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Setting

Full quantum dynamics: Schrödinger equation

iψ̇ = Hψ, ψ = ψ(x1, . . . , xN , t)

↑

Intermediate models: via Dirac–Frenkel variational principle

Born–Oppenheimer, MCTDH, Gaussian wavepackets, . . .

↓

Classical molecular dynamics: Newtonian eqs. of motion

Mẍ = −∇V (x), x = (x1(t), . . . , xN(t))



Time-dependent Schrödinger equation

i
∂ψ

∂t
= Hψ

N-particle wavefunction: ψ = ψ(x , t)

for x = (x1, . . . , xN) ∈ R3N , xn ∈ R3, t > 0

Hamiltonian operator: H = T + V

with the kinetic and potential energy operators

T = −
N∑
j=1

1

2mj
∆xj and V = V (x)

(smooth and bounded)

high-dimensional linear PDE
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Dirac-Frenkel principle: abstract formulation

M⊂ L2(R3N) approximation manifold

TuM tangent space at u ∈M, complex linear

approximate wavefunction u = u(·, t) ∈M determined from

〈i u̇ − Hu, v〉 = 0 for all v ∈ TuM

Galerkin method on a state-dependent approximation space

Dirac 1930, Frenkel 1934 (TDHF)



Orthogonal projection

Re 〈u̇ − 1
i Hu, v〉 = 0 for all v ∈ TuM

equivalent to minimum defect condition:

determine approximation t 7→ u(t) ∈M such that

u̇ = ϑ ∈ TuM with ‖ϑ− 1
i Hu‖ = min!

orthogonal projection u̇ = P(u) 1
i Hu

Frenkel 1934 → Dirac



Cover illustration: tangent space projection

u̇ = P(u) 1
i Hu

2008



Symplectic projection

Im 〈u̇ − 1
i Hu, v〉 = 0 for all v ∈ TuM

• symplectic 2-form on L2(R3N): ω(ξ, η) = −2 Im 〈ξ, η〉
• Hamiltonian function: H(u) = 〈u,Hu〉

Hamiltonian system on the manifold M:

ω(u̇, v) = dH(u)v for all v ∈ TuM

Consequences:

I energy conservation: H(u(t)) = Const.

I symplecticity of the flow: for ξ(t), η(t) tangent vectors
propagated by the linearized flow along u(t),

ω(ξ(t), η(t)) = Const.



Approximation error

I A posteriori error bound

‖u(t)− ψ(t)‖ ≤
∫ t

0
dist
(

1
i Hu(τ),Tu(τ)M

)
dτ

I Quasi-optimality

‖u(t)− ψ(t)‖ ≤ d(t) + Cecκt
∫ t

0
d(τ) dτ

with d(t) = dist(ψ(t),M) the best-approximation error,

κ bound of the curvature of M

L. 2005
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MCTDH

Multi-Configuration Time-Dependent Hartree method



Time-dependent Hartree method

Hartree product:

ψ(x1, . . . , xN , t) ≈ φ(1)(x1, t) · . . . · φ(N)(xN , t)

Equations of motion for single-particle functions φ(n)(xn, t)
by Dirac–Frenkel reduction to

M =
{
φ(1) ⊗ . . .⊗ φ(N)

∣∣φ(n) ∈ L2(R3)
}

separation of variables, rank-1 approximation



MCTDH

Multi-Configuration Time-Dependent Hartree method

Approximate by linear combination of Hartree products

ψ(x , t) ≈
r1∑

j1=1

. . .

rN∑
jN=1

aj1...jN (t)φ
(1)
j1

(x1, t) · . . . · φ(N)
jN

(xN , t)

I mutually orthogonal single-particle functions φ
(n)
1 , . . . , φ

(n)
rn

I core tensor (aj1...jN ) of full multilinear rank (r1, . . . , rN)

Tucker format, not canonical format
also hierarchical Tucker format

H.D. Meyer et al. 1990 - , MCTDH book 2009



MCTDH equations of motion

from Dirac–Frenkel variational principle on MCTDH manifold:
coupled system of ODEs and low-dimensional nonlinear PDEs

i
daJ
dt

=
∑
L

〈ΦJ |H |ΦL〉 aL

iρ(n) ∂φ
(n)

∂t
= (I − P(n)) 〈H〉¬xnφ(n)

with ΦJ(x , t) =
∏N

n=1 φ
(n)
jn

(xn, t) for multi-indices J = (j1, . . . , jN)

Meyer, Manthe & Cederbaum 1990

existence and regularity: Koch & L. 2007
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Convergence of MCTDH to Schrödinger solution???

