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Networked Information Processing System

Communication network

\
o+

@ System: Internet, peer-to-peer network, sensor network, ...

@ Sources: Data, speech, music, images, video, sensor data

@ Nodes: Handsets, base stations, processors, servers, sensor nodes, ...

@ Network: Wired, wireless, or a hybrid of the two

@ Task: Communicate the sources, or compute/make decision based on them
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Network Information Theory

Communication network

\
o+

@ Network information flow questions:

» What is the limit on the amount of communication needed?
> What are the coding schemes/techniques that achieve this limit?

@ Challenges:

> Many networks inherently allow for two-way interactions
> Most coding schemes are limited to one-way communications
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Objectives of the Talk

@ Review coding schemes that utilizes two-way interactions
@ Focus on the channel coding side of the story (given yesterday'’s talks)

@ Draw mostly from a few classical examples and open problems (El Gamal-K 2011)

Network
Information
Theory
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Discrete Memoryless Channel (DMC) with Feedback

— > Encoder

Y
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p(ylx)

A

A

Decoder

Yi—l

@ Feedback does not increase the capacity of a DMC (Shannon 1956):

Cpg =maxI(X;Y)=C
p)

@ Nonetheless, feedback can help communication in several important ways

» Feedback can simplify coding and improve reliability (Schalkwijk—Kailath 1966)

» Feedback can increase the capacity of channels with memory (Butman 1969)

» Feedback can enlarge the capacity region of DM multiuser channels (Gaarder-Wolf 1975)

@ Insights on the fundamental limit of two-way interactive communication
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Iterative Refinement

@ Binary erasure channel:
l-p

Young-HanKim (UCSD) anff, January 2012 6/33



Iterative Refinement

@ Binary erasure channel:

1-p
1 1
X e Y
0 0
1-p

@ Basic idea:

v

First send a message at a rate higher than the channel capacity (without coding)

v

Then iteratively refine the receiver’s knowledge about the message

@ Examples:

v

Schalkwijk-Kailath coding scheme (1966)

v

Horstein’s coding scheme (1963)

v

Posterior matching scheme (Shayevitz-Feder 2011)

>

Block feedback coding scheme (Weldon 1963, Ahlswede 1973, Ooi-Wornell 1998)
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Gaussian Channel with Feedback

Z

,
T RN —
@ Expected average transmitted power constraint

n
Z E((m, Y™)) <nP, mell: 2"
i1

@ Schalkwijk—Kailath Coding Scheme (Schalkwijk—Kailath 1966, Schalkwijk 1966):

X, o< 0,
X, oc 06, ,(Y'™)

@ Doubly exponentially small probability of error
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Posterior Matching Scheme (Shayevitz—Feder 2011)

@ Recall the Schalkwijk-Kailath coding scheme:

Xl (0.8 @ ~ N(O, 1))
X, x®-0, (Yo X, —EX,_, Yy Ly
> Y,,Y,,...areiid.

@ Consider a general DMC p(y|x) with a capacity-achieving input pmf p(x):

X, = Fy'(F(®)), © ~ Unif[0,1)
X; = Fy' (Fopym1(®]Y71) L Y
> Y,,Y,,...areiid.

@ Generalizes repetition for BEC, S-K for Gaussian, and Horstein for BSC
@ Actual proof involves properties of iterated random functions

® Question: Elementary proof (say, for BSC)?
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Block Feedback Coding Scheme

1 1 Z ~ Bern(p)

@ Implementation of iterative refinement at the block level (Weldon 1963):

v

Initially, transmit k bits uncoded

> Learn the error (via feedback), compress it using kH(p) bits, and transmit the
compression index uncoded

» Communicate the error about the error (kHz(p) bits)

» Communicate the error about the error about the error
@ Achievable rate: k/(k + kH(p) + kH*(p) + kH>(p) + ---) = 1 — H(p)

@ Extensions (Ahlswede 1973, Ooi-Wornell 1998)
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Multiple Access Channel (MAC) with Feedback

Yifl
Ml Xli
— > Encoder1 >
Y; M, M,
plylx;, x,) » Decoder —————=»
M2 X2i
— > Encoder 2 >
yi-l

@ Transmission cooperation: x,;(M;, Y'"), x (M,, Y'")

@ Capacity region % is not known in general
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Example: Binary Erasure MAC

Xle{o,l}\
@—»YG{O,I,Z}
Xze{O,l}/

@ Capacity region without feedback:

R <1,
R, <1,
R, +R,<3/2

@ Block feedback coding scheme (Gaarder-Wolf 1975):

