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4.2 Solution techniques

We are interested in computing the steady solution for a wide range of parameter values. To

do this, we implement pseudo-arclength continuation with the Keller correction condition

[7], and use a Newton method to solve the resulting equations. If a solution is known for a

particular set of parameter values, then this method can be used effectively to follow solutions

as a parameter is varied, i.e. to find a solution curve (with respect to the parameter).

Here, we know that for ∆T = 0, the trivial solution satisfies the equations for u, ξ and

T . Thus, for ∆T small, the trivial solution is a reasonable prediction of the solution, and

Newton’s method is used for the correction. In psuedo-arclength contiuation, the parame-

ter is considered as an unknown, and initial guesses of the solution are found by following

the tangent, or a secant line approximation, to the solution curve. Increments are made

approximately along the solution curve, and not by incrementing the parameter. The Keller

condition ensures that the corrections to the initial guesses occur approximately perpen-

dicularly to the tangent. This method is particularly useful because it is able to compute

solutions along the solution curve even when there is a limit point on the curve, i.e. when the

solution curve turns back on itself. In practice, the evaluation of the Jacobian is expensive,

and therefore, in order to reduce the number of Jacobian evaluations, we use a quasi-Newton

method instead of Newton’s method.

The generalized matrix eigenvalue problem that results from the discretization of (21)

is solved in Matlab using the implicitly restarted Arnoldi method [17], which is a memory-

efficient iterative method for finding a specified number of the largest eigenvalues. A gener-

alized Cayley transformation [7] is made so that the Arnoldi iteration finds the eigenvalues

of interest. The parameters of the transformation can be chosen to improve convergence

properties. In particular, the generalized Cayley transformation

C(L,A) = (L− α1A)−1 (L− α2A) (22)

maps eigenvalues λ of the generalized matrix eigenvalue problem λAv = Lv to eigenvalues σ

of the transformed matrix C(L,A), such that the eigenvalues λ with Real(λ) > (α1 + α2) /2

are mapped to the eigenvalues σ with |σ| > 1, where α1 and α2 are the real parameters of the

Cayley transformation. The matrix C(L,A) does not have to be formed explicitly, because

the Arnoldi iteration only requires matrix-vector products involving C(L,A) [17]. Thus, the

full sparseness properties of L and A can be exploited, and computer memory requirements

can be reduced.


