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Setting

Full quantum dynamics: Schrodinger equation
i =Hy, P =1(xt,.. XN, t)
1)
Intermediate models: via Dirac—Frenkel variational principle
Born—-Oppenheimer, MCTDH, Gaussian wavepackets, ...
1
Classical molecular dynamics: Newtonian egs. of motion

Mx = -V V(x), x = (x1(t),...,xn(t))



Time-dependent Schrodinger equation

;oY

=H
"o v

N-particle wavefunction: ¢ = 9(x, t)

for x=(x1,...,xn) ERN x, €R3, t>0
Hamiltonian operator: H=T + V
with the kinetic and potential energy operators

Mo
==Y =—Ay and V=V(x)

2m;
J=1 (smooth and bounded)

high-dimensional linear PDE
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Outline

The Dirac—Frenkel variational approximation principle



Dirac-Frenkel principle: abstract formulation

M C L?(R3N) approximation manifold
T,M tangent space at u € M, complex linear

approximate wavefunction u = u(-, t) € M determined from
(it —Hu, v) =0 forall ve T,M

Galerkin method on a state-dependent approximation space

Dirac 1930, Frenkel 1934 (TDHF)



Orthogonal projection

Re (i — *Hu, v) =0 forall ve T,M

equivalent to minimum defect condition:

determine approximation t — u(t) € M such that
i=9€T,M with |9—2Hu| = min!
1

orthogonal projection i = P(u)zHu

]

Frenkel 1934 — Dirac



Cover illustration: tangent space projection
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i = P(u)}Hu
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Symplectic projection

Im (it — +Hu, v) =0 forall ve Ty,M

e symplectic 2-form on L2(R3V):  w(¢&,n) = —21Im (&, 7)

e Hamiltonian function: H(u) = (u, Hu)
Hamiltonian system on the manifold M:
w(i, v) = dH(u)v forall ve Ty,M
Consequences:

» energy conservation: H(u(t)) = Const.

» symplecticity of the flow: for £(t),n(t) tangent vectors
propagated by the linearized flow along u(t),

w(&(t),n(t)) = Const.



Approximation error

> A posteriori error bound

u(t) — ()] < /otdist(}Hu(T), TynM) dr
» Quasi-optimality

Jute) w0 < d(0)+ e ["dr)ar

with d(t) = dist(y(t), M) the best-approximation error,

% bound of the curvature of M

L. 2005
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The MCTDH method, or dynamical low-rank approximation



MCTDH

Multi-Configuration Time-Dependent Hartree method



Time-dependent Hartree method

Hartree product:

¢(X17- <y XN t) ~ ¢(1)(X17 t) et (b(N)(XN’ t)

Equations of motion for single-particle functions ¢(")(x,,, t)
by Dirac—Frenkel reduction to

M={sM ... 2¢M]| e e 2(R?))}

separation of variables, rank-1 approximation



MCTDH

Multi-Configuration Time-Dependent Hartree method

Approximate by linear combination of Hartree products

Z Zan n( ¢J(1)X17 t)-... ¢J(-NN)(XN,t)

a=1  jy=1
» mutually orthogonal single-particle functions qbg"), e ,¢$:
» core tensor (aj,..j,) of full multilinear rank (ry,..., )

Tucker format, not canonical format
also hierarchical Tucker format

H.D. Meyer et al. 1990 -, MCTDH book 2009



MCTDH equations of motion

from Dirac—Frenkel variational principle on MCTDH manifold:
coupled system of ODEs and low-dimensional nonlinear PDEs

—— = O, H|D
i ¥<J KR

(n)
o 90T (= Py () ¢

with ®(x, t) = [IN; ¢\ (xn, t) for multi-indices J = (jr, .. jn)

Meyer, Manthe & Cederbaum 1990
existence and regularity: Koch & L. 2007
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Modelling error of MCTDH



Convergence of MCTDH to Schrodinger solution?7?7?

Naive expectation: Taking more and more terms in the linear
combination of Hartree products yields an ever better accuracy

Obstructions:
» approximation properties of basis of Hartree products ® (-, t)?

» ill-conditioned coefficient tensor (ay)
+ ill-conditioned density matrices p(") = A(,,)AE"”)



Quasi-optimality of variational approximation

u(t) MCTDH approximation, 1(t) exact wave function

MCTDH error bounded by best-approximation error:

Ju(t) = (0)]| < d(t) + Gy ec'”/o d(r)dr

with d(t) = dist(¢(t), M) and & curvature of manifold M

but & ~ cond(p(M)}/2 — oo as number of configurations — co

L. 2005



Objectives

» error bounds in the case of ill-conditioned density matrices

» convergence as number of configurations — oo

under appropriate assumptions

Conte & L., M2AN 2010



Approximability assumption

Exact wavefunction can be written as

o(t) = v(t) + e(t)

where v(t) € M has small defect:

Small error e(t) and small defect (&) for some linear combination
of Hartree products



Assumptions on the coefficient tensor

B(n)(t) nth unfolding of coefficient tensor (bj,..j,(t)) of v(t) € M,
forn=1,....N

» Bound of the pseudo-inverse (large: small 0!):
e

» Small time derivatives of the coefficient tensor in components
that correspond to small singular values:

080, <



Error bound

Ju(t) = ()l <lle(t)l| + 2t for t=0(5/e)

Bound independent of ¢ (ill-conditioning)
for fixed rank, can achieve § ~ ¢ by perturbing v(t): t= O(1)

Convergence: if we assume § ~ ¢, we can admit arbitrary number
of configurations: ¢ — 0



Proof of the error bound

use estimates for the tangent space projection P(u) to show a
quadratic differential inequality

d C )
|y — < _
vl 5 llu—vl*+e
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Splitting integrators for MCTDH



Variational splitting: the formal game

variational approximation: H=T 4+ V
(it — Hu, v) =0 for all ve T,M
time step u, — up41 via

1. half-step with V: u olution at At/2 of

nt1/2 S
(it—Vu, v)=0 forall ve T,M

2. full step with T: u:+1/2 solution at At of
(it—Tu, v)=0 forall ve T,M

3. half-step with V: u,41 solution at At/2 of

(it —Vu, v)=0 for all ve T,M



Variational splitting for MCTDH

» Step with T: since Tu € T,M for u € M, integration step
with T decouples into a; =0 and

. 3¢,(-k) 1

_ (k)
o (Xkat)—*mAxkébj (xk, t)

low-dimensional free Schrodinger equations — FFT

» Step with V: MCTDH for Hamiltonian V instead of H

— larger time steps independently of the space discretization

work in preparation (with |. Oseledets): integration scheme
that does not suffer from ill-conditioning of the matrices p(k)

explicit, unconditionally stable scheme L. 2004



Error of variational splitting for MCTDH

second order error bound

lun — u(tn)|| < € At* max|u(t)l| 2

same as for Strang splitting for the linear Schrédinger equation

basic tool: Lie-commutator bounds for vector fields corresponding
to T and V
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