Transitions through avoided crossings in diatomic molecules

Benjamin Goddard ${ }^{[1]}$

Volker Betz ${ }^{[2]}$ and Stefan Teufel ${ }^{[3]}$
${ }^{[1]}$ Department of Chemical Engineering, Imperial College London
${ }^{[2]}$ Fachbereich Mathematik, Technische Universität Darmstadt
${ }^{[3]}$ Mathematisches Institut, Universität Tübingen
Workshop on Mathematical Methods in Quantum Molecular Dynamics

3rd May 2013

Imperial College London

Example: Photo-Dissociation of NaI

Questions and some answers

Assume initial wavefunction lies in upper adiabatic subspace.
(1) How large is the transition probability into the lower adiabatic subspace?
(2) What is the precise form of the transmitted wavefunction?

Questions and some answers

Assume initial wavefunction lies in upper adiabatic subspace.
(1) How large is the transition probability into the lower adiabatic subspace?
(2) What is the precise form of the transmitted wavefunction?

- Transitions between components of ψ_{a} are order ε globally.
- Usually exponentially small in the scattering regime.
- Under suitable assumptions, there exist unitaries U_{n} such that the components of the corresponding ψ_{n} decouple up to errors of $\mathcal{O}\left(\varepsilon^{n+1}\right)$. This is the n-th superadiabatic representation.
- Optimizing over n allows decoupling up to exponentially small (in ε) errors.
- If V becomes constant sufficiently quickly for $|x| \rightarrow \infty, U_{n}$ agrees with U_{0} up to errors involving the derivative of V.

Two-level system with one degree of freedom:

$$
\begin{gathered}
\mathrm{i} \varepsilon \partial_{t}\binom{\psi_{1}(x, t)}{\psi_{2}(x, t)}=\left(-\frac{\varepsilon^{2}}{2} \partial_{x}^{2} \mathbf{I}+V(x)+d(x) \mathbf{I}\right)\binom{\psi_{1}(x, t)}{\psi_{2}(x, t)}, \text { with } \\
V(x)=\rho(x)\left(\begin{array}{cc}
\cos \theta(x) & \sin \theta(x) \\
\sin \theta(x) & -\cos \theta(x)
\end{array}\right)
\end{gathered}
$$

\mathbf{I} is the 2×2 unit matrix, x is the nuclear position, $\varepsilon>0$ is the square root of the mass ratio, and $\psi \in L^{2}\left(\mathrm{~d} x, \mathbb{C}^{2}\right)$.

Two-level system with one degree of freedom:

$$
\begin{gathered}
\mathrm{i} \varepsilon \partial_{t}\binom{\psi_{1}(x, t)}{\psi_{2}(x, t)}=\left(-\frac{\varepsilon^{2}}{2} \partial_{x}^{2} \mathbf{I}+V(x)+d(x) \mathbf{I}\right)\binom{\psi_{1}(x, t)}{\psi_{2}(x, t)}, \text { with } \\
V(x)=\rho(x)\left(\begin{array}{cc}
\cos \theta(x) & \sin \theta(x) \\
\sin \theta(x) & -\cos \theta(x)
\end{array}\right)
\end{gathered}
$$

\mathbf{I} is the 2×2 unit matrix, x is the nuclear position, $\varepsilon>0$ is the square root of the mass ratio, and $\psi \in L^{2}\left(\mathrm{~d} x, \mathbb{C}^{2}\right)$.

Corresponds to an avoided crossing with gap at least 2δ.
The time scale ensures that the nuclei move a distance of order one in a time of order one.

