Spin(9), complex structures and vector fields on spheres

Maurizio Parton¹ Paolo Piccinni² Victor Vuletescu³

¹Università di Chieti-Pescara, Italy

²Università di Roma "La Sapienza", Italy

³University of Bucharest, Romania

```
\mathcal{A}^{anifolds with special holonomy and their calibrated submanifolds and connections and the special holonomy and the
```

Banff, Tuesday, 2012, May 1st

MP, Paolo Piccinni.

Spin(9) and almost complex structures on 16-dimensional manifolds. Ann. Global An. Geom., 41 (2012), 321-345.

MP, Paolo Piccinni.

Spheres with more than 7 vector fields: all the fault of Spin(9). arXiv: 1107.0462v2.

MP, Paolo Piccinni, Victor Vuletescu.

16-dimensional manifolds with a locally conformal parallel ${\rm Spin}(9)$ metric.

Work in progress.

1 S¹⁵ and Spin(9)

• S^{15} is "more equal" than other spheres

• Spin(9) and Hopf fibrations

2 The Spin(9) fundamental form

- Quaternionic analogy
- Spin(9) and Kähler forms on \mathbb{R}^{16}
- An explicit formula for $\Phi_{\text{Spin}(9)}$

3 Vector fields on spheres

- Maximum number and examples
- The general case

4 Locally conformal parallel Spin(9) manifolds

- Definition and examples
- Structure Theorem

 S^{15} is the only sphere involved in three different Hopf fibrations.

 S^{15} is the only sphere involved in three different Hopf fibrations.

 S^{15} is the only sphere involved in three different Hopf fibrations.

 S^{15} is the only sphere involved in three different Hopf fibrations.

Remark

The complex and quaternionic Hopf fibrations are not subfibrations of the octonionic one [Loo-Verjovsky, Topology 1992].

S^{15} and Spin(9) S^{15} is "more equal" than other spheres

Second characterization: Einstein metrics

\mathcal{S}^{15} is the only sphere with three homogeneous Einstein metrics

[Ziller, Math. Ann. 1982].

- Round metric.
- Einstein metric on $\mathrm{Sp}(4)/\mathrm{Sp}(3)$ [Jensen, J. Diff. Geom. 1973].
- Einstein metric on Spin(9)/Spin(7)

[Bourguignon-Karcher, Ann. Sci. Ec. Norm. Sup. 1978].

S^{15} and Spin(9) S^{15} is "more equal" than other spheres

Third characterization: vector fields on spheres

S^{15} is the lowest dimensional sphere admitting more than 7 vector fields

[Hurwitz, Math. Ann. 1922], [Radon, Abh. Math. Hamburg 1923], [Adams, Ann. of Math. 1962].

S¹⁵ and Spin(9) S¹⁵ is "more equal" than other spheres Third characterization: vector fields on spheres

S^{15} is the lowest dimensional sphere admitting more than 7 vector fields

[Hurwitz, Math. Ann. 1922], [Radon, Abh. Math. Hamburg 1923], [Adams, Ann. of Math. 1962].

Number σ(m) of linearly independent vector fields on S^{m-1}?
If m = (2k + 1)2^p16^q, with 0 ≤ p ≤ 3, then

$$\sigma(m) = 8q + 2^p - 1$$

S¹⁵ and Spin(9) S¹⁵ is "more equal" than other spheres Third characterization: vector fields on spheres

S^{15} is the lowest dimensional sphere admitting more than 7 vector fields

[Hurwitz, Math. Ann. 1922], [Radon, Abh. Math. Hamburg 1923], [Adams, Ann. of Math. 1962].

Number σ(m) of linearly independent vector fields on S^{m-1}?
If m = (2k + 1)2^p16^q, with 0 ≤ p ≤ 3, then

S¹⁵ and Spin(9) S¹⁵ is "more equal" than other spheres Third characterization: vector fields on spheres

S^{15} is the lowest dimensional sphere admitting more than 7 vector fields

[Hurwitz, Math. Ann. 1922], [Radon, Abh. Math. Hamburg 1923], [Adams, Ann. of Math. 1962].

Number σ(m) of linearly independent vector fields on S^{m-1}?
If m = (2k + 1)2^p16^q, with 0 ≤ p ≤ 3, then

$\bigcirc S^{15}$ and Spin(9)

- S^{15} is "more equal" than other spheres
- Spin(9) and Hopf fibrations

2 The Spin(9) fundamental form

- Quaternionic analogy
- Spin(9) and Kähler forms on \mathbb{R}^{16}
- An explicit formula for $\Phi_{\text{Spin}(9)}$

Over the second seco

- Maximum number and examples
- The general case

4 Locally conformal parallel Spin(9) manifolds

- Definition and examples
- Structure Theorem

S^{15} and Spin(9) Spin(9) and Hopf fibrations Berger's list and Spin(9) refutation

Holonomy of simply connected, irreducible, nonsymmetric?

 S^{15} and Spin(9) Spin(9) and Hopf fibrations Berger's list and Spin(9) refutation

Holonomy of simply connected, irreducible, nonsymmetric?

 s^{15} and spin(9) Spin(9) and Hopf fibrations Berger's list and Spin(9) refutation

Holonomy of simply connected, irreducible, nonsymmetric?

Simply connected, complete, holonomy Spin(9) \Leftrightarrow $\mathbb{O}P^2 = \frac{F_4}{\text{Spin(9)}}(s > 0), \mathbb{R}^{16}(\text{flat}), \mathbb{O}H^2 = \frac{F_4(-20)}{\text{Spin(9)}}(s < 0)$ [Alekseevsky, Funct. Anal. Prilozhen 1968]. Spin(9) and Hopf fibrations Berger's list and Spin(9) refutation

Holonomy of simply connected, irreducible, nonsymmetric?

Definition

 $\operatorname{Spin}(9) \subset \operatorname{SO}(16)$ is the group of symmetries of the Hopf fibration $\mathbb{O}^2 \supset S^{15} \xrightarrow{S^7} S^8 \cong \mathbb{O}P^1$ [Gluck-Warner-Ziller, L'Enseignement Math. 1986].

Definition

 $\operatorname{Spin}(9) \subset \operatorname{SO}(16)$ is the group of symmetries of the Hopf fibration $\mathbb{O}^2 \supset S^{15} \xrightarrow{S^7} S^8 \cong \mathbb{O}P^1$ [Gluck-Warner-Ziller, L'Enseignement Math. 1986].

- $\Lambda^8(\mathbb{R}^{16}) \stackrel{\mathrm{Spin}(9)}{=} \Lambda^8_1 + \dots$ [Friedrich, Asian Journ. Math 2001].
- Spin(9) is the stabilizer in SO(16) of any element of Λ_1^8

[Brown-Gray, Diff. Geom. in honor of K. Yano 1972].

Definition

 $\operatorname{Spin}(9) \subset \operatorname{SO}(16)$ is the group of symmetries of the Hopf fibration $\mathbb{O}^2 \supset S^{15} \xrightarrow{S^7} S^8 \cong \mathbb{O}P^1$ [Gluck-Warner-Ziller, L'Enseignement Math. 1986].

•
$$\Lambda^8(\mathbb{R}^{16}) \stackrel{
m Spin(9)}{=} \Lambda^8_1 + \dots$$
 [Friedrich, Asian Journ. Math 2001]

• Spin(9) is the stabilizer in SO(16) of any element of Λ_1^8

[Brown-Gray, Diff. Geom. in honor of K. Yano 1972].

Definition

$\operatorname{Spin}(9)$ is the stabilizer in $\operatorname{SO}(16)$ of the 8-form

$$\Phi_{\rm Spin(9)} \stackrel{\rm utc}{=} \int_{\mathbb{O}P^1} p_l^* \nu_l \, dl \qquad \bullet {\rm Details}$$

[Berger, Ann. Éc. Norm. Sup. 1972].

Definition

 $\operatorname{Spin}(9) \subset \operatorname{SO}(16)$ is the group of symmetries of the Hopf fibration $\mathbb{O}^2 \supset S^{15} \xrightarrow{S^7} S^8 \cong \mathbb{O}P^1$ [Gluck-Warner-Ziller, L'Enseignement Math. 1986].

- $\Lambda^8(\mathbb{R}^{16}) \stackrel{\mathrm{Spin}(9)}{=} \Lambda^8_1 + \dots$ [Friedrich, Asian Journ. Math 2001].
- Spin(9) is the stabilizer in SO(16) of any element of Λ_1^8

[Brown-Gray, Diff. Geom. in honor of K. Yano 1972].

Definition

Time check

Are we left with 32 or more minutes?

Yes, go ahead as planned

No, skip quaternionic analogy

1 S¹⁵ and Spin(9)

• S^{15} is "more equal" than other spheres

• Spin(9) and Hopf fibrations

2 The Spin(9) fundamental form

Quaternionic analogy

• Spin(9) and Kähler forms on \mathbb{R}^{16}

• An explicit formula for $\Phi_{\text{Spin}(9)}$

3 Vector fields on spheres

- Maximum number and examples
- The general case

4 Locally conformal parallel Spin(9) manifolds

- Definition and examples
- Structure Theorem

The Spin(9) fundamental form Quaternionic analogy

A close relative: the quaternionic case

- $\operatorname{Sp}(2) \cdot \operatorname{Sp}(1) \subset \operatorname{SO}(8)$ is the group of symmetries of the Hopf fibration $\mathbb{H}^2 \supset S^7 \xrightarrow{S^3} S^4 \cong \mathbb{H}P^1$ [Gluck-Warner-Ziller, L'Enseignement Math. 1986].
- ${\rm Sp}(2)\cdot {\rm Sp}(1)$ is the stabilizer in ${\rm SO}(8)$ of the 4-form $\Phi_{{\rm Sp}(2)\cdot {\rm Sp}(1)}$ defined by

$$\Phi_{\mathrm{Sp}(2)\cdot\mathrm{Sp}(1)} = \int_{\mathbb{H}P^1} p_l^*
u_l \, dl$$

[Berger, Ann. Éc. Norm. Sup. 1972].