» Ry, =2/3: k uncoded transmissions + k/2 one-sided retransmissions
* Ry, = 3/4: k uncoded transmissions + k/4 two-sided retransmissions + k/16 + - -
> Ry, = 0.7602: k uncoded transmissions + k/(2log 3) cooperative retransmissions

sym

® Ry, =0.7911 (Cover-Leung 1981, Willems 1982)
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Cover-Leung Coding Scheme

Yi—l

v

— > Encoder1

— > Encoder 2

p(ylx;, x,)

t

Young-HanKim (UCSD)

Yi—l

Role of Interactionin NIT

y

Decoder ———

Banff, January 2012 12/33



Cover-Leung Coding Scheme

Yi—l
Ml Xli
— Encoder1 >
Y.
i
P(}/|x1,x2) >
MZ X2i o
— > Encoder2 >
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Cover-Leung Coding Scheme

Y'(j)_

Y*(ji-1)
M, ;s My, X7 ()
— > Encoder1 >
p(ylxy, x,)
Mz,j—l’MZj in(])
—  Encoder 2 >

Block Markov coding

Not optimal for the Gaussian MAC (Ozarow 1984)

Question: Posterior matching for MAC?

Decoder ———»

Willems condition (1982): Optimal when X is a function of (X,,Y)

@ Question: Optimality of Cover-Leung for one-sided feedback?
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Broadcast Channel (BC) with Feedback

Yli—l
le Ml
v > Decoder1 [—
M,, M, X;
Encoder > p(y1s y,1x) X
4 Ya Decoder 2 A
v

@ Receivers operate separately (regardless of feedback)

@ Physically degraded BC p(y,|x)p(y,1y;):

» Feedback does not enlarge the capacity region (El Gamal 1978)

@ How can feedback help?

Young-HanKim (UCSD) Role of Interactionin NIT Banff, January 2012

13/33



Dueck’s Example

Z ~ Bern(1/2)

X4 X,
Y
X, :@ >

@ Capacity region without feedback:
{(R;,R,): Ry +R, <1}
@ Capacity region with feedback (Dueck 1980):

{R,R): Ry <1, R, <1}

Young-HanKim (UCSD) Role of Interactionin NIT
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Dueck’s Example

Z; ~ Bern(1/2)

%

X H@—%

Z. "
i—-1 v L»

X,; %@%

Y, =(Z_,X;0Z) > X,,,

YV, =(Z., X 0Z) - X,

@ Capacity region without feedback:

{(R,R,) : R, +R, < 1}

@ Capacity region with feedback (Dueck 1980):

{R,R): Ry <1, R, <1}
@ Feedback helps by letting the encoder broadcast common channel information
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Dueck’s Example

Z; ~ Bern(1/2)

%

X 4>®74>

Z. "
i—-1 v L»

@ Extension to general BC (Shayevitz-Wigger 2010)
@ “Learn from the past, don't predict the future” (Tse 2011)

@ Gaussian BC: Schalkwijk—Kailath coding scheme to LQG control
(Ozarow-Leung 1984, Elia 2004, Ardestanizadeh-Minero-Franceschetti 2011)

® Question: What's going on with Gaussian? (Exactly why feedback helps?)
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Two-Way Channel

M, Xy Yy | M,
— Encoder1 > > Decoder2 [—
T i P(y1> yalx15 X,) L T
M, Yy Xy .M,
<—— Decoder1 [+ < -| Encoder2 [+——

Node 1 Node 2

@ The first multiuser channel model (Shannon 1961)
@ Capacity region % is not known in general

@ Main difficulties:

» Two information flows share the same channel, inflicting interference to each other
» Each node has to play two competing roles of communicating its own message and
providing feedback to help the other node

@ Two-way channel with common output: Y, =Y, =Y
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Bounds on the Capacity Region

@ Simple inner bound (Shannon 1961): A rate pair (R;, R,) is achievable if

R, < I(X; Y|X,),
R, < I(X,; Y| X)),

for some p(x,)p(x,)

> One-way communication
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Bounds on the Capacity Region

@ Simple inner bound (Shannon 1961): A rate pair (R;, R,) is achievable if

R] < I(Xli Y|X2a Q);
R, < I(X,;Y|X;,Q)

for some p(q)p(x,19)p(x,1q)
> One-way communication
» Can be improved using time sharing

> Not tight in general (Dueck 1979, Schalkwijk 1982)
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Bounds on the Capacity Region

