Spin(9), complex structures and vector fields on spheres

Maurizio Parton ${ }^{1}$ Paolo Piccinni ${ }^{2}$ Victor Vuletescu ${ }^{3}$

${ }^{1}$ Università di Chieti-Pescara, Italy
${ }^{2}$ Università di Roma "La Sapienza", Italy
${ }^{3}$ University of Bucharest, Romania

Banff, Tuesday, 2012, May $1^{\text {st }}$

R MP, Paolo Piccinni.

Spin(9) and almost complex structures on 16-dimensional manifolds.
Ann. Global An. Geom., 41 (2012), 321-345.
图 MP, Paolo Piccinni.
Spheres with more than 7 vector fields: all the fault of $\operatorname{Spin}(9)$.
arXiv: 1107.0462 v 2.
固 MP, Paolo Piccinni, Victor Vuletescu.
16-dimensional manifolds with a locally conformal parallel $\operatorname{Spin}(9)$ metric.
Work in progress.
(1) S^{15} and $\operatorname{Spin}(9)$

- S^{15} is "more equal" than other spheres
- Spin(9) and Hopf fibrations
(2) The $\operatorname{Spin}(9)$ fundamental form
- Quaternionic analogy
- Spin(9) and Kähler forms on \mathbb{R}^{16}
- An explicit formula for $\Phi_{\text {Spin(9) }}$
(3) Vector fields on spheres
- Maximum number and examples
- The general case
(4) Locally conformal parallel $\operatorname{Spin}(9)$ manifolds
- Definition and examples
- Structure Theorem

First characterization: Hopf fibrations

S^{15} is the only sphere involved in three different Hopf fibrations.
S^{15}

First characterization: Hopf fibrations

S^{15} is the only sphere involved in three different Hopf fibrations.

First characterization: Hopf fibrations

S^{15} is the only sphere involved in three different Hopf fibrations.

First characterization: Hopf fibrations

S^{15} is the only sphere involved in three different Hopf fibrations.

Remark

The complex and quaternionic Hopf fibrations are not subfibrations of the octonionic one [Loo-Verjovsky, Topology 1992].

Second characterization: Einstein metrics

S^{15} is the only sphere with three homogeneous Einstein metrics
[Zi11er, Math. Ann. 1982].

- Round metric.
- Einstein metric on $\operatorname{Sp}(4) / \operatorname{Sp}(3)$ [Jensen, J. Diff. Geom. 1973].
- Einstein metric on $\operatorname{Spin}(9) / \operatorname{Spin}(7)$

```
[Bourguignon-Karcher, Ann. Sci. Ec. Norm. Sup. 1978].
```


Third characterization: vector fields on spheres

S^{15} is the lowest dimensional sphere admitting more than 7 vector fields
[Hurwitz, Math. Ann. 1922], [Radon, Abh. Math. Hamburg 1923], [Adams, Ann. of Math. 1962].

Third characterization: vector fields on spheres

S^{15} is the lowest dimensional sphere admitting more than 7 vector fields

```
[Hurwitz, Math. Ann. 1922], [Radon, Abh. Math. Hamburg 1923], [Adams, Ann. of Math. 1962].
```

- Number $\sigma(m)$ of linearly independent vector fields on S^{m-1} ?
- If $m=(2 k+1) 2^{p} 16^{q}$, with $0 \leq p \leq 3$, then

$$
\sigma(m)=8 q+2^{p}-1
$$

Third characterization: vector fields on spheres

S^{15} is the lowest dimensional sphere admitting more than 7 vector fields

```
[Hurwitz, Math. Ann. 1922], [Radon, Abh. Math. Hamburg 1923], [Adams, Ann. of Math. 1962].
```

- Number $\sigma(m)$ of linearly independent vector fields on S^{m-1} ?
- If $m=(2 k+1) 2^{p} 16^{q}$, with $0 \leq p \leq 3$, then

$$
\begin{aligned}
& \sigma(m)=8 q 2^{p}-1 \\
& \mathbb{C}, \mathbb{H}, \mathbb{O} \text { contribution }
\end{aligned}
$$

Third characterization: vector fields on spheres

S^{15} is the lowest dimensional sphere admitting more than 7 vector fields

```
[Hurwitz, Math. Ann. 1922], [Radon, Abh. Math. Hamburg 1923], [Adams, Ann. of Math. 1962].
```

- Number $\sigma(m)$ of linearly independent vector fields on S^{m-1} ?
- If $m=(2 k+1) 2^{p} 16^{q}$, with $0 \leq p \leq 3$, then

$$
\sigma(m)=8 q+\frac{2^{p}-1}{\uparrow}
$$

(1) S^{15} and $\operatorname{Spin}(9)$

- S^{15} is "more equal" than other spheres
- Spin(9) and Hopf fibrations
(2) The $\operatorname{Spin}(9)$ fundamental form
- Quaternionic analogy
- Spin(9) and Kähler forms on \mathbb{R}^{16}
- An explicit formula for $\Phi_{\text {Spin(9) }}$
(3) Vector fields on spheres
- Maximum number and examples
- The general case
(4) Locally conformal parallel $\operatorname{Spin}(9)$ manifolds
- Definition and examples
- Structure Theorem

Berger's list and $\operatorname{Spin}(9)$ refutation

Holonomy of simply connected, irreducible, nonsymmetric?

Berger's list and $\operatorname{Spin}(9)$ refutation

Holonomy of simply connected, irreducible, nonsymmetric?
$\mathrm{U}(n)$

```
\(\mathrm{SO}(n)\)
```

$\mathrm{SU}(n)$
Spin(9)
$\operatorname{Spin}(7)$
$\operatorname{Sp}(n) \cdot \operatorname{Sp}(1)$
$\operatorname{Sp}(n)$

Berger's list and Spin(9) refutation

Holonomy of simply connected, irreducible, nonsymmetric?
$\mathrm{U}(n)$

```
\(\mathrm{SO}(n)\)
```

$\mathrm{SU}(n)$
$\operatorname{Spin}(9) \quad \operatorname{Spin}(7)$
$\operatorname{Sp}(n) \cdot \operatorname{Sp}(1)$
$\operatorname{Sp}(n)$

Simply connected, complete, holonomy $\operatorname{Spin}(9)$
$\mathbb{O} P^{2}=\frac{\mathrm{F}_{4}}{\operatorname{Spin}(9)}(s>0), \quad \mathbb{R}^{16}($ flat $), \quad \mathbb{O} H^{2}=\frac{\mathrm{F}_{4}(-20)}{\operatorname{Spin}(9)}(s<0)$
[Alekseevsky, Funct. Anal. Prilozhen 1968].

Berger's list and Spin(9) refutation

Holonomy of simply connected, irreducible, nonsymmetric?
$\mathrm{U}(n)$

```
                        SO(n)
```

 \(\mathrm{SU}(n)\)

$\mathbb{O} P^{2}=\frac{\mathrm{F}_{4}}{\operatorname{Spin}(9)}(s>0), \quad \mathbb{R}^{16}($ flat $), \quad \mathbb{O} H^{2}=\frac{\mathrm{F}_{4}(-20)}{\operatorname{Spin}(9)}(s<0)$
[Alekseevsky, Funct. Anal. Prilozhen 1968].

Definition

$\operatorname{Spin}(9) \subset \mathrm{SO}(16)$ is the group of symmetries of the Hopf fibration $\mathbb{O}^{2} \supset S^{15} \xrightarrow{S^{7}} S^{8} \cong \mathbb{O} P^{1}{ }_{\text {[Gluck-Warner-Ziller, L'Enseignement Math. 1986]. }}$

Definition

$\operatorname{Spin}(9) \subset \mathrm{SO}(16)$ is the group of symmetries of the Hopf fibration $\mathbb{O}^{2} \supset S^{15} \xrightarrow{S^{7}} S^{8} \cong \mathbb{O} P^{1}$ [Gluck-Warner-Ziller, L'Enseignement Math. 1986].

- $\Lambda^{8}\left(\mathbb{R}^{16}\right) \stackrel{\text { Spin(9) }}{=} \Lambda_{1}^{8}+\ldots$ [Friedrich, Asian Journ. Math 2001].
- $\operatorname{Spin}(9)$ is the stabilizer in $\operatorname{SO}(16)$ of any element of Λ_{1}^{8} [Brown-Gray, Diff. Geom. in honor of K. Yano 1972].

Definition

$\operatorname{Spin}(9) \subset \mathrm{SO}(16)$ is the group of symmetries of the Hopf fibration $\mathbb{O}^{2} \supset S^{15} \xrightarrow{S^{7}} S^{8} \cong \mathbb{O} P^{1}{ }_{\text {[Gluck-Warner-Ziller, L'Enseignement Math. 1986] }}$.

- $\Lambda^{8}\left(\mathbb{R}^{16}\right) \stackrel{\text { Spin(9) }}{=} \Lambda_{1}^{8}+\ldots$ [Friedrich, Asian Journ. Math 2001$]$.
- $\operatorname{Spin}(9)$ is the stabilizer in $\operatorname{SO}(16)$ of any element of Λ_{1}^{8} [Brown-Gray, Diff. Geom. in honor of K. Yano 1972].

Definition

$\operatorname{Spin}(9)$ is the stabilizer in $\mathrm{SO}(16)$ of the 8-form

$$
\Phi_{\text {Spin }(9)} \stackrel{\text { utc }}{=} \int_{\mathbb{O} P^{1}} p_{l}^{*} \nu_{l} d l
$$

[Berger, Ann. Éc. Norm. Sup. 1972].

Definition

$\operatorname{Spin}(9) \subset \mathrm{SO}(16)$ is the group of symmetries of the Hopf fibration $\mathbb{O}^{2} \supset S^{15} \xrightarrow{S^{7}} S^{8} \cong \mathbb{O} P^{1}$
[Gluck-Warner-Ziller, L'Enseignement Math. 1986].

- $\Lambda^{8}\left(\mathbb{R}^{16}\right) \stackrel{\text { Spin(9) }}{=} \Lambda_{1}^{8}+\ldots$ [Friedrich, Asian Journ. Math 2001].
- $\operatorname{Spin}(9)$ is the stabilizer in $\operatorname{SO}(16)$ of any element of Λ_{1}^{8} [Brown-Gray, Diff. Geom. in honor of K. Yano 1972].