The Spin(9) fundamental form Quaternionic analogy Five involutions for Spin(5)

• Consider in $\operatorname{Sp}(2)$ the matrices

$$\left(\begin{array}{cc} r & R_{\overline{u}} \\ R_{u} & -r \end{array}\right)$$

where $(r, u) \in S^4 \subset \mathbb{R} \times \mathbb{H}$ and $\mathbb{H}^2 \cong \mathbb{R}^8$.

The Spin(9) fundamental form Quaternionic analogy Five involutions for Spin(5)

• Consider in $\operatorname{Sp}(2)$ the matrices

$$\left(\begin{array}{cc} r & R_{\overline{u}} \\ R_{u} & -r \end{array}\right)$$

where $(r, u) \in S^4 \subset \mathbb{R} \times \mathbb{H}$ and $\mathbb{H}^2 \cong \mathbb{R}^8$.

• The choice of (r, u) = (1, 0), (0, 1), (0, i), (0, j), (0, k) gives

 $\mathcal{I}_1,\ldots,\mathcal{I}_5\in\mathrm{SO}(8)$

The Spin(9) fundamental form Quaternionic analogy Five involutions for Spin(5)

• Consider in $\operatorname{Sp}(2)$ the matrices

$$\left(\begin{array}{cc} r & R_{\overline{u}} \\ R_u & -r \end{array}\right)$$

where $(r, u) \in S^4 \subset \mathbb{R} \times \mathbb{H}$ and $\mathbb{H}^2 \cong \mathbb{R}^8$.

• The choice of (r, u) = (1, 0), (0, 1), (0, i), (0, j), (0, k) gives

 $\mathcal{I}_1,\ldots,\mathcal{I}_5\in\mathrm{SO}(8)$ Details

• $\mathcal{I}_1, \ldots, \mathcal{I}_5$ satisfy

$$\mathcal{I}_{\alpha}^2 = \mathrm{Id}, \quad \mathcal{I}_{\alpha}^* = \mathcal{I}_{\alpha}, \quad \mathcal{I}_{\alpha} \circ \mathcal{I}_{\beta} = -\mathcal{I}_{\beta} \circ \mathcal{I}_{\alpha}$$

The Spin(9) fundamental form Quaternionic analogy From involutions to Kähler forms

• Since $\mathcal{I}_{\alpha} \circ \mathcal{I}_{\beta} = -\mathcal{I}_{\beta} \circ \mathcal{I}_{\alpha}$, one gets 10 complex structures

$$J_{\alpha\beta} = \mathcal{I}_{\alpha} \circ \mathcal{I}_{\beta} \qquad \text{for } \alpha < \beta$$

• Since $\mathcal{I}_{\alpha} \circ \mathcal{I}_{\beta} = -\mathcal{I}_{\beta} \circ \mathcal{I}_{\alpha}$, one gets 10 complex structures

$$J_{\alpha\beta} = \mathcal{I}_{\alpha} \circ \mathcal{I}_{\beta}$$
 for $\alpha < \beta$

• The Kähler forms $heta_{lphaeta}$ give rise to a 5 imes 5 skew-symmetric matrix

$$\theta = (\theta_{\alpha\beta})$$

• Since $\mathcal{I}_{\alpha} \circ \mathcal{I}_{\beta} = -\mathcal{I}_{\beta} \circ \mathcal{I}_{\alpha}$, one gets 10 complex structures

$$J_{\alpha\beta} = \mathcal{I}_{\alpha} \circ \mathcal{I}_{\beta}$$
 for $\alpha < \beta$

• The Kähler forms $heta_{lphaeta}$ give rise to a 5 imes 5 skew-symmetric matrix

 $\theta = (\theta_{\alpha\beta})$

Remark

Denote by $\tau_2(\theta)$ the second coefficient of the characteristic polynomial of $\theta = (\theta_{\alpha\beta})$. Then

$$\Phi_{\mathrm{Sp}(2)\cdot\mathrm{Sp}(1)} \stackrel{_{\mathrm{utc}}}{=} au_2(heta)$$

(1) S^{15} and Spin(9)

• S^{15} is "more equal" than other spheres

• Spin(9) and Hopf fibrations

Description (1) The Spin(9) fundamental form

Quaternionic analogy

• $\mathrm{Spin}(9)$ and Kähler forms on \mathbb{R}^{16}

• An explicit formula for $\Phi_{\text{Spin}(9)}$

3 Vector fields on spheres

- Maximum number and examples
- The general case

4 Locally conformal parallel Spin(9) manifolds

- Definition and examples
- Structure Theorem

The Spin(9) fundamental form Spin(9) and Kähler forms on \mathbb{R}^{16} Nine involutions for Spin(9)

• $\mathrm{Spin}(9)$ is the subgroup of $\mathrm{SO}(16)$ generated by matrices

$$\left(\begin{array}{cc} r & R_{\overline{u}} \\ R_{u} & -r \end{array}\right)$$

where $(r, u) \in S^8 \subset \mathbb{R} imes \mathbb{O}$ and $\mathbb{O}^2 \cong \mathbb{R}^{16}$

[Harvey, Spinors and Calibrations 1990].

The Spin(9) fundamental form Spin(9) and Kähler forms on \mathbb{R}^{16} Nine involutions for Spin(9)

 $\bullet~{\rm Spin}(9)$ is the subgroup of ${\rm SO}(16)$ generated by matrices

$$\left(\begin{array}{cc} r & R_{\overline{u}} \\ R_{u} & -r \end{array}\right)$$

where $(r, u) \in S^8 \subset \mathbb{R} imes \mathbb{O}$ and $\mathbb{O}^2 \cong \mathbb{R}^{16}$

[Harvey, Spinors and Calibrations 1990].

The choice of (r, u) = (1,0), (0,1), (0,i), (0,j), (0,k), (0,e), (0,f), (0,g), (0,h) gives

$$\mathcal{I}_1,\ldots,\mathcal{I}_9\in\mathrm{SO}(16)$$
 $ightarrow$ Details

The Spin(9) fundamental form Spin(9) and Kähler forms on \mathbb{R}^{16} Nine involutions for Spin(9)

• $\mathrm{Spin}(9)$ is the subgroup of $\mathrm{SO}(16)$ generated by matrices

$$\left(\begin{array}{cc} r & R_{\overline{u}} \\ R_{u} & -r \end{array}\right)$$

where $(r, u) \in S^8 \subset \mathbb{R} imes \mathbb{O}$ and $\mathbb{O}^2 \cong \mathbb{R}^{16}$

[Harvey, Spinors and Calibrations 1990].

The choice of (r, u) = (1,0), (0,1), (0,i), (0,j), (0,k), (0,e), (0,f), (0,g), (0,h) gives

$$\mathcal{I}_1,\ldots,\mathcal{I}_9\in\mathrm{SO}(16)$$
 $igvee$ Detail

• $\mathcal{I}_1, \ldots, \mathcal{I}_9$ satisfy

$$\mathcal{I}_{\alpha}^2 = \mathrm{Id}, \quad \mathcal{I}_{\alpha}^* = \mathcal{I}_{\alpha}, \quad \mathcal{I}_{\alpha} \circ \mathcal{I}_{\beta} = -\mathcal{I}_{\beta} \circ \mathcal{I}_{\alpha}$$

The Spin(9) fundamental form Spin(9) and Kähler forms on \mathbb{R}^{16} From involutions to Kähler forms

• Since $\mathcal{I}_{\alpha} \circ \mathcal{I}_{\beta} = -\mathcal{I}_{\beta} \circ \mathcal{I}_{\alpha}$, one gets 36 complex structures

 $J_{\alpha\beta} = \mathcal{I}_{\alpha} \circ \mathcal{I}_{\beta} \qquad \text{for } \alpha < \beta$

The Spin(9) fundamental form Spin(9) and Kähler forms on \mathbb{R}^{16} From involutions to Kähler forms

• Since $\mathcal{I}_{\alpha} \circ \mathcal{I}_{\beta} = -\mathcal{I}_{\beta} \circ \mathcal{I}_{\alpha}$, one gets 36 complex structures

$$J_{\alpha\beta} = \mathcal{I}_{\alpha} \circ \mathcal{I}_{\beta} \qquad \text{for } \alpha < \beta$$

• Their Kähler forms $heta_{lphaeta}$ give rise to a 9 imes 9 skew-symmetric matrix

$$\theta = (\theta_{\alpha\beta})$$
The Spin(9) fundamental form Spin(9) and Kähler forms on \mathbb{R}^{16} From involutions to Kähler forms

• Since $\mathcal{I}_{\alpha} \circ \mathcal{I}_{\beta} = -\mathcal{I}_{\beta} \circ \mathcal{I}_{\alpha}$, one gets 36 complex structures

$$J_{\alpha\beta} = \mathcal{I}_{\alpha} \circ \mathcal{I}_{\beta} \qquad \text{for } \alpha < \beta$$

• Their Kähler forms $heta_{lphaeta}$ give rise to a 9 imes 9 skew-symmetric matrix

 $\theta = (\theta_{\alpha\beta})$

Remark

$$\Lambda^2(\mathbb{R}^{16}) = \Lambda^2_{36} \oplus \Lambda^2_{84} = \mathfrak{spin}(9) \oplus \Lambda^2_{84}$$

The Spin(9) fundamental form Spin(9) and Kähler forms on R¹⁶ From involutions to Kähler forms

• Since $\mathcal{I}_{\alpha} \circ \mathcal{I}_{\beta} = -\mathcal{I}_{\beta} \circ \mathcal{I}_{\alpha}$, one gets 36 complex structures

$$J_{\alpha\beta} = \mathcal{I}_{\alpha} \circ \mathcal{I}_{\beta} \qquad \text{for } \alpha < \beta$$

• Their Kähler forms $\theta_{\alpha\beta}$ give rise to a 9 \times 9 skew-symmetric matrix

 $\theta = (\theta_{\alpha\beta})$

The Spin(9) fundamental form Spin(9) and Kähler forms on R¹⁶ From involutions to Kähler forms

• Since $\mathcal{I}_{\alpha} \circ \mathcal{I}_{\beta} = -\mathcal{I}_{\beta} \circ \mathcal{I}_{\alpha}$, one gets 36 complex structures

$$J_{\alpha\beta} = \mathcal{I}_{\alpha} \circ \mathcal{I}_{\beta}$$
 for $\alpha < \beta$