@ Simple inner bound (Shannon 1961): A rate pair (R;, R,) is achievable if

R] < I(Xl; Y|X2a Q);
R, < I(X,;Y|X;,Q)

for some p(q)p(x,19)p(x,1q)
@ Simple outer bound (Shannon 1956): If a rate pair (R, R,) is achievable,

R, < I(X; Y|X,),
R, < I(X,; Y|X))

for some p(x,, x,)

@ Dependence balance bound (Hekstra-Willems 1989):

R, < I(X;;Y|X,,U),
R, < I(X,; Y|X,, U)

for some p(u, x;, x,) such that I(X; X,|U) < I(X;; X,|Y, U)
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Multiletter Characterization of the Capacity Region

Causally conditional pmf: p(x*|1y*™) = [T, p(x;lx", y™™)

(]

Causally conditional directed information (Marko 1973, Massey 1990):

n
I(X" - Y"|Z" = Y 1X5 Y, Y, Z)

i=1

(]

1
R, < —I(XF = Y*||x5),

—_

R, < EI(Xf - YF|1x5)

for some p(x|1y* ) p(xk|1y*™). Then ¢ = U, %,
» Similar characterizations can be found for general TWC and MAC with feedback

» Each choice of k and p(xf|[y*")p(x5]1y*™) leads to an inner bound

> Not computable
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Interactive Coding Scheme

1,(n-1)k+1

- 3
MR f x3 23 ki % £1
3 > e > < ) > =8
s{
e, L T m
@ Code over interleaved blocks (block j =times j, k + j,2k + j,...,(n — 1)k + j)

@ Block j: input X, ;, output xk, Y?), causal channel state (X{fl, Y
Ry < I(le;Xf, ijlX{*l, Y71 s achievable

@ Summing over blocks shows that Zle Ry < I(Xf — Yk ||X§) is achievable
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Example: Shannon-Blackwell Binary Multiplying Channel

@ Simple bounds on the symmetric capacity (Shannon 1961):

max —(I(XI,Y|X)+I(X2,Y|X))<Csym_ max —(I(Xl,YlX)+I(X2,Y|X))

plx)plx;) 2 Px1:%,)
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Example: Shannon-Blackwell Binary Multiplying Channel

Simple bounds on the symmetric capacity (Shannon 1961):

0.6170 < Cg,py < 0.6942

sym =

@ DB bound + channel augmentation (Hekstra-Willems 1989): C,, < 0.6463

sym =

@ Schalkwijk’s lower bounds:

v

v

v

Iterative refinement coding scheme (Schalkwijk 1982): 0.6191 < C
+ Slepian-Wolf (Schalkwijk 1983): 0.6306 < C

sym

sym

Further extension (Meeuwissen-Schalkwijk-Bloemen 1995): 0.6307 < C,,,
Directed information inner bound: ﬁ(I(X{‘ — Yk||X§) + I(Xéc — YkIIX{‘))

Ardestanizadeh (2010): 0.6191 < C,,

Question: Can we outperform Schalkwijk (via directed information expression)?
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Intermission: Interactive Source Coding and Computing

X! M (X", M)
E—
Node 1 Ml+1(Xn’Ml)
-
Z‘n

@ Two-way lossless source coding:

> Interaction does not enlarge the optimal rate region

Node 2

> One-way Slepian-Wolf coding is optimal (Csiszar-Narayan 2004)

@ Two-way lossy source coding:

> Interaction enlarges the rate-distortion region for correlated sources

> g-round interactions (Kaspi 1985)

@ Two-way lossless computing:

> Interaction enlarges the optimal rate region even for independent sources

» Infinite-round interactions (Ma-Ishwar 2008, 2009)
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Relay Network

)

@ Topology of the network is defined through p(y™|x
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Relay Network

)

@ Topology of the network is defined through p(y™|x

@ Unicast
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Relay Network

)

@ Topology of the network is defined through p(y™|x

@ Unicast vs. broadcast
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Relay Network

)

@ Topology of the network is defined through p(y™|x

@ Unicast vs. broadcast vs. multicast
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Relay Network

)

@ Topology of the network is defined through p(y™|x
@ Unicast vs. broadcast vs. multicast
@ Capacity is not known in general

@ Many coding schemes have been proposed
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Dictionary of Coding Schemes

@ Standard parlance: decode-forward, compress—forward, amplify—forward

@ Extended vocabulary: partial decode-forward, noncoherent decode-forward,
coherent compress—forward, generalized amplify—forward

@ Recent coinages: hash—forward, compute-forward, quantize-map-forward,
rematch-forward

