Filling multiples of embedded curves

Robert Young University of Toronto

Aug. 2013

If T is an integral 1-cycle in \mathbb{R}^n , let FA(T) be the minimal area of an integral 2-chain with boundary T.

If T is an integral 1-cycle in \mathbb{R}^n , let FA(T) be the minimal area of an integral 2-chain with boundary T. For all T, FA(2T) \leq 2FA(T).

If T is an integral 1-cycle in \mathbb{R}^n , let FA(T) be the minimal area of an integral 2-chain with boundary T. For all T, FA(2T) \leq 2FA(T).

• If T is a curve in \mathbb{R}^2 , then FA(2T) = 2FA(T).

If T is an integral 1-cycle in \mathbb{R}^n , let FA(T) be the minimal area of an integral 2-chain with boundary T. For all T, $FA(2T) \leq 2FA(T)$.

- If T is a curve in \mathbb{R}^2 , then FA(2T) = 2FA(T).
- ► (Federer, 1974) If T is a curve in \mathbb{R}^3 , then FA(2T) = 2FA(T).

If T is an integral 1-cycle in \mathbb{R}^n , let FA(T) be the minimal area of an integral 2-chain with boundary T. For all T, $FA(2T) \leq 2FA(T)$.

- If T is a curve in \mathbb{R}^2 , then FA(2T) = 2FA(T).
- ► (Federer, 1974) If T is a curve in \mathbb{R}^3 , then FA(2T) = 2FA(T).
- ▶ (L. C. Young, 1963) For any ε > 0, there is a curve T ∈ ℝ⁴ such that

$$FA(2T) \leq (1+1/\pi+\epsilon) FA(T)$$

Let K be a Klein bottle

Let K be a Klein bottle and let T be the sum of 2k + 1 loops in alternating directions.

 T can be filled with k bands and one extra disc D
FA(T) ≈ area K/2 + area D

T can be filled with *k* bands and one extra disc *D* FA(*T*) ≈ area K/2 + area *D*

- 2T can be filled with 2k + 1 bands
- $FA(2T) \approx area K$

T can be filled with *k* bands and one extra disc *D* FA(*T*) ≈ area K/2 + area *D*

- 2T can be filled with 2k + 1 bands
- ► FA(2T) ≈ area K— less than 2 FA(T) by 2 area D!

The main theorem

Q: Is there a c > 0 such that $FA(2T) \ge c FA(T)$?

Q: Is there a c > 0 such that $FA(2T) \ge c FA(T)$? Theorem (Y.) Yes! For any d, n, there is a c such that if T is a (d - 1)-cycle in

Yes! For any d, n, there is a c such that if I is a (d-1)-cycle in \mathbb{R}^n , then $FA(2T) \ge c FA(T)$.

From T to K

Let T be a (d-1)-cycle and suppose that

 $\partial B = 2T$.

From T to K

Let T be a (d-1)-cycle and suppose that

$$\partial B = 2T$$
.

Then

$$\partial B \equiv 0 \pmod{2},$$

so B is a mod-2 cycle.

From T to K

Let T be a (d-1)-cycle and suppose that

$$\partial B = 2T$$
.

Then

$$\partial B \equiv 0 \pmod{2},$$

so B is a mod-2 cycle.

Let R be an integral cycle such that $B \equiv R \pmod{2}$. Then

$$B - R \equiv 0 \pmod{2}$$
$$\frac{B - R}{2} = \frac{\partial B}{2} = T.$$

So, to prove the theorem, it suffices to show:

Proposition

There is a c such that if A is a cellular d-cycle with $\mathbb{Z}/2$ coefficients in \mathbb{R}^n , then there is an integral cycle R such that $A \equiv R \pmod{2}$ and mass $R \leq c$ mass A.

If A is a cellular 2-cycle with $\mathbb{Z}/2$ coefficients in \mathbb{R}^3 , let Z be a 3-chain with $\mathbb{Z}/2$ coefficients such that $\partial Z = A$.

If A is a cellular 2-cycle with $\mathbb{Z}/2$ coefficients in \mathbb{R}^3 , let Z be a 3-chain with $\mathbb{Z}/2$ coefficients such that $\partial Z = A$. Let \overline{Z} be the "lift" of Z to a chain with integral coefficients.

If A is a cellular 2-cycle with $\mathbb{Z}/2$ coefficients in \mathbb{R}^3 , let Z be a 3-chain with $\mathbb{Z}/2$ coefficients such that $\partial Z = A$. Let \overline{Z} be the "lift" of Z to a chain with integral coefficients. Then

 $\partial \overline{Z} \equiv A \pmod{2}$

If A is a cellular 2-cycle with $\mathbb{Z}/2$ coefficients in \mathbb{R}^3 , let Z be a 3-chain with $\mathbb{Z}/2$ coefficients such that $\partial Z = A$. Let \overline{Z} be the "lift" of Z to a chain with integral coefficients. Then

$$\partial \overline{Z} \equiv A \pmod{2}$$

and

mass
$$\partial \overline{Z} = mass A$$
,

so the proposition holds for $R = \partial \overline{Z}$.

If A is a cellular d-cycle with $\mathbb{Z}/2$ coefficients in \mathbb{R}^n , let Z be a $\mathbb{Z}/2$ -chain such that $\partial Z = A$.

If A is a cellular d-cycle with $\mathbb{Z}/2$ coefficients in \mathbb{R}^n , let Z be a $\mathbb{Z}/2$ -chain such that $\partial Z = A$. Let \overline{Z} be a lift of Z to a chain with integral coefficients.