• Their Kähler forms $\theta_{\alpha\beta}$ give rise to a 9 \times 9 skew-symmetric matrix

 $\theta = (\theta_{\alpha\beta})$

The Spin(9) fundamental form Spin(9) and Kähler forms on \mathbb{R}^{2}

From the Kähler forms to the Spin(9) form

Theorem [P-Piccinni, Ann. Gl. An. Geom. 2012]

Denote the characteristic polynomial of $\boldsymbol{\theta}$ by

$$t^9 + au_2(heta)t^7 + au_4(heta)t^5 + au_6(heta)t^3 + au_8(heta)t^4$$

The Spin(9) fundamental form Spin(9) and Kähler forms on \mathbb{R}^{2}

From the Kähler forms to the Spin(9) form

Theorem [P-Piccinni, Ann. Gl. An. Geom. 2012]

Denote the characteristic polynomial of $\boldsymbol{\theta}$ by

$$t^9+ au_2(heta)t^7+ au_4(heta)t^5+ au_6(heta)t^3+ au_8(heta)t^4$$

Then

$$\Phi_{\mathrm{Spin}(9)} \stackrel{\mathrm{\tiny utc}}{=} \tau_4(\theta)$$

(1) S^{15} and Spin(9)

- S^{15} is "more equal" than other spheres
- Spin(9) and Hopf fibrations

2 The Spin(9) fundamental form

- Quaternionic analogy
- Spin(9) and Kähler forms on \mathbb{R}^{16}
- An explicit formula for $\Phi_{Spin(9)}$

3 Vector fields on spheres

- Maximum number and examples
- The general case

4 Locally conformal parallel Spin(9) manifolds

- Definition and examples
- Structure Theorem

The Spin(9) fundamental form An explicit formula for $\Phi_{Spin}(a)$

An explicit formula for $\Phi_{\text{Spin}(9)}$

• From $\Phi_{\text{Spin}(9)} \stackrel{\text{\tiny utc}}{=} \tau_4(\theta)$, we obtain an \mathbf{P} explicit formula

The Spin(9) fundamental form An explicit formula for $\Phi_{Spin(9)}$ An explicit formula for $\Phi_{Spin(9)}$

• From
$$\Phi_{\text{Spin}(9)} \stackrel{\text{\tiny utc}}{=} \tau_4(\theta)$$
, we obtain an
• The $\binom{16}{8} = 12870$ integrals of

$$\Phi_{\mathrm{Spin}(9)} \stackrel{\mathrm{\tiny utc}}{=} \int_{\mathbb{O}P^1} p_l^* \nu_l \, dl$$

can be computed with the help of Mathematica.

Show all 702 terms

Show only 70 terms

Computational challenge

The Spin(9) fundamental form An explicit formula for $\Phi_{Spin(9)}$ An explicit formula for $\Phi_{Spin(9)}$

• From
$$\Phi_{\text{Spin}(9)} \stackrel{\text{\tiny utc}}{=} \tau_4(\theta)$$
, we obtain an
• The $\binom{16}{8} = 12870$ integrals of

$$\Phi_{\rm Spin(9)} \stackrel{\rm \tiny utc}{=} \int_{\mathbb{O}P^1} p_l^* \nu_l \, dl$$

can be computed with the help of Mathematica.

Show all 702 terms
 Show only 70 terms
 Computational challenge

Previous work for \$\Phi_{Spin(9)}\$ in [Abe-Matsubara, Korea Japan Conf. Transf. Groups 1997],
[Friedrich, Asian J. Math. 2001], [C. Lopez-Gadea-Mykytyuk, int. J. Geom. Methods 2010].

The Spin(9) fundamental form An explicit formula for $\Phi_{Spin}(0)$

Questions to the audience

Questions to the audience

 $\Phi_{\mathrm{Spin}(9)} = \int_{\mathbb{O}P^1} p_l^* \nu_l \, dl$ and $\Phi_{\mathrm{Sp}(2)\cdot\mathrm{Sp}(1)} = \int_{\mathbb{H}P^1} p_l^* \nu_l \, dl$ share the following general pattern:

$$\Phi = \int_{\mathsf{Gr}(\mathsf{calibrated subspaces})} p^* \nu_{\mathsf{calibrated subspaces}}$$

Questions to the audience

 $\Phi_{\mathrm{Spin}(9)} = \int_{\mathbb{O}P^1} p_l^* \nu_l \, dl$ and $\Phi_{\mathrm{Sp}(2)\cdot\mathrm{Sp}(1)} = \int_{\mathbb{H}P^1} p_l^* \nu_l \, dl$ share the following general pattern:

$$\Phi = \int_{\mathsf{Gr}(\mathsf{calibrated subspaces})} p^* \nu_{\mathsf{calibrated subspaces}}$$

• $\Phi_{G_2} \in \Lambda^3(\mathbb{R}^7)$ is a calibration, with associative subspaces as calibrated submanifolds. The Grassmannian in this case is $G_2/SO(4)$: is it true that

$$\Phi_{G_2} = \int_{\frac{G_2}{SO(4)}} p_l^* \nu_l \, dl$$
• Same question for $\Phi_{Spin(7)} \in \Lambda^4(\mathbb{R}^8)$: is it true that
$$\Phi_{Spin(7)} = \int_{CAY} p_l^* \nu_l \, dl$$

The forms $\Phi_{\mathrm{Sp}(2)\cdot\mathrm{Sp}(1)}$, Φ_{G_2} , $\Phi_{\mathrm{Spin}(7)}$ and $\Phi_{\mathrm{Spin}(9)}$ are finite sums of 14, 7, 14 and 702 terms respectively.

The forms $\Phi_{\mathrm{Sp}(2)\cdot\mathrm{Sp}(1)}$, Φ_{G_2} , $\Phi_{\mathrm{Spin}(7)}$ and $\Phi_{\mathrm{Spin}(9)}$ are finite sums of 14, 7, 14 and 702 terms respectively.

- Why these numbers?
- Are these numbers related to finite subgroups of $Sp(2) \cdot Sp(1)$, G_2 , Spin(7) and Spin(9) respectively?
- Why do $\Phi_{\rm G_2}$ and $\Phi_{\rm Spin(7)}$ have coefficients $\pm 1,$ whereas $\Phi_{\rm Sp(2)\cdot Sp(1)}$ and $\Phi_{\rm Spin(9)}$ do not?

The forms $\Phi_{\mathrm{Sp}(2)\cdot\mathrm{Sp}(1)}$, Φ_{G_2} , $\Phi_{\mathrm{Spin}(7)}$ and $\Phi_{\mathrm{Spin}(9)}$ are finite sums of 14, 7, 14 and 702 terms respectively.

- Why these numbers?
- Are these numbers related to finite subgroups of $Sp(2) \cdot Sp(1)$, G_2 , Spin(7) and Spin(9) respectively?
- Why do $\Phi_{\rm G_2}$ and $\Phi_{\rm Spin(7)}$ have coefficients $\pm 1,$ whereas $\Phi_{\rm Sp(2)\cdot Sp(1)}$ and $\Phi_{\rm Spin(9)}$ do not?

In the framework of Clifford structures [Moroianu-Semmelmann, Adv. Math. 2011], one can associate to any rank r even Clifford structure a skew-symmetric $r \times r$ matrix of Kähler forms.

The forms $\Phi_{\mathrm{Sp}(2)\cdot\mathrm{Sp}(1)}$, Φ_{G_2} , $\Phi_{\mathrm{Spin}(7)}$ and $\Phi_{\mathrm{Spin}(9)}$ are finite sums of 14, 7, 14 and 702 terms respectively.

- Why these numbers?
- Are these numbers related to finite subgroups of $Sp(2) \cdot Sp(1)$, G_2 , Spin(7) and Spin(9) respectively?
- Why do $\Phi_{\rm G_2}$ and $\Phi_{\rm Spin(7)}$ have coefficients $\pm 1,$ whereas $\Phi_{\rm Sp(2)\cdot Sp(1)}$ and $\Phi_{\rm Spin(9)}$ do not?

In the framework of Clifford structures [Moroianu-Semmelmann, Adv. Math. 2011], one can associate to any rank r even Clifford structure a skew-symmetric $r \times r$ matrix of Kähler forms.

• Do the coefficients of the characteristic polynomial have any particular geometrical meaning?

(1) S^{15} and Spin(9)

- S^{15} is "more equal" than other spheres
- Spin(9) and Hopf fibrations

(2) The Spin(9) fundamental form

- Quaternionic analogy
- Spin(9) and Kähler forms on \mathbb{R}^{16}
- An explicit formula for $\Phi_{\text{Spin}(9)}$

Over the second seco

- Maximum number and examples
- The general case

4 Locally conformal parallel Spin(9) manifolds

- Definition and examples
- Structure Theorem

• Spheres $S^{m-1} \subset \mathbb{R}^m$ admit 1, 3 or 7 linearly independent vector fields according to whether p = 1, 2 or 3 in

$$m = (2k+1)2^p$$

Spheres S^{m-1} ⊂ ℝ^m admit 1, 3 or 7 linearly independent vector fields according to whether p = 1, 2 or 3 in

$$m=(2k+1)2^p$$

In the general case

 $m = (2k+1)2^{p}16^{q}$ with $q \ge 0$ and p = 0, 1, 2, 3

the maximum number of vector fields is

$$\sigma(m) = 8q + 2^p - 1$$

Spheres S^{m-1} ⊂ ℝ^m admit 1, 3 or 7 linearly independent vector fields according to whether p = 1, 2 or 3 in

$$m = (2k+1)2^p$$

In the general case

 $m = (2k+1)2^{p}16^{q}$ with $q \ge 0$ and p = 0, 1, 2, 3

the maximum number of vector fields is

• Spheres $S^{m-1} \subset \mathbb{R}^m$ admit 1, 3 or 7 linearly independent vector fields according to whether p = 1, 2 or 3 in

$$m = (2k+1)2^p$$

In the general case

 $m = (2k+1)2^{p}16^{q}$ with $q \ge 0$ and p = 0, 1, 2, 3

the maximum number of vector fields is

The lowest dimensional sphere with more than 7 vector field is S^{15}

[Hurwitz, Math. Ann. 1922], [Radon, Abh. Math. Hamburg 1923], [Adams, Ann. of Math. 1962].