Adiabatic representation

For
$U_{0}(x)=\left(\begin{array}{cc}\cos (\theta(x) / 2) & \sin (\theta(x) / 2) \\ \sin (\theta(x) / 2) & -\cos (\theta(x) / 2)\end{array}\right), \psi_{\mathrm{a}}(x, t)=U_{0}(x) \psi(x, t)$,
we obtain

$$
\mathrm{i} \varepsilon \partial_{t} \psi_{\mathrm{a}}(x, t)=H_{0} \psi_{\mathrm{a}}(x, t), \text { with }
$$

$$
H_{0}=U_{0} H U_{0}^{*}=-\frac{\varepsilon^{2}}{2} \partial_{x}^{2} \mathbf{I}+\left(\begin{array}{ll}
\rho(x)+d(x)+\varepsilon^{2} \frac{\theta^{\prime}(x)^{2}}{8} & -\varepsilon \frac{\theta^{\prime}(x)}{2} \cdot\left(\varepsilon \partial_{x}\right)-\varepsilon^{2} \frac{\theta^{\prime \prime}(x)}{4} \\
\varepsilon \frac{\theta^{\prime}(x)}{2} \cdot\left(\varepsilon \partial_{x}\right)+\varepsilon^{2} \frac{\theta^{\prime \prime}(x)}{4} & -\rho(x)+d(x)+\varepsilon^{2} \frac{\frac{\theta^{\prime}(x)^{2}}{8}}{8}
\end{array}\right) .
$$

Adiabatic representation

For

$$
U_{0}(x)=\left(\begin{array}{cc}
\cos (\theta(x) / 2) & \sin (\theta(x) / 2) \\
\sin (\theta(x) / 2) & -\cos (\theta(x) / 2)
\end{array}\right), \psi_{\mathrm{a}}(x, t)=U_{0}(x) \psi(x, t),
$$

we obtain

$$
\begin{gathered}
\mathrm{i} \partial_{t} \psi_{\mathrm{a}}(x, t)=H_{0} \psi_{\mathrm{a}}(x, t), \text { with } \\
H_{0}=U_{0} H U_{0}^{*}=-\frac{\varepsilon^{2}}{2} \partial_{x}^{2} \mathbf{I}+\left(\begin{array}{ll}
\rho(x)+d(x)+\varepsilon^{2} \frac{\theta^{\prime}(x)^{2}}{x} & -\varepsilon \frac{\theta^{\theta^{\prime}(x)}}{2} \cdot\left(\varepsilon \partial_{x}\right)-\varepsilon^{2} \frac{\theta^{\prime \prime}(x)}{(x)} \\
\varepsilon \frac{\theta^{\prime}(x)}{2} \cdot\left(\varepsilon \partial_{x}\right)+\varepsilon^{2} \frac{\theta^{\prime \prime}(x)}{4} & -\rho(x)+d(x)+\varepsilon^{2} \frac{\theta^{\prime}(x)^{2}}{8}
\end{array}\right) .
\end{gathered}
$$

To leading order, the dynamics decouple: Born-Oppenheimer approximation.

Adiabatic representation

For

$$
U_{0}(x)=\left(\begin{array}{cc}
\cos (\theta(x) / 2) & \sin (\theta(x) / 2) \\
\sin (\theta(x) / 2) & -\cos (\theta(x) / 2)
\end{array}\right), \psi_{\mathrm{a}}(x, t)=U_{0}(x) \psi(x, t)
$$

we obtain

$$
\begin{gathered}
\mathrm{i} \varepsilon \partial_{t} \psi_{\mathrm{a}}(x, t)=H_{0} \psi_{\mathrm{a}}(x, t), \text { with } \\
H_{0}=U_{0} H U_{0}^{*}=-\frac{\varepsilon^{2}}{2} \partial_{x}^{2} \mathbf{I}+\left(\begin{array}{ll}
\rho(x)+d(x)+\varepsilon^{2} \frac{\theta^{\prime}(x)^{2}}{8} & -\varepsilon \frac{\theta^{\prime}(x)}{2} \cdot\left(\varepsilon \partial_{x}\right)-\varepsilon^{2} \frac{\theta^{\prime \prime}(x)}{4} \\
\varepsilon \frac{\theta^{\prime}(x)}{2} \cdot\left(\varepsilon \partial_{x}\right)+\varepsilon^{2} \frac{\theta^{\prime \prime}(x)}{4} & -\rho(x)+d(x)+\varepsilon^{2 \frac{\theta^{\prime}(x)^{2}}{8}}
\end{array}\right) .
\end{gathered}
$$

To leading order, the dynamics decouple: Born-Oppenheimer approximation.

