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Figure 11: An example of a two-cell circulation pattern observed for heating parameter ∆T =, and gap
width R = 35. (a) The stream function ξ; flow tends to follow contours, (b) the azimuthal (or zonal velocity)
u, and (c) the temperature deviation T from the temperature prescribed on the lower boundary. The inner
and outer boundaries have been mapped to r = 1 and r = 2, respectively.

L0 is given by

L0V = LV + N(V, U0) + N(U0, V ). (25)

That is, we have

L0Ψ = 0, (26)

where Ψ is the eigenfunction corresponding to the zero eigenvalue.

Under certain conditions on L0, the dependent variable U can be written in the form

U = wΨ + Φ, (27)

where w ∈ " and thus wΨ ∈ span{Ψ}, and Φ ∈ Es. Here Es is called the stable subspace,

and is the space spanned by all eigenfunctions corresponding to eigenvalues with negative

real part.

If we write U as in (27) then under certain technical conditions, a centre manifold and

normal form reduction can be performed on (23) to obtain the equation on the centre man-

ifold in normal form

ẇ = β1 + β2w + aw2 + cw3 + O(w4), (28)

where a and c are coefficients of the normal form and β1 and β2 are unfolding parameters

that are in general functions of the parameters ∆T and R. It can be shown that if c #= 0,

then neglecting the terms of O(w4) do not change the qualitative features of the solutions.

The centre manifold and normal form theories state that for (∆T,R) near (∆Tc, Rc) and

when the solutions are in some sense small, then the dynamics of (23) can be deduced from

(28). In particular, solutions of (28) are in one-to-one correspondence with those of (23).


