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Questions and some answers

Assume initial wavefunction lies in upper adiabatic subspace.

1 How large is the transition probability into the lower
adiabatic subspace?

2 What is the precise form of the transmitted wavefunction?

Transitions between components of ψa are order ε globally.

Usually exponentially small in the scattering regime.

Under suitable assumptions, there exist unitaries Un such
that the components of the corresponding ψn decouple up
to errors of O(εn+1).
This is the n-th superadiabatic representation.

Optimizing over n allows decoupling up to exponentially
small (in ε) errors.

If V becomes constant sufficiently quickly for |x| → ∞, Un
agrees with U0 up to errors involving the derivative of V .
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The two-band Schrödinger equation

Two-level system with one degree of freedom:

iε∂t

(
ψ1(x, t)
ψ2(x, t)

)
=

(
−ε

2

2
∂2xI + V (x) + d(x)I

)(
ψ1(x, t)
ψ2(x, t)

)
, with

V (x) = ρ(x)

(
cos θ(x) sin θ(x)
sin θ(x) − cos θ(x)

)
.

I is the 2× 2 unit matrix, x is the nuclear position, ε > 0 is the
square root of the mass ratio, and ψ ∈ L2(dx,C2).

Corresponds to an avoided crossing with gap at least 2δ.

The time scale ensures that the nuclei move a distance of order
one in a time of order one.
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Adiabatic representation

For

U0(x) =

(
cos
(
θ(x)/2

)
sin
(
θ(x)/2

)
sin
(
θ(x)/2

)
− cos

(
θ(x)/2

)) , ψa(x, t) = U0(x)ψ(x, t),

we obtain
iε∂tψa(x, t) = H0ψa(x, t), with

H0 = U0HU
∗
0 = − ε2

2 ∂
2
xI +

(
ρ(x) + d(x) + ε2 θ

′(x)2

8 −ε θ
′(x)
2 · (ε∂x)− ε2 θ

′′(x)
4

ε θ
′(x)
2 · (ε∂x) + ε2 θ

′′(x)
4 −ρ(x) + d(x) + ε2 θ

′(x)2

8

)
.

To leading order, the dynamics decouple: Born-Oppenheimer
approximation.

Couplings given to first order by the first off-diagonal terms,
since semiclassical wavefunctions oscillate with frequency 1/ε.

θ′(x) =
iγ

x− iqc
− iγ

x+ iqc
+ θr(x), τδ = 2

∫ qc

0
ρ(z)dz.
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Superadiabatic representations

To leading order in ε,

iε∂tψn =

(
− ε2

2 ∂
2
x + ρ(x) + d(x) εn+1K+

n+1

εn+1K−n+1 − ε2

2 ∂
2
x − ρ(x) + d(x)

)
ψn.

Coupling elements Kn given by a complicated recursion.
Hence

ψ−,n(x, t) = −iεn
∫ t

−∞

(
e−

i
ε
(t−s)H− K−n+1 e−

i
ε
sH+

ψ+,0

)
(x) ds

or in Fourier space

ψ̂−,n
ε
(k, t) = −εn i√

2πε

∫ t

−∞

(
e−

i
ε
(t−s)Ĥ− J−n+1 e−

i
ε
sĤ+

ψ̂+,0
ε
)

(k) ds.

Notation: f̂ ε(k) = 1√
2iε

∫
R e−

i
ε
kq f(q)dq = 1√

ε
f̂
(
k
ε

)
.
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Integral Formulation

For φ on upper level, well away from the crossing, the
transmitted wave packet in the n-th superadiabatic basis ψ−n
satisfies

ψ̂−n
ε
(k, t) ≈ − 1

4πε
e−

i
ε tĤ

−(k)
∫ t

−∞
ds

∫
R

dη (k + η)(1− 2λs
k+η )n+1

(k2−η2
4δ

)n
× e−

τc
2δε |k−η| e−

iτr
2δε (k−η) e

i
2ε

(
(k2−η2−4δ)s−(k−η)λs2

)
φ̂ε(η),

where Ĥ−(k) is the B-O propagator in the lower level,
τδ =: τr + iτc and d(x) = d0 + λx+O(x2).

Idea: The integrand is quickly oscillating so we use a stationary
phase argument around s = 0, η = η∗ =

√
k2 − 4δ.

