there is a c such that if T is a (d − 1)-cycle in
Rn, then FA(2T ) ≥ c FA(T ).
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From T to K

Let T be a (d − 1)-cycle and suppose that

∂B = 2T .

Then
∂B ≡ 0(mod 2),

so B is a mod-2 cycle.
Let R be an integral cycle such that B ≡ R(mod 2). Then

B − R ≡ 0(mod 2)

∂
B − R

2
=
∂B

2
= T .
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The main proposition

So, to prove the theorem, it suffices to show:

Proposition

There is a c such that if A is a cellular d-cycle with Z/2
coefficients in Rn, then there is an integral cycle R such that
A ≡ R(mod 2) and mass R ≤ c mass A.



The three-dimensional case

If A is a cellular 2-cycle with Z/2 coefficients in R3, let Z be a
3-chain with Z/2 coefficients such that ∂Z = A.

Let Z be the “lift” of Z to a chain with integral coefficients. Then

∂Z ≡ A(mod 2)

and
mass ∂Z = mass A,

so the proposition holds for R = ∂Z .
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A crude bound

If A is a cellular d-cycle with Z/2 coefficients in Rn, let Z be a
Z/2-chain such that ∂Z = A.

Let Z be a lift of Z to a chain with
integral coefficients. Then

∂Z ≡ A(mod 2)

and
∂Z . mass Z .

By the isoperimetric inequality for Rn,

mass Z . (mass A)(d+1)/d .
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A V logV bound

Proposition (Guth-Y.)

If A is a cellular d-cycle with Z/2 coefficients in the unit grid in
Rn, then there is an R such that A ≡ R(mod 2) and

mass R . mass A(log mass A).
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Filling through approximations
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Regularity and rectifiability

Definition
A set E ⊂ Rn is Ahlfors d-regular if for any x ∈ E and any
0 < r < diam E ,

Hd(E ∩ B(x , r)) ∼ rd .

Definition
A set E ⊂ Rn is d-rectifiable if it can be covered by countably
many Lipschitz images of Rd .



Uniform rectifiability

Definition (David-Semmes)

A set E ⊂ Rn is uniformly d-rectifiable if it is d-regular and there
is a c such that for all x ∈ E and 0 < r < diam E , there is a
c-Lipschitz map Bd(0, r)→ Rn which covers a 1/c-fraction of
B(x , r) ∩ E .



Sketch of proof

Proposition

Every cellular d-cycle A in the unit grid with Z/2 coefficients can
be written as a sum

A =
∑
i

Ai

of Z/2 d-cycles with uniformly rectifiable support such that∑
mass Ai ≤ C mass A.

Proposition

Any Z/2 d-cycle A with uniformly rectifiable support is equivalent
(mod 2) to an integral d-cycle R with

mass R ≤ C mass A.
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Open questions

I What’s the relationship between integral filling volume and
real filling volume?

I This suggests that surfaces and embedded surfaces can have
very different geometry. What systolic inequalities hold for
surfaces embedded in Rn?



Open questions

I What’s the relationship between integral filling volume and
real filling volume?

I This suggests that surfaces and embedded surfaces can have
very different geometry. What systolic inequalities hold for
surfaces embedded in Rn?


	introduction and example
	a crude argument
	excluding fractals
	sketch of proof
	open questions