Definition

$\operatorname{Spin}(9)$ is the stabilizer in $\mathrm{SO}(16)$ of the 8 -form
[Berger, Ann. Éc. Norm. Sup. 1972].

Are we left with 32 or more minutes?

- Yes, go ahead as planned
- No, skip quaternionic analogy
(1) S^{15} and $\operatorname{Spin}(9)$
- S^{15} is "more equal" than other spheres
- Spin(9) and Hopf fibrations
(2) The $\operatorname{Spin}(9)$ fundamental form
- Quaternionic analogy
- Spin(9) and Kähler forms on \mathbb{R}^{16}
- An explicit formula for $\Phi_{\text {Spin(9) }}$
(3) Vector fields on spheres
- Maximum number and examples
- The general case
(4) Locally conformal parallel $\operatorname{Spin}(9)$ manifolds
- Definition and examples
- Structure Theorem

A close relative: the quaternionic case

- $\mathrm{Sp}(2) \cdot \mathrm{Sp}(1) \subset \mathrm{SO}(8)$ is the group of symmetries of the Hopf fibration $\mathbb{H}^{2} \supset S^{7} \xrightarrow{S^{3}} S^{4} \cong \mathbb{H} P^{1}{ }_{\text {[G1uck-Warner-Ziller, L'EEnseignement Math. 1986]. }}$.
- $\operatorname{Sp}(2) \cdot \mathrm{Sp}(1)$ is the stabilizer in $\mathrm{SO}(8)$ of the 4-form $\Phi_{\mathrm{Sp}(2) \cdot \operatorname{Sp}(1)}$ defined by

$$
\Phi_{\mathrm{Sp}(2) \cdot \operatorname{Sp}(1)}=\int_{\mathbb{H} P^{1}} p_{l}^{*} \nu_{l} d l
$$

[Berger, Ann. Éc. Norm. Sup. 1972].

- Consider in $\mathrm{Sp}(2)$ the matrices

$$
\left(\begin{array}{cc}
r & R_{\bar{u}} \\
R_{u} & -r
\end{array}\right)
$$

where $(r, u) \in S^{4} \subset \mathbb{R} \times \mathbb{H}$ and $\mathbb{H}^{2} \cong \mathbb{R}^{8}$.

- Consider in $\mathrm{Sp}(2)$ the matrices

$$
\left(\begin{array}{cc}
r & R_{\bar{u}} \\
R_{u} & -r
\end{array}\right)
$$

where $(r, u) \in S^{4} \subset \mathbb{R} \times \mathbb{H}$ and $\mathbb{H}^{2} \cong \mathbb{R}^{8}$.

- The choice of $(r, u)=(1,0),(0,1),(0, i),(0, j),(0, k)$ gives

$$
\mathcal{I}_{1}, \ldots, \mathcal{I}_{5} \in \mathrm{SO}(8)
$$

Five involutions for $\operatorname{Spin}(5)$

- Consider in $\mathrm{Sp}(2)$ the matrices

$$
\left(\begin{array}{cc}
r & R_{\bar{u}} \\
R_{u} & -r
\end{array}\right)
$$

where $(r, u) \in S^{4} \subset \mathbb{R} \times \mathbb{H}$ and $\mathbb{H}^{2} \cong \mathbb{R}^{8}$.

- The choice of $(r, u)=(1,0),(0,1),(0, i),(0, j),(0, k)$ gives

$$
\mathcal{I}_{1}, \ldots, \mathcal{I}_{5} \in \mathrm{SO}(8)
$$

- $\mathcal{I}_{1}, \ldots, \mathcal{I}_{5}$ satisfy

$$
\mathcal{I}_{\alpha}^{2}=\mathrm{Id}, \quad \mathcal{I}_{\alpha}^{*}=\mathcal{I}_{\alpha}, \quad \mathcal{I}_{\alpha} \circ \mathcal{I}_{\beta}=-\mathcal{I}_{\beta} \circ \mathcal{I}_{\alpha}
$$

From involutions to Kähler forms

- Since $\mathcal{I}_{\alpha} \circ \mathcal{I}_{\beta}=-\mathcal{I}_{\beta} \circ \mathcal{I}_{\alpha}$, one gets 10 complex structures

$$
J_{\alpha \beta}=\mathcal{I}_{\alpha} \circ \mathcal{I}_{\beta} \quad \text { for } \alpha<\beta
$$

From involutions to Kähler forms

- Since $\mathcal{I}_{\alpha} \circ \mathcal{I}_{\beta}=-\mathcal{I}_{\beta} \circ \mathcal{I}_{\alpha}$, one gets 10 complex structures

$$
J_{\alpha \beta}=\mathcal{I}_{\alpha} \circ \mathcal{I}_{\beta} \quad \text { for } \alpha<\beta
$$

- The Kähler forms $\theta_{\alpha \beta}$ give rise to a 5×5 skew-symmetric matrix

$$
\theta=\left(\theta_{\alpha \beta}\right)
$$

From involutions to Kähler forms

- Since $\mathcal{I}_{\alpha} \circ \mathcal{I}_{\beta}=-\mathcal{I}_{\beta} \circ \mathcal{I}_{\alpha}$, one gets 10 complex structures

$$
J_{\alpha \beta}=\mathcal{I}_{\alpha} \circ \mathcal{I}_{\beta} \quad \text { for } \alpha<\beta
$$

- The Kähler forms $\theta_{\alpha \beta}$ give rise to a 5×5 skew-symmetric matrix

$$
\theta=\left(\theta_{\alpha \beta}\right)
$$

Remark

Denote by $\tau_{2}(\theta)$ the second coefficient of the characteristic polynomial of $\theta=\left(\theta_{\alpha \beta}\right)$. Then

$$
\Phi_{\mathrm{Sp}(2) \cdot \operatorname{Sp}(1)} \stackrel{\text { utc }}{=} \tau_{2}(\theta)
$$

(1) S^{15} and $\operatorname{Spin}(9)$

- S^{15} is "more equal" than other spheres
- Spin(9) and Hopf fibrations
(2) The $\operatorname{Spin}(9)$ fundamental form
- Quaternionic analogy
- $\operatorname{Spin}(9)$ and Kähler forms on \mathbb{R}^{16}
- An explicit formula for $\Phi_{\text {Spin }(9)}$
(3) Vector fields on spheres
- Maximum number and examples
- The general case
(4) Locally conformal parallel $\operatorname{Spin}(9)$ manifolds
- Definition and examples
- Structure Theorem

Nine involutions for Spin(9)

- $\operatorname{Spin}(9)$ is the subgroup of $\mathrm{SO}(16)$ generated by matrices

$$
\left(\begin{array}{cc}
r & R_{\bar{u}} \\
R_{u} & -r
\end{array}\right)
$$

where $(r, u) \in S^{8} \subset \mathbb{R} \times \mathbb{O}$ and $\mathbb{O}^{2} \cong \mathbb{R}^{16}$
[Harvey, Spinors and Calibrations 1990].

Nine involutions for $\operatorname{Spin}(9)$

- $\operatorname{Spin}(9)$ is the subgroup of $\mathrm{SO}(16)$ generated by matrices

$$
\left(\begin{array}{cc}
r & R_{\bar{u}} \\
R_{u} & -r
\end{array}\right)
$$

where $(r, u) \in S^{8} \subset \mathbb{R} \times \mathbb{O}$ and $\mathbb{O}^{2} \cong \mathbb{R}^{16}$
[Harvey, Spinors and Calibrations 1990].

- The choice of $(r, u)=(1,0),(0,1),(0, i),(0, j),(0, k),(0, e),(0, f)$, $(0, g),(0, h)$ gives

$$
\mathcal{I}_{1}, \ldots, \mathcal{I}_{9} \in \mathrm{SO}(16)
$$

Nine involutions for $\operatorname{Spin}(9)$

- $\operatorname{Spin}(9)$ is the subgroup of $\mathrm{SO}(16)$ generated by matrices

$$
\left(\begin{array}{cc}
r & R_{\bar{u}} \\
R_{u} & -r
\end{array}\right)
$$

where $(r, u) \in S^{8} \subset \mathbb{R} \times \mathbb{O}$ and $\mathbb{O}^{2} \cong \mathbb{R}^{16}$
[Harvey, Spinors and Calibrations 1990].

- The choice of $(r, u)=(1,0),(0,1),(0, i),(0, j),(0, k),(0, e),(0, f)$, $(0, g),(0, h)$ gives

$$
\mathcal{I}_{1}, \ldots, \mathcal{I}_{9} \in \mathrm{SO}(16)
$$

- $\mathcal{I}_{1}, \ldots, \mathcal{I}_{9}$ satisfy

$$
\mathcal{I}_{\alpha}^{2}=\operatorname{Id}, \quad \mathcal{I}_{\alpha}^{*}=\mathcal{I}_{\alpha}, \quad \mathcal{I}_{\alpha} \circ \mathcal{I}_{\beta}=-\mathcal{I}_{\beta} \circ \mathcal{I}_{\alpha}
$$

From involutions to Kähler forms

- Since $\mathcal{I}_{\alpha} \circ \mathcal{I}_{\beta}=-\mathcal{I}_{\beta} \circ \mathcal{I}_{\alpha}$, one gets 36 complex structures

$$
J_{\alpha \beta}=\mathcal{I}_{\alpha} \circ \mathcal{I}_{\beta} \quad \text { for } \alpha<\beta
$$

The Spin(9) fundamental form
 $\operatorname{Spin}(9)$ and Kähler forms on \mathbb{R}^{16}
 From involutions to Kähler forms

- Since $\mathcal{I}_{\alpha} \circ \mathcal{I}_{\beta}=-\mathcal{I}_{\beta} \circ \mathcal{I}_{\alpha}$, one gets 36 complex structures

$$
J_{\alpha \beta}=\mathcal{I}_{\alpha} \circ \mathcal{I}_{\beta} \quad \text { for } \alpha<\beta
$$

- Their Kähler forms $\theta_{\alpha \beta}$ give rise to a 9×9 skew-symmetric matrix

$$
\theta=\left(\theta_{\alpha \beta}\right)
$$

From involutions to Kähler forms

- Since $\mathcal{I}_{\alpha} \circ \mathcal{I}_{\beta}=-\mathcal{I}_{\beta} \circ \mathcal{I}_{\alpha}$, one gets 36 complex structures

$$
J_{\alpha \beta}=\mathcal{I}_{\alpha} \circ \mathcal{I}_{\beta} \quad \text { for } \alpha<\beta
$$

