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Questions and some answers

Assume initial wavefunction lies in upper adiabatic subspace.

@ How large is the transition probability into the lower
adiabatic subspace?

© What is the precise form of the transmitted wavefunction?
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Questions and some answers

Assume initial wavefunction lies in upper adiabatic subspace.

How large is the transition probability into the lower
adiabatic subspace?

What is the precise form of the transmitted wavefunction?

Transitions between components of 1, are order ¢ globally.
Usually exponentially small in the scattering regime.

Under suitable assumptions, there exist unitaries U,, such
that the components of the corresponding 1,, decouple up
to errors of O(e"1).

This is the n-th superadiabatic representation.

Optimizing over n allows decoupling up to exponentially
small (in €) errors.

If V' becomes constant sufficiently quickly for || — oo, U,
agrees with Uy up to errors involving the derivative of V.
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The two-band Schrodinger equation

Two-level system with one degree of freedom:

i, @;gg) - <—5;a§1+V(x) +d(az)1> (iééii;) . with

_ cosf(x) sinf(x)
V(z) = p(@) <sin O(x) —cos 0(1:)) '

I is the 2 x 2 unit matrix, x is the nuclear position, € > 0 is the
square root of the mass ratio, and ¢ € L?(dx,C?).



The two-band Schrodinger equation

Two-level system with one degree of freedom:

i, @;gg) - <—5;a§1+V(x) +d(az)1> (Z;gg) . with

_ cosf(x) sinf(x)
V(z) = p(@) <sin O(x) —cos 0(1:)) '

I is the 2 x 2 unit matrix, x is the nuclear position, € > 0 is the
square root of the mass ratio, and ¢ € L?(dx,C?).

Corresponds to an avoided crossing with gap at least 24.

The time scale ensures that the nuclei move a distance of order
one in a time of order one.



Adiabatic representation

For

o) = (o8 (6(z)/2)  sin(6(z)/2) .
Uo(z) = (sin (0(3})/2) — cos (0(35)/2)) , Ya(x,t) = Up(x))(x,t),

we obtain
ie0pa(x,t) = Hotba(x,t), with
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To leading order, the dynamics decouple: Born-Oppenheimer
approximation.
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Couplings given to first order by the first off-diagonal terms,
since semiclassical wavefunctions oscillate with frequency 1/e.
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To leading order, the dynamics decouple: Born-Oppenheimer
approximation.

Couplings given to first order by the first off-diagonal terms,
since semiclassical wavefunctions oscillate with frequency 1/e.
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Superadiabatic representations

To leading order in ¢,

o = [FOEA @ @) )
n 5n+1K1;+1 —%ag_ p(z) + d(z) n

Coupling elements K, given by a complicated recursion.
Hence

t . _
Vo p(z,t) = —is"/ (e_é(t_S)H K, ey, 0)( )ds

—00

or in Fourier space

—c
—n (k1) = e €’
1/) , ( ) \/% —|—1

Notation: fa(k:) = \/% fR e <M f(q)dq = %f(g)



Integral Formulation

For ¢ on upper level, well away from the crossing, the
transmitted wave packet in the n-th superadiabatic basis 9,
satisfies

TF *tH As \n+1 [ k*—n?
i (k,t)N—res /dS/dnk+77 1= A ()"

ity

x o 38z lknl g g (hom) oz ((2—n®—48)s—(h-mAs?) 22 ()
where H~ (k) is the B-O propagator in the lower level,
75 =: T + i1, and d(z) = dgp + Az + O(z?).

Idea: The integrand is quickly oscillating so we use a stationary
phase argument around s = 0, n = n* = Vk2 — 40.

Plausible assumptions on the width of the wavepacket (O(s1/?))
lead to explicit Gaussian integrals.



Main Result for Gaussian wave packets

For ¢° (1) = exp (— (i — po)?/e + izon/e),

2 2
Q2,000 1 + Q207 o — Q1,000,1001,1

vn (kt) ~

x| 2 4
2\/4()[270&072 — Oz% 1 04171 — 202 0000,2

Tc * 3 i
X (0" + k) e 20 K e () o= ®0) GE (%) 0y,

with
non*3e
azo =~y — g ¢
1/2 2¢(n*—po) sgn (k)T .
_ _non*et/?  2c(n*—po g . zo
Q1,0 = 25 2 T o512 +125 iz t 12173
ok 2(notl)Ae
al,l - 177 + (k+n*)2
2(no+1 el/2)
o — —i202 _ 2(no+1)A\%e
027 Ttn®) — ()2
_ (no+1)%edaos 1 agd 3 T
¢(po) = 2(not+1)2AZe2 12022 2 arctan ((no—l-l)eA) + sgn(Apo) 4

with ng given by the solution of three quadratic equations.



Simplification for small A

For any semiclassical ¢
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o Independent of n, uses only local information.

e Nonadiabatic transitions decouple in momentum space.
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Simplification for small A

For any semiclassical ¢
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o Independent of n, uses only local information.
e Nonadiabatic transitions decouple in momentum space.

e 1" = sgn(k)Vk? — 40 is the classical incoming momentum
for outgoing momentum k due to energy conservation.

@ Xj2-45 is also from energy conservation

@ The complex part of 7 contributes a Landau-Zener factor,
causing the exponential smallness in ¢.

o k— Vk2Z — 45 ~ 25/k?, so larger momentum wavepackets
are more likely to make the transition.

o For large momentum, small momentum uncertainty, gives
Landau-Zener transition probability.



Algorithm

@ Evolve initial wave packet on upper level using B-O
dynamics until centre of mass reaches the transition point.
[E.g. Strang splitting or Hagedorn wavepackets.]

@ Transform resulting wave packet into momentum space and
decompose into a linear combination of complex Gaussians.
[For initial Gaussian, is Gaussian with error order €!/2.

Not required if A small.]

@ Apply formula to each complex Gaussian and take the
corresponding linear combination.

@ Evolve resulting transmitted wave packet using B-O
dynamics on lower level, until the centre of mass reaches
the scattering region.

[As in (1)].

9/ 14



Numerics 1: Gaussian Wavepacket

¢°(n) = exp ( — c(n — po)? /e +izon/e)
e=1/40; po =4; c=1/2; 29 =0; 7 = —0.15992 + 0.52951i
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Numerics 2: Non-Gaussian Wavepacket
3

) =Y (=119 (), &5 (m) = exp (—cj(n—po)?/e+izo n/e)

J=1 .
e =1/50; 7 = —0.16611 4 0.537721i
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Numerics 3: Gaussian Wavepacket, small ¢

¢°(n) = exp ( — c(n — po)? /e +izon/e)
e =1/500; po =3; ¢ =1/2; xyg =0; 7 = —0.02331 + 0.11040i
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Asymptotics for fixed p
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Excellent agreement for wide range of €.

Not asymptotically correct for fixed p.

However, small € and fixed p gives very small transition
probability (e.g. po = 2, ¢ = 1/50 gives [[¢_||3 ~ 6 x 10710).
Actual error much better than we can prove with a priori
estimates.
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Conclusions and outlook

We have derived a closed-form approximation to the
transmitted wavefunction, which is accurate for a large range of
potentials and values of €.

@ Understand the heuristic phase correction and physical
interpretation of the results.

o Apply the method to real-life systems.
e Extend the result to higher dimensions (work in progress).
o (Related) Understand the asymptotics of K, .

@ Prove rigorous error estimates.



