Quantum dynamics with sparse grids: a combination of Smolyak scheme and cubature

This work is done with A. Nauts (Louvain-La-Neuve)

•

UCL Université catholique de Louvain

ANR

Quantum Dynamics with full grid representation

Two bottle-necks: The basis se •For the basis, one needs sor •For the grid, one needs anot

They are ways to overcome these difficulties:

Use multimode representations as in most VSCF approachesExpand the operators as sums of products like in MCTDH

Basis sets:

1) Primitive basis sets :

• Harmonic Oscillator (HO), Fourier,

2) Multidimensional basis-set:

- Calculation impossible with a direct-product basis.
 Ex: in 11D, ~10¹¹ basis functions!!
- Selection in terms of excitations or the degree of the multidimensional polynomials

Ex : the 11D-basis functions are kept when $Excitation(B_1) \le L_B$

Selection equivalent to the: -Pruned basis set of T. Carrington

Basis sets:

1) Primitive basis sets :

• Harmonic Oscillator (HO), Fourier,

2) Multidimensional basis-set:

• Calculation impossible with a direct-product basis.

Ex: in 11D,~10¹¹basis functions!!In 11D, with $L_B=9$ (equivalent to nb=10)multidimensionalThe total number of basis functions is:multidimensional167 960Excitation(B₁) $\leq L_B$ Selection equivalent to the:
-Pruned basis set of T. Carrington

Grids

•

1) Grid associated with a primitive basis:

- Gaussian quadrature (1D) :

2) Grid associated with a multidimensional basis:

•

Direct-product grid (DPG) : impossible: ~10¹¹ grid points!!

 $\boldsymbol{Q}_{NQ}^{nD} = \boldsymbol{Q}_{nq_1}^1 \otimes \boldsymbol{Q}_{nq_2}^2 \cdots \otimes \boldsymbol{Q}_{nq_n}^n$

=> We need sparse grids

Smolyak multidimensionnal grid

•

Smolyak grid in 2D

•

Smolyak grid in 2D

•

Smolyak grid: implementation

1. As a full nD grid: Too many operations (NQ x NB)

- Each direct-product grid is treated separately with sequential transformations (one coordinate after the other)
 Some transformations are done several times
- 3. Global sequential transformations Each equivalent partial transformations is done once
- 4. Use of nested grids

 $Q_{\ell_{i-1}} \subset Q_{\ell_i}$

Avila, G.; Carrington, T. JCP, 2009, 131, pp174103

Cubature rules

- Cubature rules are multidimensional extensions of the usual 1D-gaussian quadrature.

$$\int \dots \int F(\boldsymbol{q}) \rho(\boldsymbol{q}) d\boldsymbol{q} \approx \sum_{K}^{Nq} F(\boldsymbol{q}_{K}) w_{K}$$

- q_K are the multidimensional grid points and the W_K are the corresponding weights. They are associated with multivariate orthogonal polynomials (nD).

- A given cubature rule with Nq points, can integrate exactly all nD-polynomials with a degree $\leq d=2L_B$

14

4

45

77

151

- No simple procedure to get the grid points and weights.

- Rules are tabulated: one rule for each n and L_B .

Not all rules are known!

	L _B	$(d=2L_B)$	0	1	2	3	4	5	6
For nD Hermite	2 D	DP	1	4	9	16	25	36	4
polynomials (HO)		cubature	1	3	8	/	/	/	/
porgnonnuns (110)	3 D	DP	1	8	27	64	125	216	34

cubature 1

A.H. Stroud et al, Gaussian Quadrature Formulas, Prentice–H, 1966.

R. Cools, J. Complexity 19 (2003) 445

J. Burkardt : http://people.sc.fsu.edu/~jburkardt

Smolyak grid and cubature rules

$$\boldsymbol{Q}_{L_{smol}}^{nD} = \sum_{L_{smol}-n+1 \leq \left|\ell\right| \leq L_{smol}} (-1)^{L_{smol}-\left|\ell\right|} C_{n-1}^{L_{smol}-\left|\ell\right|} \boldsymbol{Q}_{\ell_{1}}^{1} \otimes \boldsymbol{Q}_{\ell_{2}}^{2} \cdots \otimes \boldsymbol{Q}_{\ell_{n}}^{n}$$

The Q_{ℓ} are nD-grids: Ideally, they are cubatures, but not all of them are available (tabulated)!! Therefore the Q_{ℓ} are:

- 1. Cubature if available
- 2. Direct-product grids
- 3. Another Smolyak grids (with L= ℓ)