• Coordinates on S^{15} :

$$N=(x,y)=(x_1,\ldots,x_8,y_1,\ldots,y_8)$$
 unit normal vector field

• Coordinates on S¹⁵:

 $N = (x, y) = (x_1, \dots, x_8, y_1, \dots, y_8)$ unit normal vector field

• Among the 36 complex structures $\mathcal{I}_{\alpha} \circ \mathcal{I}_{\beta}$ on \mathbb{R}^{16} associated to the Spin(9) structure, choose $J_{\alpha} = \mathcal{I}_{\alpha} \circ \mathcal{I}_{9}$, for $\alpha = 1, \ldots, 8$.

• Coordinates on S¹⁵:

 $N = (x, y) = (x_1, \dots, x_8, y_1, \dots, y_8)$ unit normal vector field

• Among the 36 complex structures $\mathcal{I}_{\alpha} \circ \mathcal{I}_{\beta}$ on \mathbb{R}^{16} associated to the Spin(9) structure, choose $J_{\alpha} = \mathcal{I}_{\alpha} \circ \mathcal{I}_{9}$, for $\alpha = 1, \ldots, 8$.

Proposition

A maximal system of 8 orthonormal vector fields on S^{15} is given by

 J_1N,\ldots,J_8N

Coordinates on S¹⁵:

 $N = (x, y) = (x_1, \dots, x_8, y_1, \dots, y_8)$ unit normal vector field

• Among the 36 complex structures $\mathcal{I}_{\alpha} \circ \mathcal{I}_{\beta}$ on \mathbb{R}^{16} associated to the Spin(9) structure, choose $J_{\alpha} = \mathcal{I}_{\alpha} \circ \mathcal{I}_{9}$, for $\alpha = 1, \ldots, 8$.

Proposition

A maximal system of 8 orthonormal vector fields on S^{15} is given by

$$J_1N,\ldots,J_8N$$

Remark

The eight complex structures $\{J_1, \ldots, J_8\}$ play a role analogous to that of the units in $\mathbb{C}, \mathbb{H}, \mathbb{O}$.

Group coordinates in 16-ples s^{α} , and split each s^{α} as a pair (x^{α}, y^{α}) of 8-ples. Define a conjugation D by $(x^{\alpha}, y^{\alpha}) \mapsto (x^{\alpha}, -y^{\alpha})$.

Next spheres with $\sigma(m) > 7$: $S^{2^{p}16-1}$, p = 1, 2, 3

Group coordinates in 16-ples s^{α} , and split each s^{α} as a pair (x^{α}, y^{α}) of 8-ples. Define a conjugation D by $(x^{\alpha}, y^{\alpha}) \mapsto (x^{\alpha}, -y^{\alpha})$.

Proposition

The following table gives a maximal system of $\sigma(m)$ orthonormal vector fields on $S^{2^{p}16-1}$, for p = 1, 2, 3:

Sphere	$\sigma(m)$	Vector fields	Notations	Involved structures	
$p = 1: S^{31}$	8+1	J_1N,\ldots,J_8N	$N = s^1 + is^2, L_i N = -s^2 + is^1$	Spin(0) + C	
		$D(L_iN)$	$D:(x^lpha,y^lpha) ightarrow (x^lpha,-y^lpha)$	opin(9)+c	
$p = 2: S^{63}$	8+3	J_1N,\ldots,J_8N	$N = s^1 + is^2 + js^3 + ks^4$	${ m Spin}(9){ m +}{\mathbb H}$	
		$D(L_iN), D(L_jN), D(L_kN)$	L_i, L_j, L_k and D as above		
$p = 3: S^{127}$	8+7	J_1N,\ldots,J_8N	$N = s^1 + is^2 + js^3 + ks^4 + es^5 + fs^6 + gs^7 + hs^8$	Spin(9)+©	
		$D(L_iN),\ldots,D(L_hN)$	L_i, \ldots, L_h and D as above		

 S^{255} : $\sigma(m) = 8 + 8$

• Again, group coordinates in 16-ples s^{α} , and split each s^{α} as a pair (x^{α}, y^{α}) of 8-ples. Define D by $(x^{\alpha}, y^{\alpha}) \mapsto (x^{\alpha}, -y^{\alpha})$.

 $S^{255}: \sigma(m) = 8 + 8$

- Again, group coordinates in 16-ples s^α, and split each s^α as a pair (x^α, y^α) of 8-ples. Define D by (x^α, y^α) → (x^α, -y^α).
- Act on the (column) 16-ples of 16-ples $(s^1, \ldots, s^{16})^T$ by J_1, \ldots, J_8 , and call $\operatorname{block}(J_1), \ldots, \operatorname{block}(J_8)$ the resulting automorphisms.

$S^{255:}$ $\sigma(m) = 8 + 8$

- Again, group coordinates in 16-ples s^{α} , and split each s^{α} as a pair (x^{α}, y^{α}) of 8-ples. Define D by $(x^{\alpha}, y^{\alpha}) \mapsto (x^{\alpha}, -y^{\alpha})$.
- Act on the (column) 16-ples of 16-ples $(s^1, \ldots, s^{16})^T$ by J_1, \ldots, J_8 , and call $\operatorname{block}(J_1), \ldots, \operatorname{block}(J_8)$ the resulting automorphisms.

Proposition

A maximal system of orthonormal vector fields on S^{255} is given by:

p =	1: S ³¹	8+1	J_1N,\ldots,J_8N $D(L_iN)$	$N = s^1 + is^2, L_i N = -s^2 + is^1$ $D : (x^{\alpha}, y^{\alpha}) \to (x^{\alpha}, -y^{\alpha})$	
<i>p</i> =	2: S ⁶³	8+3	J_1N, \ldots, J_8N $D(L_iN), D(L_jN), D(L_kN)$	$N = s^{1} + is^{2} + js^{3} + ks^{4}$ $L_{i}, L_{j}, L_{k} \text{ and } D \text{ as above}$	$\mathrm{Spin}(9) + \mathbb{H}$
<i>p</i> =	3: S ¹²⁷	8+7	J_1N,\ldots,J_8N $D(L_iN),\ldots,D(L_hN)$	$N = s^1 + is^2 + js^3 + ks^4 + es^5 + fs^6 + gs^7 + hs^8$ $L_i, \dots, L_h \text{ and } D \text{ as above}$	$\operatorname{Spin}(9) + \mathbb{O}$
S ²⁵⁵	8+8	D(blo	J_1N, \ldots, J_8N ock $(J_1)N), \ldots, D(\operatorname{block}(J_8)N)$	${\cal N}=(s^1,\ldots,s^{16})$ ${ m block}(J_1),\ldots,{ m block}(J_8)$ and D as above	Spin(9)+Spin(9)

 S^{511} : $\overline{\sigma(m)} = 2 \cdot \overline{8+1}$

• 16 vector fields are given by $\{J_{\alpha}N, D(\operatorname{block}(J_{\alpha})N)\}_{\alpha=1,\dots,8}$.

 $S^{511}: \ \overline{\sigma(m) = 2 \cdot 8 + 1}$

- 16 vector fields are given by $\{J_{\alpha}N, D(\operatorname{block}(J_{\alpha})N)\}_{\alpha=1,\dots,8}$.
- Imitating the \mathbb{R}^{32} case, group coordinates in 256-ples (s^1, s^2) , and define $L_i(s^1, s^2) = (-s^2, s^1)$.

 $S^{511}: \ \overline{\sigma(m) = 2 \cdot 8 + 1}$

- 16 vector fields are given by $\{J_{\alpha}N, D(\operatorname{block}(J_{\alpha})N)\}_{\alpha=1,\dots,8}$.
- Imitating the \mathbb{R}^{32} case, group coordinates in 256-ples (s^1, s^2) , and define $L_i(s^1, s^2) = (-s^2, s^1)$.

Proposition

The vector field $D(L_iN)$ is orthogonal to $\{J_{\alpha}N, D(\operatorname{block}(J_{\alpha})N)\}_{\alpha=1,\dots,8}$.

 S^{511} : $\overline{\sigma(m)} = 2 \cdot 8 + 1$

- 16 vector fields are given by $\{J_{\alpha}N, D(\operatorname{block}(J_{\alpha})N)\}_{\alpha=1,\dots,8}$.
- Imitating the \mathbb{R}^{32} case, group coordinates in 256-ples (s^1, s^2) , and define $L_i(s^1, s^2) = (-s^2, s^1)$.

Proposition
The vector field
$$D(L_iN)$$
 is orthogonal $D(L_iN)$, $D(\operatorname{block}(J_\alpha)N)\}_{\alpha=1,\dots,8}$.

 $S^{511}: \sigma(m) = 2 \cdot 8 + 1$

- 16 vector fields are given by $\{J_{\alpha}N, D(\operatorname{block}(J_{\alpha})N)\}_{\alpha=1,\dots,8}$.
- Imitating the \mathbb{R}^{32} case, group coordinates in 256-ples (s^1, s^2) , and define $L_i(s^1, s^2) = (-s^2, s^1)$.

Proposition
The vector field
$$D(L_iN)$$
 is orthogonal $\{L_i, D(\operatorname{block}(J_\alpha)N)\}_{\alpha=1,\dots,8}$.

• Next try: split each s^{α} as a pair (x^{α}, y^{α}) of 128-ples, and define a conjugation D_2 by $(x^{\alpha}, y^{\alpha}) \mapsto (x^{\alpha}, -y^{\alpha})$.

$S^{511}: \sigma(m) = 2 \cdot 8 + 1$

- 16 vector fields are given by $\{J_{\alpha}N, D(\operatorname{block}(J_{\alpha})N)\}_{\alpha=1,\dots,8}$.
- Imitating the \mathbb{R}^{32} case, group coordinates in 256-ples (s^1, s^2) , and define $L_i(s^1, s^2) = (-s^2, s^1)$.

Proposition
The vector field
$$D(L_iN)$$
 is orthogonal $\{L_i, N\}_{\alpha=1,...,8}$.