Couplings given to first order by the first off-diagonal terms, since semiclassical wavefunctions oscillate with frequency $1 / \varepsilon$.

Adiabatic representation

For

$$
U_{0}(x)=\left(\begin{array}{cc}
\cos (\theta(x) / 2) & \sin (\theta(x) / 2) \\
\sin (\theta(x) / 2) & -\cos (\theta(x) / 2)
\end{array}\right), \psi_{\mathrm{a}}(x, t)=U_{0}(x) \psi(x, t)
$$

we obtain

$$
\begin{gathered}
\mathrm{i} \varepsilon \partial_{t} \psi_{\mathrm{a}}(x, t)=H_{0} \psi_{\mathrm{a}}(x, t), \text { with } \\
H_{0}=U_{0} H U_{0}^{*}=-\frac{\varepsilon^{2}}{2} \partial_{x}^{2} \mathbf{I}+\left(\begin{array}{ll}
\rho(x)+d(x)+\varepsilon^{2} \frac{\theta^{\prime}(x)^{2}}{8} & -\varepsilon \frac{\theta^{\prime}(x)}{2} \cdot\left(\varepsilon \partial_{x}\right)-\varepsilon^{2} \frac{\theta^{\prime \prime}(x)}{(x)} \\
\varepsilon \frac{\theta^{\prime}(x)}{2} \cdot\left(\varepsilon \partial_{x}\right)+\varepsilon^{2} \frac{\theta^{\prime \prime}(x)}{4} & -\rho(x)+d(x)+\varepsilon^{2} \frac{\theta^{\prime}(x)^{2}}{8}
\end{array}\right) .
\end{gathered}
$$

To leading order, the dynamics decouple: Born-Oppenheimer approximation.

Couplings given to first order by the first off-diagonal terms, since semiclassical wavefunctions oscillate with frequency $1 / \varepsilon$.

$$
\theta^{\prime}(x)=\frac{\mathrm{i} \gamma}{x-\mathrm{i} q_{c}}-\frac{\mathrm{i} \gamma}{x+\mathrm{i} q_{c}}+\theta_{r}(x), \quad \tau_{\delta}=2 \int_{0}^{q_{c}} \rho(z) \mathrm{d} z
$$

Superadiabatic representations

To leading order in ε,

$$
\mathrm{i} \varepsilon \partial_{t} \boldsymbol{\psi}_{n}=\left(\begin{array}{cc}
-\frac{\varepsilon^{2}}{2} \partial_{x}^{2}+\rho(x)+d(x) & \varepsilon^{n+1} K_{n+1}^{+} \\
\varepsilon^{n+1} K_{n+1}^{-} & -\frac{\varepsilon^{2}}{2} \partial_{x}^{2}-\rho(x)+d(x)
\end{array}\right) \boldsymbol{\psi}_{n} .
$$

Coupling elements K_{n} given by a complicated recursion. Hence

$$
\psi_{-, n}(x, t)=-\mathrm{i} \varepsilon^{n} \int_{-\infty}^{t}\left(\mathrm{e}^{-\frac{\mathrm{i}}{\varepsilon}(t-s) H^{-}} K_{n+1}^{-} \mathrm{e}^{-\frac{\mathrm{i}}{\varepsilon} s H^{+}} \psi_{+, 0}\right)(x) \mathrm{d} s
$$