Naive expectation: Taking more and more terms in the linear
combination of Hartree products yields an ever better accuracy

Obstructions:

I approximation properties of basis of Hartree products ΦJ(·, t)?

I ill-conditioned coefficient tensor (aJ)
↔ ill-conditioned density matrices ρ(n) = A(n)A

∗
(n)



Quasi-optimality of variational approximation

u(t) MCTDH approximation, ψ(t) exact wave function

MCTDH error bounded by best-approximation error:

‖u(t)− ψ(t)‖ ≤ d(t) + Cκ e
cκt

∫ t

0
d(τ) dτ

with d(t) = dist(ψ(t),M) and κ curvature of manifold M

but κ ∼ cond(ρ(n))1/2 →∞ as number of configurations →∞

L. 2005



Objectives

I error bounds in the case of ill-conditioned density matrices

I convergence as number of configurations →∞

under appropriate assumptions

Conte & L., M2AN 2010



Approximability assumption

Exact wavefunction can be written as

ψ(t) = v(t) + e(t)

where v(t) ∈M has small defect:∥∥∥∥ i ∂v∂t (·, t)− Hv(·, t)

∥∥∥∥ ≤ ε

Small error e(t) and small defect (ε) for some linear combination
of Hartree products



Assumptions on the coefficient tensor

B(n)(t) nth unfolding of coefficient tensor (bj1...jN (t)) of v(t) ∈M,
for n = 1, . . . ,N

I Bound of the pseudo-inverse (large: small δ!):

‖B†(n)(t)‖2 =
1

σrn(B(n)(t))
≤ δ−1

I Small time derivatives of the coefficient tensor in components
that correspond to small singular values:∥∥∥B†(n)(t) Ḃ(n)(t)

∥∥∥
2
≤ c ,



Error bound

‖u(t)− ψ(t)‖ ≤ ‖e(t)‖+ 2tε for t = O(δ/ε)

Bound independent of δ (ill-conditioning)

for fixed rank, can achieve δ ∼ ε by perturbing v(t): t = O(1)

Convergence: if we assume δ ∼ ε, we can admit arbitrary number
of configurations: ε→ 0



Proof of the error bound

use estimates for the tangent space projection P(u) to show a
quadratic differential inequality

d

dt
‖u − v‖ ≤ C

δ
‖u − v‖2 + ε
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Variational splitting: the formal game

variational approximation: H = T + V

〈i u̇ − Hu, v〉 = 0 for all v ∈ TuM

time step un → un+1 via

1. half-step with V : u−n+1/2 solution at ∆t/2 of

〈i u̇ − Vu, v〉 = 0 for all v ∈ TuM

2. full step with T : u+
n+1/2 solution at ∆t of

〈i u̇ − Tu, v〉 = 0 for all v ∈ TuM

3. half-step with V : un+1 solution at ∆t/2 of

〈i u̇ − Vu, v〉 = 0 for all v ∈ TuM



Variational splitting for MCTDH

I Step with T : since Tu ∈ TuM for u ∈M, integration step
with T decouples into ȧJ = 0 and

i
∂φ

(k)
j

∂t
(xk , t) = − 1

2mk
∆xkφ

(k)
j (xk , t)

low-dimensional free Schrödinger equations → FFT

I Step with V : MCTDH for Hamiltonian V instead of H

→ larger time steps independently of the space discretization

work in preparation (with I. Oseledets): integration scheme
that does not suffer from ill-conditioning of the matrices ρ(k)

explicit, unconditionally stable scheme L. 2004



Error of variational splitting for MCTDH

second order error bound

‖un − u(tn)‖ ≤ C ∆t2 max ‖u(t)‖H2

same as for Strang splitting for the linear Schrödinger equation

basic tool: Lie-commutator bounds for vector fields corresponding
to T and V
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