If A is a cellular d-cycle with $\mathbb{Z}/2$ coefficients in \mathbb{R}^n , let Z be a $\mathbb{Z}/2$ -chain such that $\partial Z = A$. Let \overline{Z} be a lift of Z to a chain with integral coefficients. Then

 $\partial \overline{Z} \equiv A \pmod{2}$

If A is a cellular d-cycle with $\mathbb{Z}/2$ coefficients in \mathbb{R}^n , let Z be a $\mathbb{Z}/2$ -chain such that $\partial Z = A$. Let \overline{Z} be a lift of Z to a chain with integral coefficients. Then

$$\partial \overline{Z} \equiv A \pmod{2}$$

and

 $\partial \overline{Z} \lesssim \max Z.$

If A is a cellular d-cycle with $\mathbb{Z}/2$ coefficients in \mathbb{R}^n , let Z be a $\mathbb{Z}/2$ -chain such that $\partial Z = A$. Let \overline{Z} be a lift of Z to a chain with integral coefficients. Then

$$\partial \overline{Z} \equiv A \pmod{2}$$

and

$$\partial \overline{Z} \lesssim \text{mass } Z.$$

By the isoperimetric inequality for \mathbb{R}^n ,

mass $Z \lesssim (\text{mass } A)^{(d+1)/d}$.

A $V \log V$ bound

Proposition (Guth-Y.)

If A is a cellular d-cycle with $\mathbb{Z}/2$ coefficients in the unit grid in \mathbb{R}^n , then there is an R such that $A \equiv R \pmod{2}$ and

mass $R \lesssim \max A(\log \max A)$.

A $V \log V$ bound

Proposition (Guth-Y.)

If A is a cellular d-cycle with $\mathbb{Z}/2$ coefficients in the unit grid in \mathbb{R}^n , then there is an R such that $A \equiv R \pmod{2}$ and

mass $R \lesssim \max A(\log \max A)$.

A $V \log V$ bound

Proposition (Guth-Y.)

If A is a cellular d-cycle with $\mathbb{Z}/2$ coefficients in the unit grid in \mathbb{R}^n , then there is an R such that $A \equiv R \pmod{2}$ and

mass $R \leq \max A(\log \max A)$.

																					П
																					П
																					П
					-																Н
			-	-	_	_	_	-													н
			-	-	_	_	_	-													н
			-	-	_	_	_	-													н
			-	-	_	_															Н
	-	-	-	-	-	_	-	-					-	-	-	-	-	-	-	-	Н
	-	-	-	-	-	_	-	-				-	-	-	-	-	-	-	-	-	Н
		-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-	Н
	-	-	-	-	-	-	-	-				-	-	-	-	-	-	-	-	-	Н
-	-	-	-	-	_	_	_	-	-	-	-	-	-	-	-	-	-	-	-	-	Н
-	-	-	-	-	_	_	_	-	-	-	-	-	-	-	-	-	-	-	-	-	Н
H	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Н
-	-	-	-	-	_	_	_	_	-	-	-	-	-	-	-	-	-	-	-	-	-
H		-	-	-	_	_	_	_	-	-	-	-	-	-	-	-	-	-	-	-	-
	_	_	_	_	_	_	_	_	_						-	-	-	-	-	-	-

							Г		
Ц							⊢		
н									_
н							⊢		_
н									-
н							⊢	_	-
н									-
н							⊢	-	-
н									⊢
Н							⊢		
Н									
Н									
Ц							1		
Ц									
Ц									
н	_	_			_	 _	⊢	_	

Regularity and rectifiability

Definition A set $E \subset \mathbb{R}^n$ is Ahlfors *d*-regular if for any $x \in E$ and any 0 < r < diam E, $\mathcal{H}^d(E \cap B(x, r)) \sim r^d$.

Definition

A set $E \subset \mathbb{R}^n$ is d-rectifiable if it can be covered by countably many Lipschitz images of \mathbb{R}^d .

Definition (David-Semmes)

A set $E \subset \mathbb{R}^n$ is uniformly d-rectifiable if it is d-regular and there is a c such that for all $x \in E$ and 0 < r < diam E, there is a c-Lipschitz map $B_d(0,r) \to \mathbb{R}^n$ which covers a 1/c-fraction of $B(x,r) \cap E$.

Sketch of proof

Proposition

Every cellular d-cycle A in the unit grid with $\mathbb{Z}/2$ coefficients can be written as a sum

$$A = \sum_i A_i$$

of $\mathbb{Z}/2$ d-cycles with uniformly rectifiable support such that

$$\sum \max A_i \leq C \max A.$$

Sketch of proof

Proposition

Every cellular d-cycle A in the unit grid with $\mathbb{Z}/2$ coefficients can be written as a sum

$$A = \sum_i A_i$$

of $\mathbb{Z}/2$ d-cycles with uniformly rectifiable support such that

$$\sum \mathsf{mass}\, A_i \leq C\,\mathsf{mass}\, A.$$

Proposition

Any $\mathbb{Z}/2$ d-cycle A with uniformly rectifiable support is equivalent (mod 2) to an integral d-cycle R with

mass $R \leq C$ mass A.

Open questions

What's the relationship between integral filling volume and real filling volume?

Open questions

- What's the relationship between integral filling volume and real filling volume?
- ► This suggests that surfaces and embedded surfaces can have very different geometry. What systolic inequalities hold for surfaces embedded in ℝⁿ?