or in Fourier space
$\widehat{\psi-, n}^{\varepsilon}(k, t)=-\varepsilon^{n} \frac{\mathrm{i}}{\sqrt{2 \pi \varepsilon}} \int_{-\infty}^{t}\left(\mathrm{e}^{-\frac{\mathrm{i}}{\varepsilon}(t-s) \hat{H}^{-}} J_{n+1}^{-} \mathrm{e}^{-\frac{\mathrm{i}}{\varepsilon} s \hat{H}^{+}}{\widehat{\psi_{+, 0}}}^{\varepsilon}\right)(k) \mathrm{d} s$.
Notation: $\widehat{f}^{\varepsilon}(k)=\frac{1}{\sqrt{2 \mathrm{i} \varepsilon}} \int_{\mathbb{R}} \mathrm{e}^{-\frac{\mathrm{i}}{\varepsilon} k q} f(q) \mathrm{d} q=\frac{1}{\sqrt{\varepsilon}} \hat{f}\left(\frac{k}{\varepsilon}\right)$.

For ϕ on upper level, well away from the crossing, the transmitted wave packet in the n-th superadiabatic basis ψ_{n}^{-} satisfies

$$
\begin{aligned}
& \widehat{\psi}_{n}^{-} \\
&(k, t) \approx- \frac{1}{4 \pi \varepsilon} \mathrm{e}^{-\frac{\mathrm{i}}{\varepsilon} t \hat{H}^{-}(k)} \int_{-\infty}^{t} \mathrm{~d} s \int_{\mathbb{R}} \mathrm{d} \eta(k+\eta)\left(1-\frac{2 \lambda s}{k+\eta}\right)^{n+1}\left(\frac{k^{2}-\eta^{2}}{4 \delta}\right)^{n} \\
& \times \mathrm{e}^{-\frac{\tau_{c}}{2 \delta \varepsilon}|k-\eta|} \mathrm{e}^{-\frac{\mathrm{i} \tau_{r}}{2 \delta \varepsilon}(k-\eta)} \mathrm{e}^{\frac{\mathrm{i}}{2 \varepsilon}\left(\left(k^{2}-\eta^{2}-4 \delta\right) s-(k-\eta) \lambda s^{2}\right)} \widehat{\phi}^{\varepsilon}(\eta),
\end{aligned}
$$

where $\hat{H}^{-}(k)$ is the B-O propagator in the lower level, $\tau_{\delta}=: \tau_{r}+\mathrm{i} \tau_{c}$ and $d(x)=d_{0}+\lambda x+\mathcal{O}\left(x^{2}\right)$.

Idea: The integrand is quickly oscillating so we use a stationary phase argument around $s=0, \eta=\eta^{*}=\sqrt{k^{2}-4 \delta}$.
Plausible assumptions on the width of the wavepacket $\left(\mathcal{O}\left(\varepsilon^{1 / 2}\right)\right)$ lead to explicit Gaussian integrals.

Main Result for Gaussian wave packets

For $\widehat{\phi}^{\varepsilon}(\eta)=\exp \left(-c\left(\eta-p_{0}\right)^{2} / \varepsilon+\mathrm{i} x_{0} \eta / \varepsilon\right)$,

$$
\begin{aligned}
{\widehat{\psi_{n}^{-}}}^{\varepsilon}(k, t) \approx & \frac{\mathrm{e}^{-\frac{i}{\varepsilon} t \hat{H}^{-}}}{2 \sqrt{4 \alpha_{2,0} \alpha_{0,2}-\alpha_{1,1}^{2}}} \exp \left[\frac{\alpha_{2,0} \alpha_{0,1}^{2}+\alpha_{0,2} \alpha_{1,0}^{2}-\alpha_{1,0} \alpha_{0,1} \alpha_{1,1}}{\alpha_{1,1}^{2}-4 \alpha_{2,0} \alpha_{0,2}}\right] \\
& \times\left(\eta^{*}+k\right) \mathrm{e}^{-\frac{\tau_{c}}{2 \delta \epsilon}\left|k-\eta^{*}\right|} \mathrm{e}^{-\mathrm{i} \frac{\tau_{r}}{2 \delta \epsilon}\left(k-\eta^{*}\right)} \mathrm{e}^{-\mathrm{i} \varphi\left(p_{0}\right)} \widehat{\phi}^{\varepsilon}\left(\eta^{*}\right) \chi_{k^{2}>4 \delta},
\end{aligned}
$$