• Next try: split each s^{α} as a pair (x^{α}, y^{α}) of 128-ples, and define a conjugation D_2 by $(x^{\alpha}, y^{\alpha}) \mapsto (x^{\alpha}, -y^{\alpha})$.

Proposition

The vector field $D_2(L_iN)$ is orthogonal to $\{J_{\alpha}N, D(\operatorname{block}(J_{\alpha})N)\}_{\alpha=1,\dots,8}$.
Vector fields on spheres Maximum number and examples

$S^{511}: \sigma(m) = 2 \cdot 8 + 1$

- 16 vector fields are given by $\{J_{\alpha}N, D(\operatorname{block}(J_{\alpha})N)\}_{\alpha=1,\dots,8}$.
- Imitating the \mathbb{R}^{32} case, group coordinates in 256-ples (s^1, s^2) , and define $L_i(s^1, s^2) = (-s^2, s^1)$.

Proposition
The vector field
$$D(L_iN)$$
 is orthogonal $\{L_i, D(\operatorname{block}(J_\alpha)N)\}_{\alpha=1,\dots,8}$.

• Next try: split each s^{α} as a pair (x^{α}, y^{α}) of 128-ples, and define a conjugation D_2 by $(x^{\alpha}, y^{\alpha}) \mapsto (x^{\alpha}, -y^{\alpha})$.

Proposition

The vector field $D_2(L_iN_i)$ orthogonal $D_2(D_iN_i)$ $D(\operatorname{block}(J_\alpha)N)_{\alpha=1,\dots,8}$.

Vector fields on spheres Maximum number and examples

 S^{511} : $\overline{\sigma(m) = 2 \cdot 8 + 1}$

Proposition

The vector field $D(D_2(L_iN))$ is orthogonal to

 $\{J_{\alpha}N, D(\operatorname{block}(J_{\alpha})N)\}_{\alpha=1,\dots,8}$

Vector fields on spheres Maximum number and examples

 $S^{511}: \ \sigma(m) = 2 \cdot 8 + 1$

1 *S*¹⁵ and Spin(9)

- S^{15} is "more equal" than other spheres
- Spin(9) and Hopf fibrations

2 The Spin(9) fundamental form

- Quaternionic analogy
- Spin(9) and Kähler forms on \mathbb{R}^{16}
- An explicit formula for $\Phi_{\text{Spin}(9)}$

3 Vector fields on spheres

- Maximum number and examples
- The general case

4 Locally conformal parallel Spin(9) manifolds

- Definition and examples
- Structure Theorem

Abuse of notation in previous slides: $J_{\alpha} \in Mat_{16}$, but for instance in this row $J_{\alpha} \in Mat_{32}$:

	$p = 1: S^{31}$	8+1	J_1N,\ldots,J_8N $D(L_iN)$	$N = s^{1} + is^{2}, L_{i}N = -s^{2} + is^{1}$ $D : (x^{\alpha}, y^{\alpha}) \rightarrow (x^{\alpha}, -y^{\alpha})$	${\rm Spin}(9){+}\mathbb{C}$
--	-----------------	-----	------------------------------	---	------------------------------

Abuse of notation in previous slides: $J_{\alpha} \in Mat_{16}$, but for instance in this row $J_{\alpha} \in Mat_{32}$:

$D: (x^{\alpha}, y^{\alpha}) \to (x^{\alpha}, -y^{\alpha})$

To state and prove the general case, we need to formalize the above notation.

Abuse of notation in previous slides: $J_{\alpha} \in Mat_{16}$, but for instance in this row $J_{\alpha} \in Mat_{32}$:

	$p = 1: S^{31}$ 8	8+1	$J_1 N, \dots, J_8 N$ $D(L_i N)$	$N = s^{1} + is^{2}, L_{i}N = -s^{2} + is^{1}$ $D : (x^{\alpha}, y^{\alpha}) \rightarrow (x^{\alpha}, -y^{\alpha})$	${\rm Spin}(9){+}\mathbb{C}$
--	-------------------	-----	-------------------------------------	---	------------------------------

To state and prove the general case, we need to formalize the above notation.

• Get rid of N: identify vector fields on S^{m-1} with $\mathfrak{so}(m)$.

Abuse of notation in previous slides: $J_{\alpha} \in Mat_{16}$, but for instance in this row $J_{\alpha} \in Mat_{32}$:

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

To state and prove the general case, we need to formalize the above notation.

- Get rid of N: identify vector fields on S^{m-1} with $\mathfrak{so}(m)$.
- $A \in \mathfrak{so}(m)$ has lenght 1 if and only if $A^2 = -\operatorname{Id}_m$.
- A is orthogonal to $B \in \mathfrak{so}(m)$ if and only if AB + BA = 0.

Abuse of notation in previous slides: $J_{\alpha} \in Mat_{16}$, but for instance in this row $J_{\alpha} \in Mat_{32}$:

$ \left \begin{array}{c} p=1: \ S^{31} \\ D(L_iN) \end{array} \right \left \begin{array}{c} 8+1 \\ B+1 \end{array} \right \left \begin{array}{c} J_1N, \dots, J_8N \\ D(L_iN) \end{array} \right \left \begin{array}{c} N=s^1+is^2, L_iN=-s^2+is^1 \\ D:(x^\alpha,y^\alpha) \to (x^\alpha,-y^\alpha) \end{array} \right \left \begin{array}{c} \operatorname{Spin}(9) + \mathbb{C} \end{array} \right $

To state and prove the general case, we need to formalize the above notation.

- Get rid of N: identify vector fields on S^{m-1} with $\mathfrak{so}(m)$.
- $A \in \mathfrak{so}(m)$ has lenght 1 if and only if $A^2 = -\operatorname{Id}_m$.
- A is orthogonal to $B \in \mathfrak{so}(m)$ if and only if AB + BA = 0.
- Orthonormality is reduced to matrices computation.

formalizes J_1N, \ldots, J_8N in

$p = 1: S^{31}$ 8+1 $J_1 N, \dots, J_8 N$ $D(L_i N)$	$N = s^{1} + is^{2}, L_{i}N = -s^{2} + is^{1}$ $D: (x^{\alpha}, y^{\alpha}) \to (x^{\alpha}, -y^{\alpha})$	Spin(9)+ℂ
---	--	-----------

If
$$A = (a_{\alpha\beta})_{\alpha,\beta=1,...,m}$$
, define $\operatorname{block}_{m,n} : \operatorname{Mat}_m \to \operatorname{Mat}_{mn}$ by

$$\mathrm{block}_{m,n}(A) = (a_{\alpha\beta} \mathrm{Id}_n)_{\alpha,\beta=1,\ldots,m}$$

Example

$$\operatorname{block}_{2,16} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -\operatorname{Id}_{16} \\ \operatorname{Id}_{16} & 0 \end{pmatrix}$$

formalizes $L_i N$ in

$p = 1: S^{31} 8+1 D(1:N) N = S^1 + iS^2, L_i N = -S^2 + iS^1 Spin(9) + \mathbb{C}$		$p = 1: S^{31}$	8+1	$J_1 N, \dots, J_8 N$ $D(L_i N)$	$N = s^{1} + is^{2}, L_{i}N = -s^{2} + is^{1}$ $D : (x^{\alpha}, y^{\alpha}) \rightarrow (x^{\alpha}, -y^{\alpha})$	Spin(9)+ℂ
---	--	-----------------	-----	----------------------------------	---	-----------

The basic conjugation in \mathbb{R}^{16^s} is

$$\mathrm{D}_{s} = \mathrm{block}_{2,\frac{16^{s}}{2}} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}) \in \mathrm{Mat}_{16^{s}}$$

Main theorem for $m = 16^q$

For any $q \ge 1$, the 8q vector fields on S^{16^q-1} given by

$$\{B^{q}(t, J_{\alpha}) = \operatorname{diag}_{16^{t}, 16^{q-t}}(\prod_{s=1}^{t-1} \operatorname{D}_{t,s} \operatorname{block}_{16, 16^{t-1}}(J_{\alpha}))\}_{\substack{t=1, \dots, q\\ \alpha=1, \dots, 8}}$$

are a maximal orthonormal set.

• $\mathbf{C}_t = \prod_{s=1}^{t-1} \mathbf{D}_{t,s}$.

•
$$\mathcal{G}^0 = \emptyset$$

•
$$\mathcal{G}^1 = \{L_i^{\mathbb{C}}\} \subset \operatorname{Mat}_2.$$

•
$$\mathcal{G}^2 = \{L_i^{\mathbb{H}}, L_j^{\mathbb{H}}, L_k^{\mathbb{H}}\} \subset \operatorname{Mat}_4.$$

•
$$\mathcal{G}^3 = \{L_i, L_j, L_k, L_e, L_f, L_g, L_h\} \subset Mat_8.$$

• $\mathbf{C}_t = \prod_{s=1}^{t-1} \mathbf{D}_{t,s}.$

•
$$\mathcal{G}^0 = \emptyset$$

•
$$\mathcal{G}^1 = \{L_i^{\mathbb{C}}\} \subset \operatorname{Mat}_2.$$

•
$$\mathcal{G}^2 = \{L_i^{\mathbb{H}}, L_j^{\mathbb{H}}, L_k^{\mathbb{H}}\} \subset \operatorname{Mat}_4.$$

•
$$\mathcal{G}^3 = \{L_i, L_j, L_k, L_e, L_f, L_g, L_h\} \subset Mat_8$$

Theorem: $\sigma(m) > 7$? All the fault of Spin(9)!

Let $k \ge 0$, $q \ge 1$ and p = 0, 1, 2 or 3. The $8q + 2^p - 1$ vector fields on $S^{(2k+1)2^p 16^q - 1}$ given by

$$\begin{split} \{B^{k,p,q}(t,J_{\alpha}) &= \operatorname{diag}_{16^{t},(2k+1)2^{p}16^{q-t}}(\operatorname{C}_{t}\operatorname{block}_{16,16^{t-1}}(J_{\alpha}))\}_{\substack{t=1,\dots,q\\\alpha=1,\dots,8}} \\ \{L^{k,p,q}(G) &= \operatorname{diag}_{2^{p}16^{q},2k+1}(\operatorname{diag}_{16^{q},2^{p}}(\operatorname{C}_{q})\operatorname{block}_{2^{p},16^{q}}(G))\}_{G\in\mathcal{G}^{p}} \end{split}$$

are a maximal orthonormal set.