- Their Kähler forms $\theta_{\alpha \beta}$ give rise to a 9×9 skew-symmetric matrix

$$
\theta=\left(\theta_{\alpha \beta}\right)
$$

Remark

$$
\Lambda^{2}\left(\mathbb{R}^{16}\right)=\Lambda_{36}^{2} \oplus \quad \Lambda_{84}^{2}=\mathfrak{s p i n}(9) \oplus \Lambda_{84}^{2}
$$

From involutions to Kähler forms

- Since $\mathcal{I}_{\alpha} \circ \mathcal{I}_{\beta}=-\mathcal{I}_{\beta} \circ \mathcal{I}_{\alpha}$, one gets 36 complex structures

$$
J_{\alpha \beta}=\mathcal{I}_{\alpha} \circ \mathcal{I}_{\beta} \quad \text { for } \alpha<\beta
$$

- Their Kähler forms $\theta_{\alpha \beta}$ give rise to a 9×9 skew-symmetric matrix

$$
\theta=\left(\theta_{\alpha \beta}\right)
$$

Remark

$$
\Lambda^{2}\left(\mathbb{R}^{16}\right)=\Lambda_{36}^{2} \oplus \Lambda_{84}^{2}=\mathfrak{s p i n}(9) \oplus \Lambda_{84}^{2}
$$

From involutions to Kähler forms

- Since $\mathcal{I}_{\alpha} \circ \mathcal{I}_{\beta}=-\mathcal{I}_{\beta} \circ \mathcal{I}_{\alpha}$, one gets 36 complex structures

$$
J_{\alpha \beta}=\mathcal{I}_{\alpha} \circ \mathcal{I}_{\beta} \quad \text { for } \alpha<\beta
$$

- Their Kähler forms $\theta_{\alpha \beta}$ give rise to a 9×9 skew-symmetric matrix

$$
\theta=\left(\theta_{\alpha \beta}\right)
$$

Remark

Theorem [P-Piccinni, Ann. Gl. An. Geom. 2012]

Denote the characteristic polynomial of θ by

$$
t^{9}+\tau_{2}(\theta) t^{7}+\tau_{4}(\theta) t^{5}+\tau_{6}(\theta) t^{3}+\tau_{8}(\theta) t
$$

Theorem [P-Piccinni, Ann. GI. An. Geom. 2012]

Denote the characteristic polynomial of θ by

$$
t^{9}+\tau_{2}(\theta) t^{7}+\tau_{4}(\theta) t^{5}+\tau_{6}(\theta) t^{3}+\tau_{8}(\theta) t
$$

Then

$$
\Phi_{\operatorname{Spin}(9)} \stackrel{\text { utc }}{=} \tau_{4}(\theta)
$$

(1) S^{15} and $\operatorname{Spin}(9)$

- S^{15} is "more equal" than other spheres
- Spin(9) and Hopf fibrations
(2) The $\operatorname{Spin}(9)$ fundamental form
- Quaternionic analogy
- Spin(9) and Kähler forms on \mathbb{R}^{16}
- An explicit formula for $\Phi_{\text {Spin }(9)}$
(3) Vector fields on spheres
- Maximum number and examples
- The general case
(4) Locally conformal parallel $\operatorname{Spin}(9)$ manifolds
- Definition and examples
- Structure Theorem
- From $\Phi_{\text {Spin }(9)} \stackrel{\text { utc }}{=} \tau_{4}(\theta)$, we obtain an Cexplict fomula
- From $\Phi_{\text {Spin(9) }} \stackrel{\text { utc }}{=} \tau_{4}(\theta)$, we obtain an Cexplict formula
- The $\binom{16}{8}=12870$ integrals of

$$
\Phi_{\operatorname{Spin}(9)} \stackrel{\text { utc }}{=} \int_{\mathbb{O} P^{1}} p_{l}^{*} \nu_{l} d l
$$

can be computed with the help of Mathematica.

An explicit formula for $\Phi_{\text {Spin(9) }}$

- From $\Phi_{\text {Spin }(9)} \stackrel{\text { utc }}{=} \tau_{4}(\theta)$, we obtain an Cexplict fompla
- The $\binom{16}{8}=12870$ integrals of

$$
\Phi_{\operatorname{Spin}(9)} \stackrel{\text { utc }}{=} \int_{\mathbb{O} P^{1}} p_{l}^{*} \nu_{l} d l
$$

can be computed with the help of Mathematica.

Previous work for $\Phi_{\text {Spin(9) }}$ in CAbe-Matsubara, Korea Japan Conf. Transf. Groups 1997], [Friedrich, Asian J. Math. 2001], [C. Lopez-Gadea-Mykytyuk, int. J. Geom. Methods 2010].

Questions to the audience

$\Phi_{\operatorname{Spin}(9)}=\int_{\mathbb{O} P^{1}} p_{l}^{*} \nu_{l} d l$ and $\Phi_{\operatorname{Sp}(2) \cdot \operatorname{Sp}(1)}=\int_{\mathbb{H} P^{1}} p_{l}^{*} \nu_{l} d l$ share the following general pattern:

$$
\Phi=\int_{\mathrm{Gr}(\text { calibrated subspaces })} p^{*} \nu_{\text {calibrated subspaces }}
$$

Questions to the audience

$\Phi_{\operatorname{Spin}(9)}=\int_{\mathbb{O} P^{1}} p_{l}^{*} \nu_{l} d l$ and $\Phi_{\operatorname{Sp}(2) \cdot \operatorname{Sp}(1)}=\int_{\mathbb{H} P^{1}} p_{l}^{*} \nu_{l} d l$ share the following general pattern:

$$
\Phi=\int_{\mathrm{Gr}(\text { calibrated subspaces })} p^{*} \nu_{\text {calibrated subspaces }}
$$

- $\Phi_{\mathrm{G}_{2}} \in \Lambda^{3}\left(\mathbb{R}^{7}\right)$ is a calibration, with associative subspaces as calibrated submanifolds. The Grassmannian in this case is $\mathrm{G}_{2} / \mathrm{SO}(4)$: is it true that

$$
\Phi_{\mathrm{G}_{2}}=\int_{\frac{\mathrm{G}_{2}}{\operatorname{SO}(4)}} p_{l}^{*} \nu_{l} d l
$$

- Same question for $\Phi_{\operatorname{Spin}(7)} \in \Lambda^{4}\left(\mathbb{R}^{8}\right)$: is it true that

$$
\Phi_{\mathrm{Spin}(7)}=\int_{\mathrm{CAY}} p_{l}^{*} \nu_{l} d l
$$

QttA/2

The forms $\Phi_{\mathrm{Sp}(2) \cdot \operatorname{Sp}(1)}, \Phi_{\mathrm{G}_{2}}, \Phi_{\mathrm{Spin}(7)}$ and $\Phi_{\mathrm{Spin}(9)}$ are finite sums of 14,7 , 14 and 702 terms respectively.

The forms $\Phi_{\mathrm{Sp}(2) \cdot \operatorname{Sp}(1)}, \Phi_{\mathrm{G}_{2}}, \Phi_{\mathrm{Spin}(7)}$ and $\Phi_{\mathrm{Spin}(9)}$ are finite sums of 14,7 , 14 and 702 terms respectively.

- Why these numbers?
- Are these numbers related to finite subgroups of $\operatorname{Sp}(2) \cdot \operatorname{Sp}(1), G_{2}$, $\operatorname{Spin}(7)$ and $\operatorname{Spin}(9)$ respectively?
- Why do $\Phi_{\mathrm{G}_{2}}$ and $\Phi_{\mathrm{Spin}(7)}$ have coefficients ± 1, whereas $\Phi_{\mathrm{Sp}(2) \cdot \operatorname{Sp}(1)}$ and $\Phi_{\text {Spin(9) }}$ do not?

The forms $\Phi_{\operatorname{Sp}(2) \cdot \operatorname{Sp}(1)}, \Phi_{\mathrm{G}_{2}}, \Phi_{\operatorname{Spin}(7)}$ and $\Phi_{\operatorname{Spin}(9)}$ are finite sums of 14,7 , 14 and 702 terms respectively.

- Why these numbers?
- Are these numbers related to finite subgroups of $\operatorname{Sp}(2) \cdot \operatorname{Sp}(1), G_{2}$, $\operatorname{Spin}(7)$ and $\operatorname{Spin}(9)$ respectively?
- Why do $\Phi_{\mathrm{G}_{2}}$ and $\Phi_{\mathrm{Spin}(7)}$ have coefficients ± 1, whereas $\Phi_{\mathrm{Sp}(2) \cdot \operatorname{Sp}(1)}$ and $\Phi_{\text {Spin(9) }}$ do not?

In the framework of Clifford structures Choroianu-Semmelmann, Adv. Math. 2011], one can associate to any rank r even Clifford structure a skew-symmetric $r \times r$ matrix of Kähler forms.

The forms $\Phi_{\mathrm{Sp}(2) \cdot \operatorname{Sp}(1)}, \Phi_{\mathrm{G}_{2}}, \Phi_{\mathrm{Spin}(7)}$ and $\Phi_{\mathrm{Spin}(9)}$ are finite sums of 14,7 , 14 and 702 terms respectively.

- Why these numbers?
- Are these numbers related to finite subgroups of $\operatorname{Sp}(2) \cdot \operatorname{Sp}(1), G_{2}$, $\operatorname{Spin}(7)$ and $\operatorname{Spin}(9)$ respectively?
- Why do $\Phi_{\mathrm{G}_{2}}$ and $\Phi_{\mathrm{Spin}(7)}$ have coefficients ± 1, whereas $\Phi_{\mathrm{Sp}(2) \cdot \operatorname{Sp}(1)}$ and $\Phi_{\text {Spin(9) }}$ do not?

In the framework of Clifford structures [Moroianu-Semmelmann, Adv. Math. 2011], one can associate to any rank r even Clifford structure a skew-symmetric $r \times r$ matrix of Kähler forms.