$$
\begin{aligned}
\alpha_{2,0} & =-\frac{n_{0} \varepsilon}{4 \delta}-\frac{n_{0} \eta^{* 2} \varepsilon}{8 \delta^{2}}-c \\
\alpha_{1,0} & =-\frac{n_{0} \eta^{*} \varepsilon^{1 / 2}}{2 \delta}-\frac{2 c\left(\eta^{*}-p_{0}\right)}{\varepsilon^{1 / 2}}+\frac{\operatorname{sgn}(k) \tau_{c}}{2 \delta \varepsilon^{1 / 2}}+\mathrm{i} \frac{\tau_{r}}{2 \delta \varepsilon^{1 / 2}}+\mathrm{i} \frac{x_{0}}{\varepsilon^{1 / 2}} \\
\alpha_{1,1} & =-\mathrm{i} \eta^{*}+\frac{2\left(n_{0}+1\right) \lambda \varepsilon}{\left(k+\eta^{*}\right)^{2}} \\
\alpha_{0,1} & =-\frac{2\left(n_{0}+1\right) \varepsilon^{1 / 2} \lambda}{k+\eta^{*}} \\
\alpha_{0,2} & =-\mathrm{i} \frac{2 \delta \lambda}{\left(k+\eta^{*}\right)}-\frac{2\left(n_{0}+1\right) \lambda^{2} \varepsilon}{\left(k+\eta^{*}\right)^{2}} \\
\varphi\left(p_{0}\right) & =-\frac{\left(n_{0}+1\right)^{2} \varepsilon \lambda a_{0} \delta}{2\left(n_{0}+1\right)^{2} \lambda^{2} \varepsilon^{2}+2 \delta^{2} a_{0}^{2}}-\frac{1}{2} \arctan \left(\frac{a_{0} \delta}{\left(n_{0}+1\right) \varepsilon \lambda}\right)+\operatorname{sgn}\left(\lambda p_{0}\right) \frac{\pi}{4}
\end{aligned}
$$

with n_{0} given by the solution of three quadratic equations.

For any semiclassical ϕ

$$
\widehat{\psi_{n}^{-}}(k, t) \approx \mathrm{e}^{-\frac{\mathrm{i}}{\varepsilon} t \hat{H}^{-}} \frac{\eta^{*}+k}{2} \mathrm{e}^{-\frac{\tau_{c}}{2 \delta \epsilon}\left|k-\eta^{*}\right|} \mathrm{e}^{-\mathrm{i} \frac{\tau_{r}}{2 \delta \epsilon}\left(k-\eta^{*}\right)} \widehat{\phi}^{\varepsilon}\left(\eta^{*}\right) \chi_{k^{2}>4 \delta}
$$

- Independent of n, uses only local information.
- Nonadiabatic transitions decouple in momentum space.

For any semiclassical ϕ

$$
\widehat{\psi_{n}^{-}}{ }^{\varepsilon}(k, t) \approx \mathrm{e}^{-\frac{\mathrm{i}}{\varepsilon} t \hat{H}^{-}} \frac{\eta^{*}+k}{2} \mathrm{e}^{-\frac{\tau_{c}}{2 \delta \epsilon}\left|k-\eta^{*}\right|} \mathrm{e}^{-\mathrm{i} \frac{\tau_{r}}{2 \delta \epsilon}\left(k-\eta^{*}\right)} \widehat{\phi}^{\varepsilon}\left(\eta^{*}\right) \chi_{k^{2}>4 \delta}
$$

- Independent of n, uses only local information.
- Nonadiabatic transitions decouple in momentum space.
- $\eta^{*}=\operatorname{sgn}(k) \sqrt{k^{2}-4 \delta}$ is the classical incoming momentum for outgoing momentum k due to energy conservation.