@ Loanwords: analog network coding, noisy network coding, hybrid coding

@ Dialects: calculate-forward, clean-forward,
combine-forward, demodulate-forward,
denoise-forward, detect-forward,
estimate-forward, flip—forward,
mix-forward, quantize-forward,
rotate—forward, scale—forward,

(randomly) select—forward,
sum-forward, truncate-forward
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Basic Coding Schemes

@ Decode-forward (Cover-El Gamal 1929) i

-

Y,: X,

M;_,,M)) —» X / > Y, —» M, ,

1 >
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Basic Coding Schemes

@ Decode-forward (Cover-El Gamal 1979)

@ Compress—forward (Cover—El Gamal 1979)
v, ¥

2,j-1

Y,: X,

M, — X / ‘Y3—>Mj—1
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Basic Coding Schemes

@ Decode-forward (Cover-El Gamal 1979)
@ Compress—forward (Cover—El Gamal 1979)

@ Amplify-forward (Schein-Gallager 2000)
Y, xZ(YZ,i—l)

by

/YZZXZ\
M —» X >

) > Y, —» M
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Basic Coding Schemes

@ Decode-forward (Cover-El Gamal 1979)
@ Compress—-forward (Cover-El Gamal 1979)
@ Amplify-forward (Schein-Gallager 2000)

@ *—forward and extensions (Ahlswede—Cai-Li-Yeung 2000,
Kramer-Gastpar-Gupta 2005, Avestimehr-Diggavi-Tse 2011,
Lim-Kim-El Gamal-Chung 2011): no/limited interaction
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Broadcast Relay Channel (BRC)

Decoder 2

Xn

M
Decoder 3 3

@ A common message M is to be broadcast to both receivers
(Draper-Frey-Kschischang 2003)

@ Dual to MAC with partially cooperating encoders (Willems 1983) Eﬂ—m
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Broadcast Relay Channel (BRC)

Decoder 2

Xn

M,

Decoder 3

@ A common message M is to be broadcast to both receivers
(Draper-Frey-Kschischang 2003)

@ Dual to MAC with partially cooperating encoders (Willems 1983)

@ Capacity C(R, + R;) is not known in general
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Example: Binary BRC (Xiang-Wang-K 2011)

YZ Y3
X, =YY
3-2V2 0 0
0 V2-1 0 1 0 0
_ V2-1
X, V2-1 1 0 X, Y, Y,
1 1 1 1 1

@ C(0) =0.3941 (Z channel capacity)
@ C(2)=1

® C(R) =7
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Example: Binary BRC (Xiang-Wang-K 2011)

C(R)
A

Cutset

- Partial decode—forward

0.3941

» R

1.2338 2

o Cutset: max,, , min{I(X;; Y;) + R/2, I(X;; Y, Y3)}  (C(R) = 1for R > 1.2338)

plx
@ Partial decode-forward: C(0)

@ R”:Interactive computingof X, = Y, - Y;
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Example: Binary BRC (Xiang-Wang-K 2011)

CF?
Cutset CF™® CF-DF CF

o

o000 o e >
1.2338 1.4346  1.4893 1.7449 2

© Compress—forward (Orlitsky-Roche 2001): Hg(Y,|Y;) + Hg(Y3]Y,) = 1.7449

@ Interactive relaying:

» Compress—forward and decode—forward (Draper-Frey-Kschischang 2003):

1-I(X;;Y,) + Hg(Y,]Ys) = H(Y,) + H(X,|Y;) = 1.4893
» Two-round compress—forward: H(Y,) + H(X,|Y;) = 1.4893
» Three-round compress—forward: 1.4488
» Four-round compress—forward: 1.4427

@ Infinite-round compress—-forward (Ma-Ishwar 2008, 2009):
(1+ p)H(p) + plog(pe' )| _, 5 = 14346 < CFI™' - DF = CF
@ Questions: Optimality? Generalizations? Implications?
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Concluding Remarks

v

v

>

>

v

Interaction enables richer cooperation among network users
Coherent transmission (MAC with feedback)

Channel information broadcasting (BC with feedback)

Sequential coding (two-way channel)

Cooperative decoding (broadcast relay channel)

Theoretical challenges:

Capacity still open for many basic problems

Inherently multiletter solutions

(Permuter—Cuff-Van Roy-Weissman 2008, Ma-Ishwar 2008, 2009, K 2010)
Practical relevance:

How to use feedback (beyond channel estimation, ARQ)

Coordinated multipoint (CoMP) transmission/reception

Young-HanKim (UCSD) Role of Interactionin NIT Banff, January 2012
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