- Do the coefficients of the characteristic polynomial have any particular geometrical meaning?
(1) S^{15} and $\operatorname{Spin}(9)$
- S^{15} is "more equal" than other spheres
- Spin(9) and Hopf fibrations
(2) The $\operatorname{Spin}(9)$ fundamental form
- Quaternionic analogy
- Spin(9) and Kähler forms on \mathbb{R}^{16}
- An explicit formula for $\Phi_{\text {Spin(9) }}$
(3) Vector fields on spheres
- Maximum number and examples
- The general case
(4) Locally conformal parallel $\operatorname{Spin}(9)$ manifolds
- Definition and examples
- Structure Theorem

How many vector fields on spheres?

- Spheres $S^{m-1} \subset \mathbb{R}^{m}$ admit 1,3 or 7 linearly independent vector fields according to whether $p=1,2$ or 3 in

$$
m=(2 k+1) 2^{p}
$$

How many vector fields on spheres?

- Spheres $S^{m-1} \subset \mathbb{R}^{m}$ admit 1,3 or 7 linearly independent vector fields according to whether $p=1,2$ or 3 in

$$
m=(2 k+1) 2^{p}
$$

- In the general case

$$
m=(2 k+1) 2^{p} 16^{q} \quad \text { with } q \geq 0 \quad \text { and } \quad p=0,1,2,3
$$

the maximum number of vector fields is

$$
\sigma(m)=8 q+2^{p}-1
$$

How many vector fields on spheres?

- Spheres $S^{m-1} \subset \mathbb{R}^{m}$ admit 1,3 or 7 linearly independent vector fields according to whether $p=1,2$ or 3 in

$$
m=(2 k+1) 2^{p}
$$

- In the general case

$$
m=(2 k+1) 2^{p} 16^{q} \quad \text { with } q \geq 0 \quad \text { and } \quad p=0,1,2,3
$$

the maximum number of vector fields is

$$
\sigma(m)=8 q+\frac{2^{p}-1}{\uparrow}
$$

How many vector fields on spheres?

- Spheres $S^{m-1} \subset \mathbb{R}^{m}$ admit 1,3 or 7 linearly independent vector fields according to whether $p=1,2$ or 3 in

$$
m=(2 k+1) 2^{p}
$$

- In the general case

$$
m=(2 k+1) 2^{p} 16^{q} \quad \text { with } q \geq 0 \quad \text { and } \quad p=0,1,2,3
$$

the maximum number of vector fields is

Spin(9) contribution

$$
\sigma(m
$$

The lowest dimensional sphere with more than 7 vector field is S^{15}
[Hurwitz, Math. Ann. 1922], [Radon, Abh. Math. Hamburg 1923], [Adams, Ann. of Math. 1962].

- Coordinates on S^{15} :

$$
N=(x, y)=\left(x_{1}, \ldots, x_{8}, y_{1}, \ldots, y_{8}\right)
$$

unit normal vector field

- Coordinates on S^{15} :

$$
N=(x, y)=\left(x_{1}, \ldots, x_{8}, y_{1}, \ldots, y_{8}\right) \quad \text { unit normal vector field }
$$

- Among the 36 complex structures $\mathcal{I}_{\alpha} \circ \mathcal{I}_{\beta}$ on \mathbb{R}^{16} associated to the $\operatorname{Spin}(9)$ structure, choose $J_{\alpha}=\mathcal{I}_{\alpha} \circ \mathcal{I}_{9}$, for $\alpha=1, \ldots, 8$.
- Coordinates on S^{15} :

$$
N=(x, y)=\left(x_{1}, \ldots, x_{8}, y_{1}, \ldots, y_{8}\right) \quad \text { unit normal vector field }
$$

- Among the 36 complex structures $\mathcal{I}_{\alpha} \circ \mathcal{I}_{\beta}$ on \mathbb{R}^{16} associated to the $\operatorname{Spin}(9)$ structure, choose $J_{\alpha}=\mathcal{I}_{\alpha} \circ \mathcal{I}_{9}$, for $\alpha=1, \ldots, 8$.

Proposition

A maximal system of 8 orthonormal vector fields on S^{15} is given by

$$
J_{1} N, \ldots, J_{8} N
$$

- Coordinates on S^{15} :

$$
N=(x, y)=\left(x_{1}, \ldots, x_{8}, y_{1}, \ldots, y_{8}\right) \quad \text { unit normal vector field }
$$

- Among the 36 complex structures $\mathcal{I}_{\alpha} \circ \mathcal{I}_{\beta}$ on \mathbb{R}^{16} associated to the $\operatorname{Spin}(9)$ structure, choose $J_{\alpha}=\mathcal{I}_{\alpha} \circ \mathcal{I}_{9}$, for $\alpha=1, \ldots, 8$.

Proposition

A maximal system of 8 orthonormal vector fields on S^{15} is given by

$$
J_{1} N, \ldots, J_{8} N
$$

Remark

The eight complex structures $\left\{J_{1}, \ldots, J_{8}\right\}$ play a role analogous to that of the units in $\mathbb{C}, \mathbb{H}, \mathbb{O}$.

Next spheres with $\sigma(m)>7: S^{2^{\rho} 16-1}, p=1,2,3$

Group coordinates in 16-ples s^{α}, and split each s^{α} as a pair $\left(x^{\alpha}, y^{\alpha}\right)$ of 8 -ples. Define a conjugation D by $\left(x^{\alpha}, y^{\alpha}\right) \mapsto\left(x^{\alpha},-y^{\alpha}\right)$.

Next spheres with $\sigma(m)>7: S^{2^{\rho} 16-1}, p=1,2,3$

Group coordinates in 16-ples s^{α}, and split each s^{α} as a pair $\left(x^{\alpha}, y^{\alpha}\right)$ of 8 -ples. Define a conjugation D by $\left(x^{\alpha}, y^{\alpha}\right) \mapsto\left(x^{\alpha},-y^{\alpha}\right)$.

Proposition

The following table gives a maximal system of $\sigma(m)$ orthonormal vector fields on $S^{2^{p} 16-1}$, for $p=1,2,3$:

Sphere	$\sigma(m)$	Vector fields	Notations	Involved structures
$p=1: S^{31}$	$8+1$	$\begin{gathered} \hline J_{1} N, \ldots, J_{8} N \\ D\left(L_{i} N\right) \\ \hline \end{gathered}$	$\begin{gathered} N=s^{1}+i s^{2}, L_{i} N=-s^{2}+i s^{1} \\ D:\left(x^{\alpha}, y^{\alpha}\right) \rightarrow\left(x^{\alpha},-y^{\alpha}\right) \end{gathered}$	$\operatorname{Spin}(9)+\mathbb{C}$
$p=2: S^{63}$	$8+3$	$\begin{gathered} J_{1} N, \ldots, J_{8} N \\ D\left(L_{i} N\right), D\left(L_{j} N\right), D\left(L_{k} N\right) \end{gathered}$	$N=s^{1}+i s^{2}+j s^{3}+k s^{4}$ L_{i}, L_{j}, L_{k} and D as above	$\operatorname{Spin}(9)+\mathbb{H}$
$p=3: S^{127}$	$8+7$	$\begin{gathered} J_{1} N, \ldots, J_{8} N \\ D\left(L_{i} N\right), \ldots, D\left(L_{h} N\right) \end{gathered}$	$\begin{gathered} N=s^{1}+i s^{2}+j s^{3}+k s^{4}+e s^{5}+f s^{6}+g s^{7}+h s^{8} \\ L_{i}, \ldots, L_{h} \text { and } D \text { as above } \end{gathered}$	Spin(9)+(0)

- Again, group coordinates in 16-ples s^{α}, and split each s^{α} as a pair $\left(x^{\alpha}, y^{\alpha}\right)$ of 8 -ples. Define D by $\left(x^{\alpha}, y^{\alpha}\right) \mapsto\left(x^{\alpha},-y^{\alpha}\right)$.
- Again, group coordinates in 16-ples s^{α}, and split each s^{α} as a pair $\left(x^{\alpha}, y^{\alpha}\right)$ of 8 -ples. Define D by $\left(x^{\alpha}, y^{\alpha}\right) \mapsto\left(x^{\alpha},-y^{\alpha}\right)$.
- Act on the (column) 16-ples of 16 -ples $\left(s^{1}, \ldots, s^{16}\right)^{T}$ by J_{1}, \ldots, J_{8}, and call $\operatorname{block}\left(J_{1}\right), \ldots, \operatorname{block}\left(J_{8}\right)$ the resulting automorphisms.
- Again, group coordinates in 16 -ples s^{α}, and split each s^{α} as a pair $\left(x^{\alpha}, y^{\alpha}\right)$ of 8 -ples. Define D by $\left(x^{\alpha}, y^{\alpha}\right) \mapsto\left(x^{\alpha},-y^{\alpha}\right)$.
- Act on the (column) 16-ples of 16 -ples $\left(s^{1}, \ldots, s^{16}\right)^{T}$ by J_{1}, \ldots, J_{8}, and call $\operatorname{block}\left(J_{1}\right), \ldots, \operatorname{block}\left(J_{8}\right)$ the resulting automorphisms.

Proposition

A maximal system of orthonormal vector fields on S^{255} is given by:

- 16 vector fields are given by $\left\{J_{\alpha} N, D\left(\operatorname{block}\left(J_{\alpha}\right) N\right)\right\}_{\alpha=1, \ldots, 8}$.

$$
S^{511}: \sigma(m)=2 \cdot 8+1
$$

- 16 vector fields are given by $\left\{J_{\alpha} N, D\left(\operatorname{block}\left(J_{\alpha}\right) N\right)\right\}_{\alpha=1, \ldots, 8}$.
- Imitating the \mathbb{R}^{32} case, group coordinates in 256-ples $\left(s^{1}, s^{2}\right)$, and define $L_{i}\left(s^{1}, s^{2}\right)=\left(-s^{2}, s^{1}\right)$.

$$
S^{511}: \sigma(m)=2 \cdot 8+1
$$

- 16 vector fields are given by $\left\{J_{\alpha} N, D\left(\operatorname{block}\left(J_{\alpha}\right) N\right)\right\}_{\alpha=1, \ldots, 8}$.
- Imitating the \mathbb{R}^{32} case, group coordinates in 256-ples $\left(s^{1}, s^{2}\right)$, and define $L_{i}\left(s^{1}, s^{2}\right)=\left(-s^{2}, s^{1}\right)$.

