On the MCTDH method

Christian Lubich Univ. Tübingen

Banff, 29 April 2013

Full quantum dynamics: Schrödinger equation

$$i\dot{\psi} = H\psi, \qquad \psi = \psi(x_1, \ldots, x_N, t)$$

Intermediate models: via Dirac–Frenkel variational principle Born–Oppenheimer, MCTDH, Gaussian wavepackets, \dots \downarrow

Classical molecular dynamics: Newtonian eqs. of motion

$$M\ddot{x} = -\nabla V(x), \qquad x = (x_1(t), \dots, x_N(t))$$

Time-dependent Schrödinger equation

$$i \frac{\partial \psi}{\partial t} = H \psi$$

N-particle wavefunction: $\psi = \psi(x, t)$ for $x = (x_1, \dots, x_N) \in \mathbb{R}^{3N}, x_n \in \mathbb{R}^3, t > 0$

Hamiltonian operator: H = T + V

with the kinetic and potential energy operators

$$\mathcal{T} = -\sum_{j=1}^{N} rac{1}{2m_j} \Delta_{x_j}$$
 and $\mathcal{V} = \mathcal{V}(x)$ (smooth and bounded)

high-dimensional linear PDE

The MCTDH method, or dynamical low-rank approximation

Modelling error of MCTDH

The MCTDH method, or dynamical low-rank approximation

Modelling error of MCTDH

 $\mathcal{M} \subset L^2(\mathbb{R}^{3N})$ approximation manifold $T_u \mathcal{M}$ tangent space at $u \in \mathcal{M}$, complex linear

approximate wavefunction $u = u(\cdot, t) \in \mathcal{M}$ determined from

 $\langle i\dot{u} - Hu, v \rangle = 0$ for all $v \in T_u \mathcal{M}$

Galerkin method on a state-dependent approximation space

Dirac 1930, Frenkel 1934 (TDHF)

$$\frac{Re}{i} \langle \dot{u} - \frac{1}{i} Hu, v \rangle = 0 \quad \text{for all} \quad v \in T_u \mathcal{M}$$

equivalent to minimum defect condition: determine approximation $t\mapsto u(t)\in\mathcal{M}$ such that

$$\dot{u} = \vartheta \in T_u \mathcal{M}$$
 with $\|\vartheta - \frac{1}{i}Hu\| = \min!$

orthogonal projection $\dot{u} = P(u)\frac{1}{i}Hu$

Frenkel 1934 \rightarrow Dirac

Cover illustration: tangent space projection

$$\dot{u} = P(u) \frac{1}{i} H u$$

Symplectic projection

$$\lim \langle \dot{u} - \frac{1}{i} H u, v \rangle = 0 \qquad \text{for all} \quad v \in T_u \mathcal{M}$$

- symplectic 2-form on $L^2(\mathbb{R}^{3N})$: $\omega(\xi,\eta) = -2 \operatorname{Im} \langle \xi,\eta \rangle$
- Hamiltonian function: $\mathcal{H}(u) = \langle u, Hu \rangle$

Hamiltonian system on the manifold \mathcal{M} :

$$\omega(\dot{u}, v) = d\mathcal{H}(u)v$$
 for all $v \in T_u\mathcal{M}$

Consequences:

- energy conservation: $\mathcal{H}(u(t)) = \text{Const.}$
- symplecticity of the flow: for ξ(t), η(t) tangent vectors propagated by the linearized flow along u(t),

$$\omega(\xi(t),\eta(t)) = \text{Const.}$$

A posteriori error bound

$$\|u(t)-\psi(t)\|\leq \int_0^t ext{dist}ig(rac{1}{i} extsf{H}u(au), extsf{T}_{u(au)}\mathcal{M}ig)\,d au$$

Quasi-optimality

$$\|u(t)-\psi(t)\|\leq d(t)+Ce^{c\kappa t}\int_0^t d(au)\,d au$$

with $d(t) = dist(\psi(t), \mathcal{M})$ the best-approximation error, κ bound of the curvature of \mathcal{M}

The MCTDH method, or dynamical low-rank approximation

Modelling error of MCTDH

Multi-Configuration Time-Dependent Hartree method

Hartree product:

$$\psi(x_1,\ldots,x_N,t)\approx\phi^{(1)}(x_1,t)\cdot\ldots\cdot\phi^{(N)}(x_N,t)$$

Equations of motion for single-particle functions $\phi^{(n)}(x_n, t)$ by Dirac–Frenkel reduction to

$$\mathcal{M} = \left\{ \phi^{(1)} \otimes \ldots \otimes \phi^{(N)} \, \big| \, \phi^{(n)} \in L^2(\mathbb{R}^3) \right\}$$

separation of variables, rank-1 approximation

MCTDH

Multi-Configuration Time-Dependent Hartree method

Approximate by linear combination of Hartree products

$$\psi(x,t) \approx \sum_{j_1=1}^{r_1} \dots \sum_{j_N=1}^{r_N} a_{j_1\dots j_N}(t) \phi_{j_1}^{(1)}(x_1,t) \dots \phi_{j_N}^{(N)}(x_N,t)$$

- mutually orthogonal single-particle functions $\phi_1^{(n)}, \ldots, \phi_{r_n}^{(n)}$
- core tensor $(a_{j_1...j_N})$ of full multilinear rank $(r_1, ..., r_N)$