1 S¹⁵ and Spin(9)

- S^{15} is "more equal" than other spheres
- Spin(9) and Hopf fibrations

2 The Spin(9) fundamental form

- Quaternionic analogy
- Spin(9) and Kähler forms on \mathbb{R}^{16}
- An explicit formula for $\Phi_{\text{Spin}(9)}$

3 Vector fields on spheres

- Maximum number and examples
- The general case

4 Locally conformal parallel Spin(9) manifolds

- Definition and examples
- Structure Theorem

Examples

The product $S^{15} \times S^1 = \frac{\mathbb{O}^2 - 0}{\mathbb{Z}}$ = cone over S^{15} with the (conformal class) of the flat metric.

Examples

The product $S^{15} \times S^1 = \frac{\mathbb{O}^2 - 0}{\mathbb{Z}}$ = cone over S^{15} with the (conformal class) of the flat metric.

The trivial S^1 -bundle $\mathbb{R}P^{15} \times S^1$, with the metric induced by the flat cone $C(S^{15})$.

Examples

The product $S^{15} \times S^1 = \frac{\mathbb{O}^2 - 0}{\mathbb{Z}}$ = cone over S^{15} with the (conformal class) of the flat metric.

The trivial S^1 -bundle $\mathbb{R}P^{15} \times S^1$, with the metric induced by the flat cone $C(S^{15})$.

The non-trivial S^1 -bundle over $\mathbb{R}P^{15}$, with the metric induced by the flat cone $C(S^{15})$.

1 *S*¹⁵ and Spin(9)

- S^{15} is "more equal" than other spheres
- Spin(9) and Hopf fibrations

(2) The Spin(9) fundamental form

- Quaternionic analogy
- Spin(9) and Kähler forms on \mathbb{R}^{16}
- An explicit formula for $\Phi_{\text{Spin}(9)}$

Over the second seco

- Maximum number and examples
- The general case

4 Locally conformal parallel Spin(9) manifolds

- Definition and examples
- Structure Theorem

Locally conformal parallel Spin(9) manifolds Structure Theorem

Structure of compact locally conformal parallel Spin(9) manifolds

Theorem [P-Piccinni-Vuletescu]

Let (M, g) be a compact, locally conformal but not globally conformal parallel Spin(9) manifold. Then

$$M = C(N)/\mathbb{Z}$$

where C(N) is a flat cone over a compact 15-dimensional manifold N with finite fundamental group.

Proof

() On each U_{α} it is defined a ∇^{α} -parallel 8-form Φ_{α} .

Proof

- **(**) On each U_{α} it is defined a ∇^{α} -parallel 8-form Φ_{α} .
- **Q** There is a 8-form Φ on *M* locally given by $e^{4f_{\alpha}}\Phi_{\alpha}$.

- **(**) On each U_{α} it is defined a ∇^{α} -parallel 8-form Φ_{α} .
- **2** There is a 8-form Φ on *M* locally given by $e^{4f_{\alpha}}\Phi_{\alpha}$.
- So There is a closed 1-form ω (the Lee form) on M, locally given by $4df_{\alpha}$, such that $d\Phi = \omega \wedge \Phi$.
Proof

- **(**) On each U_{α} it is defined a ∇^{α} -parallel 8-form Φ_{α} .
- **2** There is a 8-form Φ on *M* locally given by $e^{4f_{\alpha}}\Phi_{\alpha}$.
- O There is a closed 1-form ω (the Lee form) on *M*, locally given by $4df_α$, such that dΦ = ω ∧ Φ.
- The 1-form ω defines a closed Weyl connection D on M by $Dg = \omega \otimes g$.

Proof

- **(**) On each U_{α} it is defined a ∇^{α} -parallel 8-form Φ_{α} .
- **(2)** There is a 8-form Φ on *M* locally given by $e^{4f_{\alpha}}\Phi_{\alpha}$.
- There is a closed 1-form ω (the Lee form) on M, locally given by $4df_{\alpha}$, such that $d\Phi = \omega \wedge \Phi$.
- The 1-form ω defines a closed Weyl connection D on M by $Dg = \omega \otimes g$.
- Since the local metrics g_{α} are Einstein, D is Einstein-Weyl.

O Let g be the Gauduchon metric, so that ∇ω = 0. Then the universal covering (*M̃*, *ğ̃*) is reducible: (*M̃*, *ğ̃*) = (ℝ, ds) × (*Ñ*, g_N), for a compact simply connected *Ñ*.

- O Let g be the Gauduchon metric, so that ∇ω = 0. Then the universal covering (*M̃*, *g̃*) is reducible: (*M̃*, *g̃*) = (ℝ, ds) × (*Ñ*, g_N), for a compact simply connected *Ñ*.
- **O** n \tilde{M} we have $\tilde{\omega} = df$, and $(\tilde{M}, e^{-f}\tilde{g})$ is the metric cone $C(\tilde{N})$.

- O Let g be the Gauduchon metric, so that ∇ω = 0. Then the universal covering (*M̃*, *g̃*) is reducible: (*M̃*, *g̃*) = (ℝ, ds) × (*Ñ*, g_N), for a compact simply connected *Ñ*.
- **O** On \tilde{M} we have $\tilde{\omega} = df$, and $(\tilde{M}, e^{-f}\tilde{g})$ is the metric cone $C(\tilde{N})$.
- ${}^{\textcircled{O}}$ The local metrics are Ricci-flat, that is, $C(ilde{N})$ is Ricci-flat.

- O Let g be the Gauduchon metric, so that ∇ω = 0. Then the universal covering (*M̃*, *g̃*) is reducible: (*M̃*, *g̃*) = (ℝ, ds) × (*Ñ*, g_N), for a compact simply connected *Ñ*.
- On \tilde{M} we have $\tilde{\omega} = df$, and $(\tilde{M}, e^{-f}\tilde{g})$ is the metric cone $C(\tilde{N})$.
- ${}_{igodol{O}}$ The local metrics are Ricci-flat, that is, $C(ilde{N})$ is Ricci-flat.
- Ricci-flat + holonomy $Spin(9) \Rightarrow$ flat.

- O Let g be the Gauduchon metric, so that ∇ω = 0. Then the universal covering (*M̃*, *g̃*) is reducible: (*M̃*, *g̃*) = (ℝ, ds) × (*Ñ*, g_N), for a compact simply connected *Ñ*.
- On \tilde{M} we have $\tilde{\omega} = df$, and $(\tilde{M}, e^{-f}\tilde{g})$ is the metric cone $C(\tilde{N})$.
- ${\it O}$ The local metrics are Ricci-flat, that is, $C(ilde{N})$ is Ricci-flat.
- Ricci-flat + holonomy $Spin(9) \Rightarrow$ flat.
- ⁽⁰⁾ Since $\pi_1(M)$ acts by homotheties on $C(\tilde{N})$, and \tilde{N} is compact, $\pi_1(M)$ contains a finite normal subgroup I of isometries.

- O Let g be the Gauduchon metric, so that ∇ω = 0. Then the universal covering (*M̃*, *ğ̃*) is reducible: (*M̃*, *ğ̃*) = (ℝ, ds) × (*Ñ*, g_N), for a compact simply connected *Ñ*.
- On \tilde{M} we have $\tilde{\omega} = df$, and $(\tilde{M}, e^{-f}\tilde{g})$ is the metric cone $C(\tilde{N})$.
- ${\it O}$ The local metrics are Ricci-flat, that is, $C(ilde{N})$ is Ricci-flat.
- Ricci-flat + holonomy $Spin(9) \Rightarrow$ flat.
- Since $\pi_1(M)$ acts by homotheties on $C(\tilde{N})$, and \tilde{N} is compact, $\pi_1(M)$ contains a finite normal subgroup I of isometries.
- **4** We obtain $\pi_1(M) = I \rtimes \mathbb{Z}$, and $M = C(\tilde{N}/I)/\mathbb{Z}$.

End of talk. Thank you for your attention!

Details for $\Phi_{{ m Spin}(9)}=\int_{{\mathbb O}P^1}p_l^* u_l\,dl$

• ν_l = volume form on the octonionic lines $l = \{(x, mx)\}$ or $l = \{(0, y)\}$ in \mathbb{O}^2 .

Appendix

- $p_I : \mathbb{O}^2 \to I = \text{projection on } I.$
- $p_l^* \nu_l = 8$ -form in $\mathbb{O}^2 = \mathbb{R}^{16}$.
- The integral over $\mathbb{O}P^1$ can be computed over \mathbb{O} with polar coordinates.
- The formula arise from distinguished 8-planes in the ${\rm Spin}(9)$ -geometry \rightarrow (forthcoming) calibrations.