Proposition

The vector field $D\left(L_{i} N\right)$ is orthogonal to $\left\{J_{\alpha} N, D\left(\operatorname{block}\left(J_{\alpha}\right) N\right)\right\}_{\alpha=1, \ldots, 8}$.

$$
S^{511}: \sigma(m)=2 \cdot 8+1
$$

- 16 vector fields are given by $\left\{J_{\alpha} N, D\left(\operatorname{block}\left(J_{\alpha}\right) N\right)\right\}_{\alpha=1, \ldots, 8}$.
- Imitating the \mathbb{R}^{32} case, group coordinates in 256-ples $\left(s^{1}, s^{2}\right)$, and define $L_{i}\left(s^{1}, s^{2}\right)=\left(-s^{2}, s^{1}\right)$.

Proposition

- 16 vector fields are given by $\left\{J_{\alpha} N, D\left(\operatorname{block}\left(J_{\alpha}\right) N\right)\right\}_{\alpha=1, \ldots, 8}$.
- Imitating the \mathbb{R}^{32} case, group coordinates in 256-ples $\left(s^{1}, s^{2}\right)$, and define $L_{i}\left(s^{1}, s^{2}\right)=\left(-s^{2}, s^{1}\right)$.

Proposition

The vector field $D\left(L_{i} N\right)$ isorthog

- Next try: split each s^{α} as a pair $\left(x^{\alpha}, y^{\alpha}\right)$ of 128 -ples, and define a conjugation D_{2} by $\left(x^{\alpha}, y^{\alpha}\right) \mapsto\left(x^{\alpha},-y^{\alpha}\right)$.
- 16 vector fields are given by $\left\{J_{\alpha} N, D\left(\operatorname{block}\left(J_{\alpha}\right) N\right)\right\}_{\alpha=1, \ldots, 8}$.
- Imitating the \mathbb{R}^{32} case, group coordinates in 256-ples $\left(s^{1}, s^{2}\right)$, and define $L_{i}\left(s^{1}, s^{2}\right)=\left(-s^{2}, s^{1}\right)$.

Proposition

The vector field $D\left(L_{i} N\right)$ isorthog

- Next try: split each s^{α} as a pair $\left(x^{\alpha}, y^{\alpha}\right)$ of 128 -ples, and define a conjugation D_{2} by $\left(x^{\alpha}, y^{\alpha}\right) \mapsto\left(x^{\alpha},-y^{\alpha}\right)$.

Proposition

The vector field $D_{2}\left(L_{i} N\right)$ is orthogonal to $\left\{J_{\alpha} N, D\left(\operatorname{block}\left(J_{\alpha}\right) N\right)\right\}_{\alpha=1, \ldots, 8}$.

- 16 vector fields are given by $\left\{J_{\alpha} N, D\left(\operatorname{block}\left(J_{\alpha}\right) N\right)\right\}_{\alpha=1, \ldots, 8}$.
- Imitating the \mathbb{R}^{32} case, group coordinates in 256-ples $\left(s^{1}, s^{2}\right)$, and define $L_{i}\left(s^{1}, s^{2}\right)=\left(-s^{2}, s^{1}\right)$.

Proposition

The vector field $D\left(L_{i} N\right)$ isorthog

- Next try: split each s^{α} as a pair $\left(x^{\alpha}, y^{\alpha}\right)$ of 128 -ples, and define a conjugation D_{2} by $\left(x^{\alpha}, y^{\alpha}\right) \mapsto\left(x^{\alpha},-y^{\alpha}\right)$.

Proposition

$$
S^{511}: \sigma(m)=2 \cdot 8+1
$$

Proposition

The vector field $D\left(D_{2}\left(L_{i} N\right)\right)$ is orthogonal to

$$
\left\{J_{\alpha} N, D\left(\operatorname{block}\left(J_{\alpha}\right) N\right)\right\}_{\alpha=1, \ldots, 8}
$$

$$
S^{511}: \sigma(m)=2 \cdot 8+1
$$

Proposition

The vector field $D\left(D_{2}\left(L_{i} N\right)\right)$ is orthogonal to $\left\{J_{\alpha} N, D\left(\operatorname{block}\left(J_{\alpha}\right) N\right)\right\}_{\alpha=1, \ldots}$
(1) S^{15} and $\operatorname{Spin}(9)$

- S^{15} is "more equal" than other spheres
- Spin(9) and Hopf fibrations
(2) The $\operatorname{Spin}(9)$ fundamental form
- Quaternionic analogy
- Spin(9) and Kähler forms on \mathbb{R}^{16}
- An explicit formula for $\Phi_{\text {Spin(9) }}$
(3) Vector fields on spheres
- Maximum number and examples
- The general case
(4) Locally conformal parallel Spin(9) manifolds
- Definition and examples
- Structure Theorem

Remark

Abuse of notation in previous slides: $J_{\alpha} \in$ Mat $_{16}$, but for instance in this row $J_{\alpha} \in$ Mat $_{32}$:

| $p=1: S^{31}$ | $8+1$ | $J_{1} N, \ldots, J_{8} N$ | $N=s^{1}+i s^{2}, L_{i} N=-s^{2}+i s^{1}$ |
| :---: | :---: | :---: | :---: | :---: |
| $D\left(L_{i} N\right)$ | $D:\left(x^{\alpha}, y^{\alpha}\right) \rightarrow\left(x^{\alpha},-y^{\alpha}\right)$ | $\operatorname{Spin}(9)+\mathbb{C}$ | |

Remark

Abuse of notation in previous slides: $J_{\alpha} \in \mathrm{Mat}_{16}$, but for instance in this row $J_{\alpha} \in$ Mat $_{32}$:

$p=1: S^{31}$	$8+1$	$J_{1} N, \ldots, J_{8} N$	$N=s^{1}+i s^{2}, L_{i} N=-s^{2}+i s^{1}$	$\operatorname{Spin}(9)+\mathbb{C}$

To state and prove the general case, we need to formalize the above notation.

Remark

Abuse of notation in previous slides: $J_{\alpha} \in$ Mat $_{16}$, but for instance in this row $J_{\alpha} \in$ Mat $_{32}$:

| $p=1: S^{31}$ | $8+1$ | $J_{1} N, \ldots, J_{8} N$ | $N=s^{1}+i s^{2}, L_{i} N=-s^{2}+i s^{1}$ |
| :---: | :---: | :---: | :---: | :---: |
| $D\left(L_{i} N\right)$ | $D:\left(x^{\alpha}, y^{\alpha}\right) \rightarrow\left(x^{\alpha},-y^{\alpha}\right)$ | $\operatorname{Spin}(9)+\mathbb{C}$ | |

To state and prove the general case, we need to formalize the above notation.

- Get rid of N : identify vector fields on S^{m-1} with $\mathfrak{s o}(m)$.

Remark

Abuse of notation in previous slides: $J_{\alpha} \in$ Mat $_{16}$, but for instance in this row $J_{\alpha} \in$ Mat $_{32}$:

| $p=1: S^{31}$ | $8+1$ | $J_{1} N, \ldots, J_{8} N$ | $N=s^{1}+i s^{2}, L_{i} N=-s^{2}+i s^{1}$ |
| :---: | :---: | :---: | :---: | :---: |
| $D\left(L_{i} N\right)$ | $D:\left(x^{\alpha}, y^{\alpha}\right) \rightarrow\left(x^{\alpha},-y^{\alpha}\right)$ | $\operatorname{Spin}(9)+\mathbb{C}$ | |

To state and prove the general case, we need to formalize the above notation.

- Get rid of N : identify vector fields on S^{m-1} with $\mathfrak{s o}(m)$.
- $A \in \mathfrak{s o}(m)$ has lenght 1 if and only if $A^{2}=-\operatorname{Id}_{m}$.
- A is orthogonal to $B \in \mathfrak{s o}(m)$ if and only if $A B+B A=0$.

Remark

Abuse of notation in previous slides: $J_{\alpha} \in$ Mat $_{16}$, but for instance in this row $J_{\alpha} \in$ Mat $_{32}$:

| $p=1: S^{31}$ | $8+1$ | $J_{1} N, \ldots, J_{8} N$ | $N=s^{1}+i s^{2}, L_{i} N=-s^{2}+i s^{1}$ |
| :---: | :---: | :---: | :---: | :---: |
| $D\left(L_{i} N\right)$ | $D:\left(x^{\alpha}, y^{\alpha}\right) \rightarrow\left(x^{\alpha},-y^{\alpha}\right)$ | $\operatorname{Spin}(9)+\mathbb{C}$ | |

To state and prove the general case, we need to formalize the above notation.

- Get rid of N : identify vector fields on S^{m-1} with $\mathfrak{s o}(m)$.
- $A \in \mathfrak{s o}(m)$ has lenght 1 if and only if $A^{2}=-\operatorname{Id}_{m}$.
- A is orthogonal to $B \in \mathfrak{s o}(m)$ if and only if $A B+B A=0$.
- Orthonormality is reduced to matrices computation.