For any semiclassical ϕ

$$
\widehat{\psi_{n}^{-}}(k, t) \approx \mathrm{e}^{-\frac{\mathrm{i}}{\varepsilon} t \hat{H}^{-}} \frac{\eta^{*}+k}{2} \mathrm{e}^{-\frac{\tau_{c}}{2 \delta \epsilon}\left|k-\eta^{*}\right|} \mathrm{e}^{-\mathrm{i} \frac{\tau_{r}}{2 \delta \epsilon}\left(k-\eta^{*}\right)} \widehat{\phi}^{\varepsilon}\left(\eta^{*}\right) \chi_{k^{2}>4 \delta}
$$

- Independent of n, uses only local information.
- Nonadiabatic transitions decouple in momentum space.
- $\eta^{*}=\operatorname{sgn}(k) \sqrt{k^{2}-4 \delta}$ is the classical incoming momentum for outgoing momentum k due to energy conservation.
- $\chi_{k^{2}>4 \delta}$ is also from energy conservation

Simplification for small λ

For any semiclassical ϕ

$$
\widehat{\psi_{n}^{-}}{ }^{\varepsilon}(k, t) \approx \mathrm{e}^{-\frac{\mathrm{i}}{\varepsilon} t \hat{H}^{-}} \frac{\eta^{*}+k}{2} \mathrm{e}^{-\frac{\tau_{c}}{2 \delta \epsilon}\left|k-\eta^{*}\right|} \mathrm{e}^{-\mathrm{i} \frac{\tau_{r}}{2 \delta \epsilon}\left(k-\eta^{*}\right)} \widehat{\phi}^{\varepsilon}\left(\eta^{*}\right) \chi_{k^{2}>4 \delta}
$$

- Independent of n, uses only local information.
- Nonadiabatic transitions decouple in momentum space.
- $\eta^{*}=\operatorname{sgn}(k) \sqrt{k^{2}-4 \delta}$ is the classical incoming momentum for outgoing momentum k due to energy conservation.
- $\chi_{k^{2}>4 \delta}$ is also from energy conservation
- The complex part of τ contributes a Landau-Zener factor, causing the exponential smallness in ε.

Simplification for small λ

For any semiclassical ϕ

$$
\widehat{\psi_{n}^{-}}{ }^{\varepsilon}(k, t) \approx \mathrm{e}^{-\frac{\mathrm{i}}{\varepsilon} t \hat{H}^{-}} \frac{\eta^{*}+k}{2} \mathrm{e}^{-\frac{\tau_{c}}{2 \delta \epsilon}\left|k-\eta^{*}\right|} \mathrm{e}^{-\mathrm{i} \frac{\tau_{r}}{2 \delta \epsilon}\left(k-\eta^{*}\right)} \widehat{\phi}^{\varepsilon}\left(\eta^{*}\right) \chi_{k^{2}>4 \delta}
$$

- Independent of n, uses only local information.
- Nonadiabatic transitions decouple in momentum space.
- $\eta^{*}=\operatorname{sgn}(k) \sqrt{k^{2}-4 \delta}$ is the classical incoming momentum for outgoing momentum k due to energy conservation.
- $\chi_{k^{2}>4 \delta}$ is also from energy conservation
- The complex part of τ contributes a Landau-Zener factor, causing the exponential smallness in ε.
- $k-\sqrt{k^{2}-4 \delta} \approx 2 \delta / k^{2}$, so larger momentum wavepackets are more likely to make the transition.

Simplification for small λ

For any semiclassical ϕ
$\widehat{\psi_{n}^{-}}{ }^{\varepsilon}(k, t) \approx \mathrm{e}^{-\frac{\mathrm{i}}{\varepsilon} t \hat{H}^{-}} \frac{\eta^{*}+k}{2} \mathrm{e}^{-\frac{\tau_{c}}{2 \delta \epsilon}\left|k-\eta^{*}\right|} \mathrm{e}^{-\mathrm{i} \frac{\tau_{r}}{2 \delta \epsilon}\left(k-\eta^{*}\right)} \widehat{\phi}^{\varepsilon}\left(\eta^{*}\right) \chi_{k^{2}>4 \delta}$