Tucker format, not canonical format also hierarchical Tucker format

H.D. Meyer et al. 1990 - , MCTDH book 2009

from Dirac–Frenkel variational principle on MCTDH manifold: coupled system of ODEs and low-dimensional nonlinear PDEs

$$i \frac{da_J}{dt} = \sum_{L} \langle \Phi_J | H | \Phi_L \rangle a_L$$
$$i \rho^{(n)} \frac{\partial \phi^{(n)}}{\partial t} = (I - P^{(n)}) \langle H \rangle_{\neg x_n} \phi^{(n)}$$

with $\Phi_J(x,t) = \prod_{n=1}^N \phi_{j_n}^{(n)}(x_n,t)$ for multi-indices $J = (j_1, \dots, j_N)$

Meyer, Manthe & Cederbaum 1990 existence and regularity: Koch & L. 2007

The MCTDH method, or dynamical low-rank approximation

Modelling error of MCTDH

Naive expectation: Taking more and more terms in the linear combination of Hartree products yields an ever better accuracy

Obstructions:

- approximation properties of basis of Hartree products $\Phi_J(\cdot, t)$?
- ill-conditioned coefficient tensor (a_J)
 ↔ ill-conditioned density matrices ρ⁽ⁿ⁾ = A_(n)A^{*}_(n)

Quasi-optimality of variational approximation

u(t) MCTDH approximation, $\psi(t)$ exact wave function

MCTDH error bounded by best-approximation error:

$$\|u(t)-\psi(t)\|\leq d(t)+C_{\kappa}\,\mathrm{e}^{c\kappa t}\int_{0}^{t}d(au)\,d au$$

with $d(t) = \operatorname{dist}(\psi(t), \mathcal{M})$ and κ curvature of manifold \mathcal{M}

but $\kappa \sim \operatorname{cond}(\rho^{(n)})^{1/2} \to \infty$ as number of configurations $\to \infty$

- error bounds in the case of ill-conditioned density matrices
- convergence as number of configurations $\rightarrow \infty$

under appropriate assumptions

Conte & L., M2AN 2010

Exact wavefunction can be written as

$$\psi(t) = \mathbf{v}(t) + \mathbf{e}(t)$$

where $v(t) \in \mathcal{M}$ has small defect:

$$\left\| i\frac{\partial v}{\partial t}(\cdot,t) - Hv(\cdot,t) \right\| \leq \varepsilon$$

Small error e(t) and small defect (ε) for some linear combination of Hartree products

Assumptions on the coefficient tensor

 $B_{(n)}(t)$ nth unfolding of coefficient tensor $(b_{j_1...j_N}(t))$ of $v(t) \in \mathcal{M}$, for n = 1, ..., N

• Bound of the pseudo-inverse (large: small δ !):

$$\|B_{(n)}^{\dagger}(t)\|_{2} = rac{1}{\sigma_{r_{n}}(B_{(n)}(t))} \leq \delta^{-1}$$

Small time derivatives of the coefficient tensor in components that correspond to small singular values:

$$\left\|B_{(n)}^{\dagger}(t)\dot{B}_{(n)}(t)\right\|_{2}\leq c,$$

$$\|u(t) - \psi(t)\| \le \|e(t)\| + 2t\varepsilon$$
 for $t = O(\delta/\varepsilon)$

Bound independent of δ (ill-conditioning) for fixed rank, can achieve $\delta \sim \varepsilon$ by perturbing v(t): t = O(1)

Convergence: if we assume $\delta \sim \varepsilon$, we can admit arbitrary number of configurations: $\varepsilon \to 0$

use estimates for the tangent space projection P(u) to show a quadratic differential inequality

$$\frac{d}{dt}\|u-v\| \leq \frac{C}{\delta}\|u-v\|^2 + \varepsilon$$

The MCTDH method, or dynamical low-rank approximation

Modelling error of MCTDH

Variational splitting: the formal game

variational approximation: H = T + V

$$\langle i\dot{u} - Hu, v \rangle = 0$$
 for all $v \in T_u \mathcal{M}$

time step $u_n \rightarrow u_{n+1}$ via

1. half-step with V: $u_{n+1/2}^-$ solution at $\Delta t/2$ of

$$\langle i\dot{u} - \mathbf{V}u, v
angle = 0$$
 for all $v \in T_u \mathcal{M}$

2. full step with T: $u_{n+1/2}^+$ solution at Δt of

$$\langle i\dot{u} - Tu, v \rangle = 0$$
 for all $v \in T_u \mathcal{M}$

3. half-step with V: u_{n+1} solution at $\Delta t/2$ of

$$\langle i\dot{u} - Vu, v \rangle = 0$$
 for all $v \in T_u \mathcal{M}$

Variational splitting for MCTDH

Step with *T*: since *Tu* ∈ *T_uM* for *u* ∈ *M*, integration step with *T* decouples into *a_J* = 0 and

$$i rac{\partial \phi_j^{(k)}}{\partial t}(x_k,t) = -rac{1}{2m_k} \Delta_{x_k} \phi_j^{(k)}(x_k,t)$$

low-dimensional free Schrödinger equations \rightarrow FFT

► Step with V: MCTDH for Hamiltonian V instead of H → larger time steps independently of the space discretization

work in preparation (with I. Oseledets): integration scheme that does not suffer from ill-conditioning of the matrices $\rho^{(k)}$

second order error bound

$$||u_n - u(t_n)|| \le C \Delta t^2 \max ||u(t)||_{H^2}$$

same as for Strang splitting for the linear Schrödinger equation

basic tool: Lie-commutator bounds for vector fields corresponding to ${\mathcal T}$ and ${\mathcal V}$

The MCTDH method, or dynamical low-rank approximation

Modelling error of MCTDH