Definition

Define $\operatorname{diag}_{m, n}: \operatorname{Mat}_{m} \rightarrow \operatorname{Mat}_{m n}$ by

$$
\operatorname{diag}_{m, n}(A)=\left(\begin{array}{lll}
A & & \\
& \ddots & \\
& & A
\end{array}\right)
$$

Definition
 Define $\operatorname{diag}_{m, n}: \operatorname{Mat}_{m} \rightarrow \operatorname{Mat}_{m n}$ by

$\underbrace{\operatorname{diag}_{m, n}(A)=\left(\begin{array}{lll}A & & \\ & \ddots & \\ & & A\end{array}\right)}_{\text {repeat the } m \times m \text { matrix } A \text { diagonally } n \text { times }}$

Definition

Define $\operatorname{diag}_{m, n}: \operatorname{Mat}_{m} \rightarrow \operatorname{Mat}_{m n}$ by
$\underbrace{}_{\text {repeat the } m \times m \text { matrix } A \text { diagonally } n \text { times }}$

Example

$$
\operatorname{diag}_{16,2}\left(J_{\alpha}\right)=\left(\begin{array}{cc}
J_{\alpha} & 0 \\
0 & J_{\alpha}
\end{array}\right)
$$

formalizes $J_{1} N, \ldots, J_{8} N$ in

| $p=1: S^{31}$ | $8+1$ | $J_{1} N, \ldots, J_{8} N$ | $N=s^{1}+i s^{2}, L_{i} N=-s^{2}+i s^{1}$ |
| :---: | :---: | :---: | :---: | :---: |
| $D\left(L_{i} N\right)$ | $D:\left(x^{\alpha}, y^{\alpha}\right) \rightarrow\left(x^{\alpha},-y^{\alpha}\right)$ | $\operatorname{Spin}(9)+\mathbb{C}$ | |

Definition

If $A=\left(a_{\alpha \beta}\right)_{\alpha, \beta=1, \ldots, m}$, define block $_{m, n}: \operatorname{Mat}_{m} \rightarrow$ Mat $_{m n}$ by

$$
\operatorname{block}_{m, n}(A)=\left(a_{\alpha \beta} \operatorname{Id}_{n}\right)_{\alpha, \beta=1, \ldots, m}
$$

Definition

If $A=\left(a_{\alpha \beta}\right)_{\alpha, \beta=1, \ldots, m}$, define block $_{m, n}:$ Mat $_{m} \rightarrow \operatorname{Mat}_{m n}$ by

$$
\operatorname{block}_{m, n}(A)=\left(a_{\alpha \beta} \operatorname{Id}_{n}\right)_{\alpha, \beta=1, \ldots, m}
$$

Definition

If $A=\left(a_{\alpha \beta}\right)_{\alpha, \beta=1, \ldots, m}$, define block $_{m, n}:$ Mat $_{m} \rightarrow \operatorname{Mat}_{m n}$ by

$$
\operatorname{block}_{m, n}(A)=\left(a_{\alpha \beta} \operatorname{Id}_{n}\right)_{\alpha, \beta=1, \ldots, m}
$$

Example

$$
\text { block }_{2,16}\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & -\operatorname{Id}_{16} \\
\operatorname{Id}_{16} & 0
\end{array}\right)
$$

formalizes $L_{i} N$ in

| $p=1: S^{31}$ | $8+1$ | $J_{1} N, \ldots, J_{8} N$ |
| :---: | :---: | :---: | :---: | :---: |
| $D\left(L_{i} N\right)$ | $N=s^{1}+i s^{2}, L_{i} N=-s^{2}+i s^{1}$
 $D:\left(x^{\alpha}, y^{\alpha}\right) \rightarrow\left(x^{\alpha},-y^{\alpha}\right)$ | $\operatorname{Spin}(9)+\mathbb{C}$ |

Definition

The basic conjugation in $\mathbb{R}^{16^{5}}$ is

$$
\mathrm{D}_{s}=\operatorname{block}_{2, \frac{16^{s}}{2}}\left(\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\right) \in \operatorname{Mat}_{16^{s}}
$$

Definition

The basic conjugation in $\mathbb{R}^{16^{5}}$ is

$$
\underbrace{\mathrm{D}_{s}=\operatorname{block}_{2, \frac{16^{s}}{2}}}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)) \in \operatorname{Mat}_{16^{s}}
$$

D_{s} swaps the signs of the last $\frac{16^{5}}{2}$ coordinates of a vector in $\mathbb{R}^{16^{s}}$

Definition

The basic conjugation in $\mathbb{R}^{16^{5}}$ is

$$
\left.\mathrm{D}_{s}=\operatorname{block}_{2, \frac{16^{s}}{2}}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\right) \in \operatorname{Mat}_{16^{s}}
$$

D_{s} swaps the signs of the last $\frac{16^{5}}{2}$ coordinates of a vector in $\mathbb{R}^{16^{5}}$

Definition

Let $t \geq 2$ and $s=1, \ldots, t-1$. Then

$$
\mathrm{D}_{t, s}=\operatorname{diag}_{16^{s}, 16^{t-s}}\left(\mathrm{D}_{s}\right) \in \operatorname{Mat}_{16^{t}}
$$

Definition

The basic conjugation in $\mathbb{R}^{16^{5}}$ is

$$
\left.\mathrm{D}_{s}=\operatorname{block}_{2, \frac{16^{s}}{2}}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\right) \in \operatorname{Mat}_{16^{s}}
$$

D_{s} swaps the signs of the last $\frac{16^{5}}{2}$ coordinates of a vector in $\mathbb{R}^{16^{5}}$

Definition

Let $t \geq 2$ and $s=1, \ldots, t-1$. Then

$$
\mathrm{D}_{t, s}=\operatorname{diag}_{16^{s}, 16^{t-s}}\left(\mathrm{D}_{s}\right) \in \operatorname{Mat}_{16^{t}}
$$

$\mathrm{D}_{2,1}$ is the conjugation D in \mathbb{R}^{256} in the following row:

| S^{255} | $8+8$ | $J_{1} N, \ldots, J_{8} N$ | $N=\left(s^{1}, \ldots, s^{16}\right)$ |
| :---: | :---: | :---: | :---: | :---: |
| | $D\left(\operatorname{block}\left(J_{1}\right) N\right), \ldots, D\left(\operatorname{block}\left(J_{8}\right) N\right)$ | $\operatorname{block}\left(J_{1}\right), \ldots, \operatorname{block}\left(J_{8}\right)$ and D as above | $\operatorname{Spin}(9)+\operatorname{Spin}(9)$ |

Main theorem for $m=16^{9}$

For any $q \geq 1$, the $8 q$ vector fields on $S^{16^{q}-1}$ given by

$$
\left\{B^{q}\left(t, J_{\alpha}\right)=\operatorname{diag}_{16^{t}, 16^{q-t}}\left(\prod_{s=1}^{t-1} \mathrm{D}_{t, s} \operatorname{block}_{16,16^{t-1}}\left(J_{\alpha}\right)\right)\right\}_{\substack{t=1, \ldots, q \\ \alpha=1, \ldots, 8}}
$$

are a maximal orthonormal set.

Definition

- $\mathrm{C}_{t}=\prod_{s=1}^{t-1} \mathrm{D}_{t, s}$.
- $\mathcal{G}^{0}=\emptyset$.
- $\mathcal{G}^{1}=\left\{L_{i}^{\mathbb{C}}\right\} \subset$ Mat $_{2}$.
- $\mathcal{G}^{2}=\left\{L_{i}^{\mathbb{H}}, L_{j}^{\mathbb{H}}, L_{k}^{\mathbb{H}}\right\} \subset \operatorname{Mat}_{4}$.
- $\mathcal{G}^{3}=\left\{L_{i}, L_{j}, L_{k}, L_{e}, L_{f}, L_{g}, L_{h}\right\} \subset$ Mat $_{8}$.

Definition

- $\mathrm{C}_{t}=\prod_{s=1}^{t-1} \mathrm{D}_{t, s}$.
- $\mathcal{G}^{0}=\emptyset$.
- $\mathcal{G}^{1}=\left\{L_{i}^{\mathbb{C}}\right\} \subset$ Mat $_{2}$.
- $\mathcal{G}^{2}=\left\{L_{i}^{\mathbb{H}}, L_{j}^{\mathbb{H}}, L_{k}^{\mathbb{H}}\right\} \subset$ Mat $_{4}$.
- $\mathcal{G}^{3}=\left\{L_{i}, L_{j}, L_{k}, L_{e}, L_{f}, L_{g}, L_{h}\right\} \subset \mathrm{Mat}_{8}$.

Theorem: $\sigma(m)>7$? All the fault of $\operatorname{Spin}(9)$!

Let $k \geq 0, q \geq 1$ and $p=0,1,2$ or 3 . The $8 q+2^{p}-1$ vector fields on $S^{(2 k+1) 2^{p} 16^{q}-1}$ given by

$$
\begin{aligned}
\left\{B^{k, p, q}\left(t, J_{\alpha}\right)\right. & \left.=\operatorname{diag}_{16^{t},(2 k+1) 2^{p} 16^{q-t}}\left(\mathrm{C}_{t} \operatorname{block}_{16,16^{t-1}}\left(J_{\alpha}\right)\right)\right\}_{\substack{t=1, \ldots, q \\
\alpha=1, \ldots, 8}} \\
\left\{L^{k, p, q}(G)\right. & \left.=\operatorname{diag}_{2^{p} 16^{q}, 2 k+1}\left(\operatorname{diag}_{16^{q}, 2^{p}}\left(\mathrm{C}_{q}\right) \operatorname{block}_{2^{p}, 16^{q}}(G)\right)\right\}_{G \in \mathcal{G}^{p}}
\end{aligned}
$$

are a maximal orthonormal set.
(1) S^{15} and $\operatorname{Spin}(9)$

- S^{15} is "more equal" than other spheres
- Spin(9) and Hopf fibrations
(2) The $\operatorname{Spin}(9)$ fundamental form
- Quaternionic analogy
- $\operatorname{Spin}(9)$ and Kähler forms on \mathbb{R}^{16}
- An explicit formula for $\Phi_{\text {Spin(9) }}$
(3) Vector fields on spheres
- Maximum number and examples
- The general case
(4) Locally conformal parallel $\operatorname{Spin}(9)$ manifolds
- Definition and examples
- Structure Theorem

A locally conformal parallel $\operatorname{Spin}(9)$ manifold is a 16-dimensional $\operatorname{Spin}(9)$ manifold whose induced metric is locally conformal to metrics with holonomy contained in $\operatorname{Spin}(9)$.

A locally conformal parallel $\operatorname{Spin}(9)$ manifold is a 16-dimensional $\operatorname{Spin}(9)$ manifold whose induced metric is locally conformal to metrics with holonomy contained in $\operatorname{Spin}(9)$.

A locally conformal parallel $\operatorname{Spin}(9)$ manifold is a 16-dimensional $\operatorname{Spin}(9)$ manifold whose induced metric is locally conformal to metrics with holonomy contained in $\operatorname{Spin}(9)$.

Definition

A locally conformal parallel $\operatorname{Spin}(9)$ manifold is a 16-dimensional $\operatorname{Spin}(9)$ manifold whose induced metric is locally conformal to metrics with holonomy contained in $\operatorname{Spin}(9)$.

A locally conformal parallel $\operatorname{Spin}(9)$ manifold is a 16-dimensional $\operatorname{Spin}(9)$ manifold whose induced metric is locally conformal to metrics with holonomy contained in $\operatorname{Spin}(9)$.