The five involutions of $\operatorname{Sp}(2)\cdot\operatorname{Sp}(1)$ as 8 imes 8 matrices

$$\mathcal{I}_{2} = \begin{pmatrix} 0 & | \mathrm{Id} \\ \hline \mathrm{Id} & 0 \end{pmatrix}$$
$$\mathcal{I}_{3} = \begin{pmatrix} 0 & -R_{i}^{\mathbb{H}} \\ \hline R_{i}^{\mathbb{H}} & 0 \end{pmatrix}$$

$$\mathcal{I}_1 = \begin{pmatrix} \mathrm{Id} & \mathbf{0} \\ \hline \mathbf{0} & -\mathrm{Id} \end{pmatrix}$$

$$egin{aligned} \mathcal{I}_4 = \left(egin{aligned} 0 & | -R_j^{\mathbb{H}} \ \hline R_j^{\mathbb{H}} & 0 \end{array}
ight) \ & \mathcal{I}_5 = \left(egin{aligned} 0 & | -R_k^{\mathbb{H}} \ \hline R_k^{\mathbb{H}} & 0 \end{array}
ight) \end{aligned}$$

 $\mathcal{I}_5 =$

 $\mathcal{I}_6 =$

The nine involutions of $\mathrm{Spin}(9)$ as 16 imes 16 matrices

$$\begin{aligned}
\mathcal{I}_4 &= \begin{pmatrix} 0 & | -R_j \\ R_j & 0 \end{pmatrix} \\
\mathcal{I}_3 &= \begin{pmatrix} 0 & | -R_i \\ R_i & 0 \end{pmatrix} \\
\mathcal{I}_2 &= \begin{pmatrix} 0 & | \mathrm{Id} \\ 1\mathrm{d} & 0 \end{pmatrix} \\
\begin{pmatrix} 0 & | -R_k \\ R_k & 0 \end{pmatrix} \\
\mathcal{I}_1 &= \begin{pmatrix} \mathrm{Id} & 0 \\ 0 & | -\mathrm{Id} \end{pmatrix} \\
\begin{pmatrix} 0 & | -R_e \\ R_e & 0 \end{pmatrix} \\
\begin{pmatrix} 0 & | -R_e \\ R_e & 0 \end{pmatrix} \\
\hline
\end{array}$$

$$\mathcal{I}_{7} = \begin{pmatrix} 0 & | & -R_{c} \\ \hline R_{f} & 0 \\ \end{bmatrix} \\ \mathcal{I}_{8} = \begin{pmatrix} 0 & | & -R_{g} \\ \hline R_{g} & 0 \\ \end{pmatrix}$$

0

47 / 54

Explicit formula for Φ_{G_2}

Denote by x_1, \ldots, x_7 the coordinates in \mathbb{R}^7 . Then $G_2 =$ stabilizer in SO(7) of

$$egin{aligned} \Phi_{\mathrm{G}_2} &= dx_1 \wedge dx_2 \wedge dx_4 + dx_2 \wedge dx_3 \wedge dx_5 + dx_3 \wedge dx_4 \wedge dx_6 \ &+ dx_4 \wedge dx_5 \wedge dx_7 + dx_5 \wedge dx_6 \wedge dx_1 + dx_6 \wedge dx_7 \wedge dx_2 \ &+ dx_7 \wedge dx_1 \wedge dx_3 \end{aligned}$$

As a shortcut, we could write

$$\Phi_{G_2} = 124 + 235 + 346 + 457 + 561 + 672 + 713$$

🕨 Go back

1																																																			
18/1	1.4	2.3	7.8'	3'7'	1'2'3'5'	2'5'6'8'	1'5'6'8'	1'2'3'7'	1.3.4.6	4'5'6'7'	1'5'	1,3,4,8	4.2.1.8	1'2'3'5'	2'5'6'8'	4.8.6.1	2.3.4.6	1.5,81	2.4.1.8	1.4.5.6	7444	1'2'6'8'	3'4'5'7'	1'2'3'4'7'8'	3.2.	1'2'3'7'	2,6,1,8,	3'8'	1'2'3'5'	2'5'6'8'	4.8.7.8	1'2'5'7'	247'8'	2'3'6'8'	1'4'5'7'	7467	3.4.6.8.	1'2'6'7'	3.4.2.8	1.4/6/8/	1'3'6'7'	2'4'5'8'	8.1.4.1	1.2'4'6'	3,2,1,8,	1,2,3,1,	2,6,1,8,	1'3'4'5'7'8'	1,2,3,2,6,8,	1,2,4,6,1,8,	***
12456	123458	123467	123478	123567	123506	1235	1236	1237	12.38	12.38	1245 68	1245	1245	1246	1246	1247	12.48	125678	1257	1258	12.58	12.68	12.68	12	1345.67	1345	1345	134678	1347	1347	1348	1356	1356	1358	1367	1367	1378	145678	1456	1457	1468	1468	1478	1567	1567	15.68	1578	15	16	17	2
5	10	99	γŅ	ņ ('n 0	- 9	17	4 -		7	99	7 7	4	~ ~	7 7	7	4 0	2 9	7	4.	7.7			~ ~	N Q	i Ņ	0	77		7 -	77	0	- 9	•	7.		7	γĻ	7		· 7	7			4.		-	9 7	7	9 9	1
19/2	6,8,9	1'4'	5.6'	2,6,	5.9,4 4,6,	2'3'4'8'	1'3'4'8'	4'5'7'8'	1'2'4'7'	3'5'6'8'	1.1.4	1,2,4,2,	3'6'7'8'	4,6,	2'3'4'8'	3,2,6,8,	1'5'7'8'	7.4778	2.4'5'6'	1,2,8,1,	3'4'5'8'	1'2'5'7'	2.4.1.8	1'2'3'4'5'6'	2,8, 3,9,	4,8,	2'3'4'6'	2'5'	45'67'	2'3'4'8'	3'6'7'8'	6'8'	2456	2'3'5'7'	1,3,6,1,	2'4'5'8'	3.4.8.1.	74'5'6'7'8'	2'3'7'8'	1.8.8.1	1'3'5'8'	2'3'6'8'	1.4.5.6	1,2,3,5,	2'5'6'8'	1'3'4'8'	2'3'4'6'	1'2'4'5'6'8'	4'5'6'7'	1'2'3'5'7'8'	
12 2456	123457	123467	12 3478	123567	12 3578	12 1676	1236	1236	1238	1238	124567	1245/8	1245	124678	1246	1247	1248	125678	1257	1258	1258	1268	1268	12	134567	134578	1345	134678	1346	1347	1348	135678	1356	1358	1367	1367	1378	1456	1456	1457	1468	1468	1478	1567	1567	1568	1578	15	1678	17	2
<u>_</u>	9	99	1 (1	ņ (2 10	7 9	• •		77		Ϋ́,	,	7	~ ~		7		1 9	-	7.			7	99	2 4	9		77	4		77	0	7 9	17	7.		0	? ?	7		- ?	-		2 1		77	7	Ģ =		99	1
AV.	5.1	1.19	3.4	1/5/	3'5'	1'5'6'7'	1'2'4'5'	3,9,1,8,	1,2/3'8'	2'5'7'8'	3.8	1,2/3/6/	2'5'6'7'	3.2	1.2'2'8'	2,5,7,8,	1'3'4'5'	12/5/6/	1'3'7'8'	1'2'5'8'	2/3/7/8/	3'4'6'7'	2'4'5'6'	3'4'5'6'	7.1	3'7'	1,2,1,8,	1,2,4,1	3'5'6'8'	1.2.6.1	2'5'6'7'	5'7'	1'3'7'8'	1,4,6,8	1'3'5'8'	2'3'6'5'	2'4'7'8'	1.3.5.6.7'8'	2'3'5'6'	1'3'6'7'	2'3'5'8'	2'3'5'7'	1/2/6/7/	2'3'5'6'7'8'	2'3'4'8'	3'6'7'8'	1,2,1,8,	1'2'3'5'6'7'	3,2,6,8,	2'3'4'5'7'8'	
17446	123457	123458	123478	123567	123578	1235	1236	1236	1238	1238	124567	1245	1245	124678	1246	1247	1248	1248	1257	1258	1258	1267	1268	1278	134567	134578	1345	134678 1346	1346	1347	1348	135678	1356	1358	1367	1367	1378	145678	1456	1457	1467	1468	1478	14/0	1567	1568	1578	15	1678	16	1
~	10	99	7 7	ņ (9 N		• 7	7-		7	99	1 0	4	ç ,		-	-, .	- 9	7			17		99	7 0	10	4.		4	7-		2	4 -	· 7		7 7		2 0	7		- 7	7			4.		4			9 0	
11.1	2'4'	5.8	1.2,	2,4,1,8,	7.8, 7,8,	1'347'	1'2'3'6'	2'5'6'7'	4.5.6.8	2'3'4'5'	2'5'	51	2'3'4'7'	2,8,	1347	2'3'4'5'	1'2'4'8'	55'6'T	1'3'5'6'	3,4,6,8,	2'3'5'6'	3'4'5'8'	1'3'7'8'	1,2,1,8,	3.4.5.6.7.8	2'6'	1'3'4'5'	4568	2'5'7'8'	1'3'4'7'	2'3'4'7'	2.4	1'3'5'6'	1'4'5'7'	2.4.6.1	2457	2.45.6	5'8'	1'4'7'8'	1'3'5'8'	1.4.6.1	1'4'6'8'	1'2'5'8'	1.4'5'6'7'8'	1,2,6,1,	2'5'6'7'	1'3'4'5'	4'5'6'8'	2'5'7'8'	1,3,4,2,6,8,	****
17456	123457	123458	123478	1234	123578	12.35	1236	12.36	1237	12.38	1245.67	124578	12.45	124678	12.46	12.47	12.48	1248	12.57	12.57	12.58	12.67	12.68	1278	124568	134578	13.45	1345	13.46	1347	1348	135678	1356	1358	1358	1367	1378	145678	1456	1457	1467	1468	1478	14/0	15.67	1568	1578	1578	1678	16	;
-14	5	9 0	2 7	99	γŅ		- 9	7-		7	0 0	19	17	~ ~		1		10	-	7.		-	7	- 0	7 0	- 6		7 0	17			-2		· 7	·	- 2	7.	4 Y	-	7 7	- 6			2 1			7	- 0		0 0	
	1'3'	2'3'	2. 6. 6. 6.	1,2,3,4	1,1,	3.2.4.6	4.5	2'3'4'7'	3'5'6'7'	1.6.7'8'	1'6'	3,6,	1'5'6'8'	,1,1	3,2,2,8	1.6.7'8'	1,2,3,1,	267.8	1'2'6'8'	3'4'5'7'	8.1.4.1	2'3'7'8'	1'3'5'6'	3,4,6,8,	8.L.9.5.7.1	1'5'	1,2,4,8,	3'5'6'7'	2'3'4'5'	1'2'4'6'	1.5,6,8	1'3'	1'2'6'8'	1'3'6'7'	2.4.5.8	1'4'6'8'	1'3'7'8'	23	A.S.A.	7467	2'3'6'7'	1'4'5'7'	2'4'6'7'	1'2'3'4'6'7'	1,3,4,1,	2'3'47'	1'2'4'8'	3.2.6.1.8	2'3'4'5'	1.2.45.67	
245,678	123457	123458	123468	1234	123578	1235	123678	1236	1237	1238	124567	124578	1245	124678	1246	1247	1248	1248	1257	1257	1258	1267	1268	1268	124567	134578	1345	134678	1346	1347	1348	135678	1356	1358	1358	1367	1378	145 678	1456	1456	1458	1468	1468	14/0	1567	1567	1578	1578	1678	16	;