- Independent of n, uses only local information.
- Nonadiabatic transitions decouple in momentum space.
- $\eta^{*}=\operatorname{sgn}(k) \sqrt{k^{2}-4 \delta}$ is the classical incoming momentum for outgoing momentum k due to energy conservation.
- $\chi_{k^{2}>4 \delta}$ is also from energy conservation
- The complex part of τ contributes a Landau-Zener factor, causing the exponential smallness in ε.
- $k-\sqrt{k^{2}-4 \delta} \approx 2 \delta / k^{2}$, so larger momentum wavepackets are more likely to make the transition.
- For large momentum, small momentum uncertainty, gives Landau-Zener transition probability.

Algorithm

(1) Evolve initial wave packet on upper level using B-O dynamics until centre of mass reaches the transition point. [E.g. Strang splitting or Hagedorn wavepackets.]
(2) Transform resulting wave packet into momentum space and decompose into a linear combination of complex Gaussians. [For initial Gaussian, is Gaussian with error order $\epsilon^{1 / 2}$. Not required if λ small.]
(3) Apply formula to each complex Gaussian and take the corresponding linear combination.
(1) Evolve resulting transmitted wave packet using B-O dynamics on lower level, until the centre of mass reaches the scattering region.
[As in (1)].

Numerics 1: Gaussian Wavepacket

$$
\begin{gathered}
\widehat{\phi}^{\varepsilon}(\eta)=\exp \left(-c\left(\eta-p_{0}\right)^{2} / \varepsilon+\mathrm{i} x_{0} \eta / \varepsilon\right) \\
\varepsilon=1 / 40 ; p_{0}=4 ; c=1 / 2 ; x_{0}=0 ; \tau=-0.15992+0.52951 \mathrm{i}
\end{gathered}
$$

$P($ Transition $)=3.9 \times 10^{-5}$
L^{2} Relative Error $=0.021$

Numerics 2: Non-Gaussian Wavepacket

$$
\begin{gathered}
\widehat{\phi}^{\varepsilon}(\eta)=\sum_{j=1}^{3}(-1)^{j+1} \widehat{\phi}_{j}^{\varepsilon}(\eta), \quad \widehat{\phi}_{j}^{\varepsilon}(\eta)=\exp \left(-c_{j}\left(\eta-p_{0, j}\right)^{2} / \varepsilon+\mathrm{i} x_{0, j} \eta / \varepsilon\right) \\
\varepsilon=1 / 50 ; \tau=-0.16611+0.537721 \mathrm{i}
\end{gathered}
$$

$P($ Transition $)=3.5 \times 10^{-5}$
L^{2} Relative Error $=0.018$

$$
\begin{gathered}
\widehat{\phi}^{\varepsilon}(\eta)=\exp \left(-c\left(\eta-p_{0}\right)^{2} / \varepsilon+\mathrm{i} x_{0} \eta / \varepsilon\right) \\
\varepsilon=1 / 500 ; p_{0}=3 ; c=1 / 2 ; x_{0}=0 ; \tau=-0.02331+0.11040 \mathrm{i}
\end{gathered}
$$

$P($ Transition $)=3.4 \times 10^{-16}$ L^{2} Relative Error $=0.018$

Asymptotics for fixed p

- Excellent agreement for wide range of ε.
- Not asymptotically correct for fixed p.
- However, small ε and fixed p gives very small transition probability (e.g. $p_{0}=2, \varepsilon=1 / 50$ gives $\left\|\psi_{-}\right\|_{2}^{2} \approx 6 \times 10^{-10}$).
- Actual error much better than we can prove with a priori estimates.

Conclusions and outlook

We have derived a closed-form approximation to the transmitted wavefunction, which is accurate for a large range of potentials and values of ε.

- Understand the heuristic phase correction and physical interpretation of the results.
- Apply the method to real-life systems.
- Extend the result to higher dimensions (work in progress).
- (Related) Understand the asymptotics of K_{n}^{-}.
- Prove rigorous error estimates.