Examples

The product $S^{15} \times S^{1}=\frac{\mathbb{O}^{2}-0}{\mathbb{Z}}=$ cone over S^{15} with the (conformal class) of the flat metric.

Examples

The product $S^{15} \times S^{1}=\frac{\mathbb{O}^{2}-0}{\mathbb{Z}}=$ cone over S^{15} with the (conformal class) of the flat metric.

The trivial S^{1}-bundle $\mathbb{R} P^{15} \times S^{1}$, with the metric induced by the flat cone $C\left(S^{15}\right)$.

Examples

The product $S^{15} \times S^{1}=\frac{\mathbb{O}^{2}-0}{\mathbb{Z}}=$ cone over S^{15} with the (conformal class) of the flat metric.

The trivial S^{1}-bundle $\mathbb{R} P^{15} \times S^{1}$, with the metric induced by the flat cone $C\left(S^{15}\right)$.

The non-trivial S^{1}-bundle over $\mathbb{R} P^{15}$, with the metric induced by the flat cone $C\left(S^{15}\right)$.
(1) S^{15} and $\operatorname{Spin}(9)$

- S^{15} is "more equal" than other spheres
- Spin(9) and Hopf fibrations
(2) The $\operatorname{Spin}(9)$ fundamental form
- Quaternionic analogy
- $\operatorname{Spin}(9)$ and Kähler forms on \mathbb{R}^{16}
- An explicit formula for $\Phi_{\text {Spin(9) }}$
(3) Vector fields on spheres
- Maximum number and examples
- The general case
(4) Locally conformal parallel $\operatorname{Spin}(9)$ manifolds
- Definition and examples
- Structure Theorem

Structure of compact locally conformal parallel Spin(9) manifolds

Theorem [P-Piccinni-Vuletescu]

Let (M, g) be a compact, locally conformal but not globally conformal parallel $\operatorname{Spin}(9)$ manifold. Then

$$
M=C(N) / \mathbb{Z}
$$

where $C(N)$ is a flat cone over a compact 15-dimensional manifold N with finite fundamental group.
(1) On each U_{α} it is defined a ∇^{α}-parallel 8-form Φ_{α}.
(1) On each U_{α} it is defined a ∇^{α}-parallel 8-form Φ_{α}.
(2) There is a 8-form Φ on M locally given by $e^{4 f_{\alpha}} \Phi_{\alpha}$.
(1) On each U_{α} it is defined a ∇^{α}-parallel 8-form Φ_{α}.
(2) There is a 8-form Φ on M locally given by $e^{4 f_{\alpha}} \Phi_{\alpha}$.
(3) There is a closed 1 -form ω (the Lee form) on M, locally given by $4 d f_{\alpha}$, such that $d \Phi=\omega \wedge \Phi$.
(1) On each U_{α} it is defined a ∇^{α}-parallel 8-form Φ_{α}.
(2) There is a 8-form Φ on M locally given by $e^{4 f_{\alpha}} \Phi_{\alpha}$.
(0) There is a closed 1 -form ω (the Lee form) on M, locally given by $4 d f_{\alpha}$, such that $d \Phi=\omega \wedge \Phi$.

- The 1-form ω defines a closed Weyl connection D on M by $D g=\omega \otimes g$.
(1) On each U_{α} it is defined a ∇^{α}-parallel 8-form Φ_{α}.
(2) There is a 8 -form Φ on M locally given by $e^{4 f_{\alpha}} \Phi_{\alpha}$.
(0) There is a closed 1 -form ω (the Lee form) on M, locally given by $4 d f_{\alpha}$, such that $d \Phi=\omega \wedge \Phi$.
- The 1-form ω defines a closed Weyl connection D on M by $D g=\omega \otimes g$.
(0) Since the local metrics g_{α} are Einstein, D is Einstein-Weyl.
(0) Let g be the Gauduchon metric, so that $\nabla \omega=0$. Then the universal covering (\tilde{M}, \tilde{g}) is reducible: $(\tilde{M}, \tilde{g})=(\mathbb{R}, d s) \times\left(\tilde{N}, g_{N}\right)$, for a compact simply connected \tilde{N}.
(0) Let g be the Gauduchon metric, so that $\nabla \omega=0$. Then the universal covering (\tilde{M}, \tilde{g}) is reducible: $(\tilde{M}, \tilde{g})=(\mathbb{R}, d s) \times\left(\tilde{N}, g_{N}\right)$, for a compact simply connected \tilde{N}.
(On \tilde{M} we have $\tilde{\omega}=d f$, and $\left(\tilde{M}, e^{-f} \tilde{g}\right)$ is the metric cone $C(\tilde{N})$.

Proof, on the universal covering

(0) Let g be the Gauduchon metric, so that $\nabla \omega=0$. Then the universal covering (\tilde{M}, \tilde{g}) is reducible: $(\tilde{M}, \tilde{g})=(\mathbb{R}, d s) \times\left(\tilde{N}, g_{N}\right)$, for a compact simply connected \tilde{N}.
(On \tilde{M} we have $\tilde{\omega}=d f$, and $\left(\tilde{M}, e^{-f} \tilde{g}\right)$ is the metric cone $C(\tilde{N})$.
(3) The local metrics are Ricci-flat, that is, $C(\tilde{N})$ is Ricci-flat.

Proof, on the universal covering

(0) Let g be the Gauduchon metric, so that $\nabla \omega=0$. Then the universal covering (\tilde{M}, \tilde{g}) is reducible: $(\tilde{M}, \tilde{g})=(\mathbb{R}, d s) \times\left(\tilde{N}, g_{N}\right)$, for a compact simply connected \tilde{N}.
(On \tilde{M} we have $\tilde{\omega}=d f$, and $\left(\tilde{M}, e^{-f} \tilde{g}\right)$ is the metric cone $C(\tilde{N})$.
(3) The local metrics are Ricci-flat, that is, $C(\tilde{N})$ is Ricci-flat.
(0) Ricci-flat + holonomy $\operatorname{Spin}(9) \Rightarrow$ flat.

Proof, on the universal covering

(0) Let g be the Gauduchon metric, so that $\nabla \omega=0$. Then the universal covering (\tilde{M}, \tilde{g}) is reducible: $(\tilde{M}, \tilde{g})=(\mathbb{R}, d s) \times\left(\tilde{N}, g_{N}\right)$, for a compact simply connected \tilde{N}.
(On \tilde{M} we have $\tilde{\omega}=d f$, and $\left(\tilde{M}, e^{-f} \tilde{g}\right)$ is the metric cone $C(\tilde{N})$.
(3) The local metrics are Ricci-flat, that is, $C(\tilde{N})$ is Ricci-flat.
(0) Ricci-flat + holonomy $\operatorname{Spin}(9) \Rightarrow$ flat.
(1) Since $\pi_{1}(M)$ acts by homotheties on $C(\tilde{N})$, and \tilde{N} is compact, $\pi_{1}(M)$ contains a finite normal subgroup I of isometries.

Proof, on the universal covering

(0) Let g be the Gauduchon metric, so that $\nabla \omega=0$. Then the universal covering (\tilde{M}, \tilde{g}) is reducible: $(\tilde{M}, \tilde{g})=(\mathbb{R}, d s) \times\left(\tilde{N}, g_{N}\right)$, for a compact simply connected \tilde{N}.

- On \tilde{M} we have $\tilde{\omega}=d f$, and $\left(\tilde{M}, e^{-f} \tilde{g}\right)$ is the metric cone $C(\tilde{N})$.
(3) The local metrics are Ricci-flat, that is, $C(\tilde{N})$ is Ricci-flat.
(0) Ricci-flat + holonomy $\operatorname{Spin}(9) \Rightarrow$ flat.
(1) Since $\pi_{1}(M)$ acts by homotheties on $C(\tilde{N})$, and \tilde{N} is compact, $\pi_{1}(M)$ contains a finite normal subgroup I of isometries.
(1) We obtain $\pi_{1}(M)=I \rtimes \mathbb{Z}$, and $M=C(\tilde{N} / I) / \mathbb{Z}$.

End of talk. Thank you for your attention!

Details for $\Phi_{\operatorname{Spin}(9)}=\int_{\mathbb{O} P^{1}} p_{l}^{*} \nu_{l} d l$

- $\nu_{I}=$ volume form on the octonionic lines $I=\{(x, m x)\}$ or $I=\{(0, y)\}$ in \mathbb{O}^{2}.
- $p_{I}: \mathbb{O}^{2} \rightarrow I=$ projection on I.
- $p_{l}^{*} \nu_{l}=8$-form in $\mathbb{O}^{2}=\mathbb{R}^{16}$.
- The integral over $\mathbb{O} P^{1}$ can be computed over \mathbb{O} with polar coordinates.
- The formula arise from distinguished 8-planes in the Spin(9)-geometry \rightarrow (forthcoming) calibrations.