Plausible assumptions on the width of the wavepacket (O(ε1/2))
lead to explicit Gaussian integrals.
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Main Result for Gaussian wave packets

For φ̂ε(η) = exp
(
− c(η − p0)2/ε+ ix0η/ε

)
,

ψ̂−n
ε
(k, t) ≈ e−

i
ε
tĤ−

2
√

4α2,0α0,2 − α2
1,1

exp
[α2,0α

2
0,1 + α0,2α

2
1,0 − α1,0α0,1α1,1

α2
1,1 − 4α2,0α0,2

]
× (η∗ + k) e−

τc
2δε |k−η

∗| e−i
τr
2δε (k−η

∗) e−iϕ(p0) φ̂ε(η∗)χk2>4δ,
with

α2,0 = −n0ε
4δ −

n0η∗2ε
8δ2

− c

α1,0 = −n0η∗ε1/2

2δ − 2c(η∗−p0)
ε1/2

+ sgn(k)τc
2δε1/2

+ i τr
2δε1/2

+ i x0
ε1/2

α1,1 = −iη∗ + 2(n0+1)λε
(k+η∗)2

α0,1 = −2(n0+1)ε1/2λ
k+η∗

α0,2 = −i 2δλ
(k+η∗) −

2(n0+1)λ2ε
(k+η∗)2

ϕ(p0) = − (n0+1)2ελa0δ
2(n0+1)2λ2ε2+2δ2a20

− 1
2 arctan

(
a0δ

(n0+1)ελ

)
+ sgn(λp0)

π
4

with n0 given by the solution of three quadratic equations.
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Simplification for small λ

For any semiclassical φ

ψ̂−n
ε
(k, t) ≈ e−

i
ε
tĤ− η

∗ + k

2
e−

τc
2δε |k−η

∗| e−i
τr
2δε (k−η

∗) φ̂ε(η∗)χk2>4δ

Independent of n, uses only local information.

Nonadiabatic transitions decouple in momentum space.

η∗ = sgn(k)
√
k2 − 4δ is the classical incoming momentum

for outgoing momentum k due to energy conservation.

χk2>4δ is also from energy conservation

The complex part of τ contributes a Landau-Zener factor,
causing the exponential smallness in ε.

k −
√
k2 − 4δ ≈ 2δ/k2, so larger momentum wavepackets

are more likely to make the transition.

For large momentum, small momentum uncertainty, gives
Landau-Zener transition probability.
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tĤ− η

∗ + k

2
e−

τc
2δε |k−η

∗| e−i
τr
2δε (k−η

∗) φ̂ε(η∗)χk2>4δ

Independent of n, uses only local information.

Nonadiabatic transitions decouple in momentum space.

η∗ = sgn(k)
√
k2 − 4δ is the classical incoming momentum

for outgoing momentum k due to energy conservation.

χk2>4δ is also from energy conservation

The complex part of τ contributes a Landau-Zener factor,
causing the exponential smallness in ε.

k −
√
k2 − 4δ ≈ 2δ/k2, so larger momentum wavepackets

are more likely to make the transition.

For large momentum, small momentum uncertainty, gives
Landau-Zener transition probability.

8 / 14



Simplification for small λ

For any semiclassical φ

ψ̂−n
ε
(k, t) ≈ e−

i
ε
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Algorithm

1 Evolve initial wave packet on upper level using B-O
dynamics until centre of mass reaches the transition point.
[E.g. Strang splitting or Hagedorn wavepackets.]

2 Transform resulting wave packet into momentum space and
decompose into a linear combination of complex Gaussians.
[For initial Gaussian, is Gaussian with error order ε1/2.
Not required if λ small.]

3 Apply formula to each complex Gaussian and take the
corresponding linear combination.

4 Evolve resulting transmitted wave packet using B-O
dynamics on lower level, until the centre of mass reaches
the scattering region.
[As in (1)].
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Numerics 1: Gaussian Wavepacket

φ̂ε(η) = exp
(
− c(η − p0)2/ε+ ix0η/ε

)
ε = 1/40; p0 = 4; c = 1/2; x0 = 0; τ = −0.15992 + 0.52951i
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Numerics 2: Non-Gaussian Wavepacket

φ̂ε(η) =

3∑
j=1

(−1)j+1φ̂j
ε
(η), φ̂j

ε
(η) = exp

(
−cj(η−p0,j)2/ε+ix0,jη/ε

)
ε = 1/50; τ = −0.16611 + 0.537721i
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Numerics 3: Gaussian Wavepacket, small ε

φ̂ε(η) = exp
(
− c(η − p0)2/ε+ ix0η/ε

)
ε = 1/500; p0 = 3; c = 1/2; x0 = 0; τ = −0.02331 + 0.11040i
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Asymptotics for fixed p
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Excellent agreement for wide range of ε.

Not asymptotically correct for fixed p.

However, small ε and fixed p gives very small transition
probability (e.g. p0 = 2, ε = 1/50 gives ‖ψ−‖22 ≈ 6× 10−10).

Actual error much better than we can prove with a priori
estimates.

13 / 14



Conclusions and outlook

We have derived a closed-form approximation to the
transmitted wavefunction, which is accurate for a large range of
potentials and values of ε.

Understand the heuristic phase correction and physical
interpretation of the results.

Apply the method to real-life systems.

Extend the result to higher dimensions (work in progress).

(Related) Understand the asymptotics of K−n .

Prove rigorous error estimates.
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