Example, in 11D							
L _{smol}	NQ Smol. 11x1D	NQ Smol. (3D)3x2D	NQ PD				
9 (nq=10)	20 160 075 167958 G	<mark>6 067 148</mark> 589 G	10 ¹¹				

• • • • •

Spectre de torsion du méthanol

The 1D spectroscopic model works well:^[1]

 $T(\phi) = B \partial^2 / \partial \phi^2$

$$V(\phi)=\Sigma V_k \cos(k\phi) / 2$$

B ≈ -27.6 cm⁻¹

•

$$V_3 \approx 373-374 \text{ cm}^{-1} \text{ et } V_6 \approx -0.8 \text{ cm}^{-1}$$

[1] Lees JCP 1968, 48, p5299 ; Wang JCP 1998, 109 p		Sym.	Exp. ^[2]	1D	1+11D	1+11D	RPH ^[6]
10795		(cm⁻¹)		flexible ^[3]	RPH ^[4]	HADA ^[5]	Multimode
[2] Stern JMS 67 (1977) 244	0	a ₁	0.0	0.0	0.0	0.0	0.0
[3] Muñoz-Caro CPL 273 (1997) 135		е	9.1	9.7	8.2	10.5	8.7
[4] Entroppon $ICP (10, (2002)) = 524$	1	е	208.9	199.2	216.7	204.7	205.3
[4] Femensen JCF 119 (2003) 5554		a_2	294.7	289.1	297.8	298.6	267.0
[5] Blasco CPL 373 (2003) 344	2	a ₁	353.0	337.5	363.5	350.9	388.2
[6] Bowman J. Phys. Chem. A 2007, 111, 7317-7321		е	510.3	498.3	517.2	518.6	509.3
			I				

Basis set and grid

Molecule with 12 degree of freedoms, but

- We want to separate the torsion from the 11 other modes
- For the torsion: a 1D-contracted Fourier basis with 48 grid points
- For the 11 other modes:

The basis functions are selected in terms of excitations We use the Smolyak scheme with n=4 (3D,3D,3D,2D)

<i>Qⁱ</i> , i:	1	2	3	4	5	6	7	8	9	10	11	12 (torsion)
B^{u}	B^{T} (Smolyak)									B^2		
$\boldsymbol{B}^{u,v}$		$B^{I,I}$			$B^{1,2}$			$B^{1,3}$			$B^{1,4}$	
Primitive	HO	HO	HO	HO	HO	HO	HO	НО	HO	НО	HO	Contracted
Basis sets												Fourier

Zero point energy

L _B	NB	L _{smol}	NQ
5	4 368	6	132 786
7	31 824	8	1 845 519
9	4 031 040	10	892 360 032

ZPE (cm² 11450 11400

11150

10

ZPE (cm⁻¹)

11091.0

11090.5

11090.0

•

The Hamiltonian has 91 terms => Huge memory 605 GB

The calculations are long (12 days for $L_B=9$)!

Torsion levels

•

v_{12}	sym	Exp.	12D-RPH	12D	12D
			MULTIMODE	ElVibRot	ElVibRot
				$L_B=5$ with $L_{smol}=7$	$L_B = 6$ with $L_{smol} = 8$
0	a ₁	0.0	0.0	11089.55	11088.71
	e	9.1	8.7	9.15, 9.15	9.14, 9.15
1	e	208.9	205.3	205.34	205.34
	a_2	294.7	267.0	290.70	290.70
2	a_1	353.0	388.2	347.49	347.49
	e	510.3	509.3	503.56	503.54
3	e	751.0	762.3	741.83	741.80
	a_2	1046.7	1017.8	1034.48	1034.47

Conclusions et perspectives

✓ The current implementation (Smolyak + cubature) enables to perform 12D-calculations

✓ Larger calculations are doable:

15D, $L_B = 7$, $L_{smol} = 9 => NB = 170544$ and $NQ = 47.10^6 => cpu(G \Leftrightarrow B) = 8 min$

18D, $L_B = 7$, $L_{smol} = 9 => NB = 480 700$ and $NQ = 166.10^6 => cpu(G \Leftrightarrow B) =?$ min

48D, L_B =3, L_{smol} =4 => NB= 20 825 and NQ= 815 814

Difficulties:

Large grid and TNUM:

The number of terms of numerical KEO grows as $n^{2}/2$

 \Rightarrow It requires a large amount of memory

(disc)

 \Rightarrow Use of analytical expressions with

TANA (less flexibility).

Improvements:

 Obtain cubature rules more systematically (help!)

If possible nested ones

 Implementation of the globally sequential transformations

For a start, without a nested scheme

Tunneling splitting

•

Coordinnates: TNUM