351 terms of $\Phi_{{ m Spin}(9)}$

70 terms of $\Phi_{\mathrm{Spin}(9)}$

12345678		-14	123456	1'2'	2	123456	3'4'	-2	123456	5'6'	-2	123456	7'8'	-2
123457	1'3'	2	123457	2'4'	2	123457	5'7'	-2	123457	6'8'	2	123458	1'4'	2
123458	2'3'	-2	123458	5'8'	-2	123458	6'7'	-2	123467	1'4'	-2	123467	2'3'	2
123467	5'8'	-2	123467	6'7'	-2	123468	1'3'	2	123468	2'4'	2	123468	5'7'	2
123468	6'8'	-2	123478	1'2'	-2	123478	3'4'	2	123478	5'6'	-2	123478	7'8'	-2
1234	1'2'3'4'	-2	1234	5'6'7'8'	-2	123567	1'5'	-2	123567	2'6'	-2	123567	3'7'	-2
123567	4'8'	2	123568	1'6'	-2	123568	2'5'	2	123568	3'8'	-2	123568	4'7'	-2
123578	1'7'	-2	123578	2'8'	2	123578	3'5'	2	123578	4'6'	2	1235	1'2'3'5'	-1
1235	1'2'4'6'	-1	1235	1'3'4'7'	-1	1235	1'5'6'7'	-1	1235	2'3'4'8'	1	1235	2'5'6'8'	1
1235	3'5'7'8'	1	1235	4'6'7'8'	1	123678	1'8'	-2	123678	2'7'	-2	123678	3'6'	2
123678	4'5'	-2	1236	1'2'3'6'	-1	1236	1'2'4'5'	1	1236	1'3'4'8'	-1	1236	1'5'6'8'	-1
1236	2'3'4'7'	-1	1236	2'5'6'7'	-1	1236	3'6'7'8'	1	1236	4'5'7'8'	-1	1237	1'2'3'7'	-1
1237	1'2'4'8'	1	1237	1'3'4'5'	1	1237	1'5'7'8'	-1	1237	2'3'4'6'	1	1237	2'6'7'8'	-1
1237	3'5'6'7'	-1	1237	4′5′6′8′	1	1238	1'2'3'8'	-1	1238	1'2'4'7'	-1	1238	1'3'4'6'	1

- $\{1,2,3,4,5,6,7,8,1',2',3',4',5',6',7',8'\}$ are (indexes of) coordinates in \mathbb{R}^{16} .
- A table entry $||123578 \quad 1'7' \quad -2||$ means that $\Phi_{\text{Spin}(9)} = \cdots - 2dx_1 \wedge dx_2 \wedge dx_3 \wedge dx_5 \wedge dx_7 \wedge dx_8 \wedge dx'_1 \wedge dx'_7 + \ldots$
- Table obtained from Berger's definition of $\Phi_{{\rm Spin}(9)}$ with the help of Mathematica.
- The coefficients are normalized in such a way that they are all integers with gcd = 1.

• Differential geometry in Mathematica? (1) Ricci; (2) EDC; (3) DIY;

• Differential geometry in Mathematica? (1) Ricci; (2) EDC; (3) DIY;

• Differential geometry in Mathematica? (1) Ricci; (2) EDC; (3) DIY;

Computational challenge for $\Phi_{ m Spin(9)}$

- Differential geometry in Mathematica? (1) Ricci; (2) EDC; (3) DIY;
- The implementation of the wedge product can be reduced to a sorting problem:

 $\begin{array}{rll} \mathbb{W} \texttt{edge}(dx_1 \wedge dx_4, dx_2 \wedge dx_3) & \stackrel{\texttt{concatenation}}{=} & dx_1 \wedge dx_4 \wedge dx_2 \wedge dx_3 \\ & \stackrel{\texttt{sorting}}{=} & dx_1 \wedge dx_2 \wedge dx_3 \wedge dx_4 \end{array}$

- Differential geometry in Mathematica? (1) Ricci; (2) EDC; (3) DIY;
- The implementation of the wedge product can be reduced to a sorting problem:

 $\begin{array}{rll} \mathbb{W} \texttt{edge}(dx_1 \wedge dx_4, dx_2 \wedge dx_3) & \stackrel{\texttt{concatenation}}{=} & dx_1 \wedge dx_4 \wedge dx_2 \wedge dx_3 \\ & \stackrel{\texttt{sorting}}{=} & dx_1 \wedge dx_2 \wedge dx_3 \wedge dx_4 \end{array}$

 Divide and conquer paradigm can be used: break the problem into subproblems, recursively solve these subproblems, combine the solutions into a solution to the original problem.

- Differential geometry in Mathematica? (1) Ricci; (2) EDC; (3) DIY;
- The implementation of the wedge product can be reduced to a sorting problem:

- Differential geometry in Mathematica? (1) Ricci; (2) EDC; (3) DIY;
- The implementation of the wedge product can be reduced to a sorting problem:

- Differential geometry in Mathematica? (1) Ricci; (2) EDC; (3) DIY;
- The implementation of the wedge product can be reduced to a sorting problem:

- Differential geometry in Mathematica? (1) Ricci; (2) EDC; (3) DIY;
- The implementation of the wedge product can be reduced to a sorting problem:

Code to merge 2 sorted lists

[Adapted from the classical mergesort algorithm, thanks to Gianluca Amato and Francesca Scozzari]

```
(*Take care of sign when swapping*)
sign = 1;
```

```
(*Induction base: what to do when one or both the arguments are empty*)
formWedge[{}, {}] = {};
formWedge[{}, right_] := right;
formWedge[left_, {}] := left;
```

```
(*Compare first terms, and recursively build the ordered list*)
formWedge[left_, right_] :=
   Switch[Order[left[[1]], right[[1]]],
        1,
            Return[Prepend[formWedge[Drop[left, 1], right], left[[1]]]],
        -1,
            sign = sign*(-1)^Length[left];
            Return[Prepend[formWedge[left, Drop[right, 1]], right[[1]]]],
        0,
            Abort[]
]
```

From Pfaffians to $\Phi_{\text{Spin}(9)}$

$$\Phi_{\text{Spin}(9)} \stackrel{\text{\tiny utc}}{=} \sum_{1 \le \alpha_1 < \alpha_2 < \alpha_3 < \alpha_4 \le 9} (\psi_{\alpha_1 \alpha_2} \land \psi_{\alpha_3 \alpha_4} - \psi_{\alpha_1 \alpha_3} \land \psi_{\alpha_2 \alpha_4} + \psi_{\alpha_1 \alpha_4} \land \psi_{\alpha_2 \alpha_3})^2$$

$\psi_{12} = (-12 + 34 + 56 - 78) - ()'$	$\psi_{13} = (-13 - 24 + 57 + 68) - ()'$	$\psi_{14} = (-14 + 23 + 58 - 67) - ()'$
$\psi_{15} = (-15 - 26 - 37 - 48) - ()'$	$\psi_{16} = (-16 + 25 - 38 + 47) - ()'$	$\psi_{17} = (-17 + 28 + 35 - 46) - ()'$
$\psi_{18} = (-18 - 27 + 36 + 45) - ()'$	$\psi_{23} = (-14 + 23 - 58 + 67) + ()'$	$\psi_{24} = (13 + 24 + 57 + 68) + ()'$
$\psi_{25} = (-16 + 25 + 38 - 47) + ()'$	$\psi_{26} = (15 + 26 - 37 - 48) + ()'$	$\psi_{27} = (18 + 27 + 36 + 45) + ()'$
$\psi_{28} = (-17 + 28 - 35 + 46) + ()'$	$\psi_{34} = (-12 + 34 - 56 + 78) + ()'$	$\psi_{35} = (-17 - 28 + 35 + 46) + ()'$
$\psi_{36} = (-18 + 27 + 36 - 45) + ()'$	$\psi_{37} = (+15 - 26 + 37 - 48) + ()'$	$\psi_{38} = (16 + 25 + 38 + 47) + ()'$
$\psi_{45} = (-18 + 27 - 36 + 45) + ()'$	$\psi_{46} = (17 + 28 + 35 + 46) + ()'$	$\psi_{47} = (-16 - 25 + 38 + 47) + ()'$
$\psi_{48} = (15 - 26 - 37 + 48) + ()'$	$\psi_{56} = (-12 - 34 + 56 + 78) + ()'$	$\psi_{57} = (-13 + 24 + 57 - 68) + ()'$
$\psi_{58} = (-14 - 23 + 58 + 67) + ()'$	$\psi_{67} = ($ 14 $+$ 23 $+$ 58 $+$ 67 $)+()'$	$\psi_{68} = (-13 + 24 - 57 + 68) + ()'$
$\psi_{78} = (12 + 34 + 56 + 78) + ()'$		

$$\begin{split} \psi_{19} &= -11' - 22' - 33' - 44' - 55' - 66' - 77' - 88' \\ \psi_{39} &= -13' - 24' + 31' + 42' + 57' + 68' - 75' - 86' \\ \psi_{59} &= -15' - 26' - 37' - 48' + 51' + 62' + 73' + 84' \\ \psi_{79} &= -17' + 28' + 35' - 46' - 53' + 64' + 71' - 82' \end{split}$$

$$\begin{split} \psi_{29} &= -12' + 21' + 34' - 43' + 56' - 65' - 78' + 87' \\ \psi_{49} &= -14' + 23' - 32' + 41' + 58' - 67' + 76' - 85' \\ \psi_{69} &= -16' + 25' - 38' + 47' - 52' + 61' - 74' + 83' \\ \psi_{89} &= -18' - 27' + 36' + 45' - 54' - 63' + 72' + 81' \end{split}$$

Go back

Berger and calibrations

Curiosity

Berger appears to know about the fact that $\Phi_{\mathrm{Spin}(9)}$ is a calibration on $\mathbb{O}P^2$ already in 1970 [Berger, L'Enseignement Math. 1970] and more explicitly in 1972 [Berger, Ann. Éc. Norm. Sup. 1972, Theorem 6.3], very early with respect to the forthcoming calibration theory.