The five involutions of $\operatorname{Sp}(2) \cdot \operatorname{Sp}(1)$ as 8×8 matrices

- Go back

$$
\mathcal{I}_{1}=\left(\begin{array}{c|c}
\mathrm{Id} & 0 \\
\hline 0 & -\mathrm{Id}
\end{array}\right)
$$

$$
\begin{aligned}
& \mathcal{I}_{4}=\left(\begin{array}{c|c}
0 & -R_{j}^{\mathbb{H}} \\
\hline R_{j}^{\mathbb{H}} & 0
\end{array}\right) \\
& \\
&
\end{aligned}
$$

The nine involutions of $\operatorname{Spin}(9)$ as 16×16 matrices

$$
\mathcal{I}_{4}=\left(\begin{array}{c|c}
0 & -R_{j} \\
\hline R_{j} & 0
\end{array}\right) \quad \mathcal{I}_{3}=\left(\begin{array}{c|c}
0 & -R_{i} \\
\hline R_{i} & 0
\end{array}\right)
$$

$$
\mathcal{I}_{2}=\left(\begin{array}{c|c}
0 & \mathrm{Id} \\
\hline \mathrm{Id} & 0
\end{array}\right)
$$

$$
\mathcal{I}_{5}=\left(\begin{array}{c|c}
0 & -R_{k} \\
\hline R_{k} & 0
\end{array}\right)
$$

$$
\mathcal{I}_{1}=\left(\begin{array}{c|c}
\mathrm{Id} & 0 \\
\hline 0 & -\mathrm{Id}
\end{array}\right)
$$

$$
\mathcal{I}_{6}=\left(\begin{array}{c|c}
0 & -R_{e} \\
\hline R_{e} & 0
\end{array}\right)
$$

$$
\mathcal{I}_{7}=\left(\begin{array}{c|c|c}
0 & \left.-R_{f}\right) & \mathcal{I}_{g}=\left(\begin{array}{ll|l}
R_{h} & 0
\end{array}\right) \\
\hline R_{f} & 0 & \mathcal{I}_{8}=\left(\begin{array}{c|c}
0 & -R_{g} \\
R_{g} & 0
\end{array}\right)
\end{array}\right.
$$

Explicit formula for $\Phi_{\mathrm{G}_{2}}$

Denote by x_{1}, \ldots, x_{7} the coordinates in \mathbb{R}^{7}. Then $\mathrm{G}_{2}=$ stabilizer in $\mathrm{SO}(7)$ of

$$
\begin{aligned}
\Phi_{\mathrm{G}_{2}} & =d x_{1} \wedge d x_{2} \wedge d x_{4}+d x_{2} \wedge d x_{3} \wedge d x_{5}+d x_{3} \wedge d x_{4} \wedge d x_{6} \\
& +d x_{4} \wedge d x_{5} \wedge d x_{7}+d x_{5} \wedge d x_{6} \wedge d x_{1}+d x_{6} \wedge d x_{7} \wedge d x_{2} \\
& +d x_{7} \wedge d x_{1} \wedge d x_{3}
\end{aligned}
$$

As a shortcut, we could write

$$
\Phi_{\mathrm{G}_{2}}=124+235+346+457+561+672+713
$$

351 terms of $\Phi_{\text {Spin }}(9)$

70 terms of $\Phi_{\text {Spin }}(9)$

12345678		-14	123456	$1^{\prime} 2^{\prime}$	2	123456	$3^{\prime} 4^{\prime}$	-2	123456	$5^{\prime} 6^{\prime}$	-2	123456	$7{ }^{\prime} 8^{\prime}$	-2
123457	$1^{\prime} 3^{\prime}$	2	123457	$2^{\prime} 4^{\prime}$	2	123457	$5^{\prime} 7^{\prime}$	-2	123457	$6^{\prime} 8^{\prime}$	2	123458	$1^{\prime} 4^{\prime}$	2
123458	$2^{\prime} 3^{\prime}$	-2	123458	$5^{\prime} 8^{\prime}$	-2	123458	$6^{\prime} 7^{\prime}$	-2	123467	$1^{\prime} 4^{\prime}$	-2	123467	$2^{\prime} 3^{\prime}$	2
123467	$5^{\prime} 8^{\prime}$	-2	123467	$6^{\prime} 7^{\prime}$	-2	123468	$1^{\prime} 3^{\prime}$	2	123468	$2^{\prime} 4^{\prime}$	2	123468	$5^{\prime} 7^{\prime}$	2
123468	$6^{\prime} 8^{\prime}$	-2	123478	$1^{\prime} 2^{\prime}$	-2	123478	$3^{\prime} 4^{\prime}$	2	123478	$5^{\prime} 6^{\prime}$	-2	123478	$7{ }^{\prime} 8^{\prime}$	-2
1234	$1^{\prime} 2^{\prime} 3^{\prime} 4^{\prime}$	-2	1234	$5^{\prime} 6^{\prime} 7^{\prime} 8^{\prime}$	-2	123567	$1^{\prime} 5^{\prime}$	-2	123567	$2^{\prime} 6^{\prime}$	-2	123567	$3^{\prime} 7^{\prime}$	-2
123567	$4^{\prime} 8^{\prime}$	2	123568	$1^{\prime} 6^{\prime}$	-2	123568	$2^{\prime} 5^{\prime}$	2	123568	$3^{\prime} 8^{\prime}$	-2	123568	$4^{\prime} 7^{\prime}$	-2
123578	$1^{\prime} 7^{\prime}$	-2	123578	$2^{\prime} 8^{\prime}$	2	123578	$3^{\prime} 5^{\prime}$	2	123578	$4^{\prime} 6^{\prime}$	2	1235	$1^{\prime} 2^{\prime} 3^{\prime} 5^{\prime}$	-1
1235	$1^{\prime} 2^{\prime} 4^{\prime} 6^{\prime}$	-1	1235	$1^{\prime} 3^{\prime} 4^{\prime} 7^{\prime}$	-1	1235	$1^{\prime} 5^{\prime} 6^{\prime} 7^{\prime}$	-1	1235	$2^{\prime} 3^{\prime} 4^{\prime} 8^{\prime}$	1	1235	$2^{\prime} 5^{\prime} 6^{\prime} 8^{\prime}$	1
1235	$3^{\prime} 5^{\prime} 7^{\prime} 8^{\prime}$	1	1235	$4^{\prime} 6^{\prime} 7^{\prime} 8^{\prime}$	1	123678	$1^{\prime} 8^{\prime}$	-2	123678	$2^{\prime} 7^{\prime}$	-2	123678	$3^{\prime} 6^{\prime}$	2
123678	$4^{\prime} 5^{\prime}$	-2	1236	$1^{\prime} 2^{\prime} 3^{\prime} 6^{\prime}$	-1	1236	$1^{\prime} 2^{\prime} 4^{\prime} 5^{\prime}$	1	1236	$1^{\prime} 3^{\prime} 4^{\prime} 8^{\prime}$	-1	1236	$1^{\prime} 5^{\prime} 6^{\prime} 8^{\prime}$	-1
1236	$2^{\prime} 3^{\prime} 4^{\prime} 7^{\prime}$	-1	1236	$2^{\prime} 5^{\prime} 6^{\prime} 7^{\prime}$	-1	1236	$3^{\prime} 6^{\prime} 7^{\prime} 8^{\prime}$	1	1236	$4^{\prime} 5^{\prime} 7^{\prime} 8^{\prime}$	-1	1237	$1^{\prime} 2^{\prime} 3^{\prime} 7^{\prime}$	-1
1237	$1^{\prime} 2^{\prime} 4^{\prime} 8^{\prime}$	1	1237	$1^{\prime} 3^{\prime} 4^{\prime} 5^{\prime}$	1	1237	$1^{\prime} 5^{\prime} 7^{\prime} 8^{\prime}$	-1	1237	$2^{\prime} 3^{\prime} 4^{\prime} 6^{\prime}$	1	1237	$2^{\prime} 6^{\prime} 7^{\prime} 8^{\prime}$	-1
1237	$3^{\prime} 5^{\prime} 6^{\prime} 7^{\prime}$	-1	1237	$4^{\prime} 5^{\prime} 6^{\prime} 8^{\prime}$	1	1238	$1^{\prime} 2^{\prime} 3^{\prime} 8^{\prime}$	-1	1238	$1^{\prime} 2^{\prime} 4^{\prime} 7^{\prime}$	-1	1238	$1^{\prime} 3^{\prime} 4^{\prime} 6^{\prime}$	1

- A table entry ||123578 $\quad \mathbf{1}^{\prime} 7^{\prime} \quad-2 \|$ means that $\Phi_{\text {Spin(9) }}=\cdots-2 d x_{1} \wedge d x_{2} \wedge d x_{3} \wedge d x_{5} \wedge d x_{7} \wedge d x_{8} \wedge d x_{1}^{\prime} \wedge d x_{7}^{\prime}+\ldots$
- Table obtained from Berger's definition of $\Phi_{\operatorname{Spin}(9)}$ with the help of Mathematica.
- The coefficients are normalized in such a way that they are all integers with gcd $=1$.

Computational challenge for $\Phi_{\mathrm{Spin}(9)}$

- Differential geometry in Mathematica? (1) Ricci; (2) EDC; (3) DIY;

Computational challenge for $\Phi_{\mathrm{Spin}(9)}$

- Differential geometry in Mathematica? (1) Rice; (2) EDC; (3) DIY;

Computational challenge for $\Phi_{\text {Spin }}(9)$

- Differential geometry in Mathematica? (1) Ricet; (2) EDf; (3) DIY;

Computational challenge for $\Phi_{\text {Spin }(9)}$

- Differential geometry in Mathematica? (1) Ricet; (2) EDG; (3) DIY;
- The implementation of the wedge product can be reduced to a sorting problem:

$$
\begin{array}{cl}
\text { Wedge }\left(d x_{1} \wedge d x_{4}, d x_{2} \wedge d x_{3}\right) & \stackrel{\text { concatenation }}{=} \\
& d x_{1} \wedge d x_{4} \wedge d x_{2} \wedge d x_{3} \\
& \stackrel{\text { sorting }}{=}
\end{array} \quad d x_{1} \wedge d x_{2} \wedge d x_{3} \wedge d x_{4} .
$$

Computational challenge for $\Phi_{\mathrm{Spin}(9)}$

- Differential geometry in Mathematica? (1) Ricei; (2) EDf; (3) DIY;
- The implementation of the wedge product can be reduced to a sorting problem:

$$
\begin{array}{ll}
\text { Wedge }\left(d x_{1} \wedge d x_{4}, d x_{2} \wedge d x_{3}\right) & \stackrel{\text { concatenation }}{=} \\
\stackrel{\text { sorting }}{=} & d x_{1} \wedge d x_{4} \wedge d x_{2} \wedge d x_{3} \\
& d x_{1} \wedge d x_{2} \wedge d x_{3} \wedge d x_{4}
\end{array}
$$

- Divide and conquer paradigm can be used: break the problem into subproblems, recursively solve these subproblems, combine the solutions into a solution to the original problem.

Computational challenge for $\Phi_{\mathrm{Spin}(9)}$

- Differential geometry in Mathematica? (1) Ricki; (2) EDG; (3) DIY;
- The implementation of the wedge product can be reduced to a sorting problem:

$$
\text { Wedge }\left(d x_{1} \wedge d x_{4}, d x_{2} \wedge d x_{3}\right) \quad \text { concatenation } \quad d x_{1} \wedge d x_{4} \wedge d x_{2} \wedge d x_{3}
$$ $d x_{1} \wedge d x_{2} \wedge d x_{3} \wedge d x_{4}$

- Divide and conquer paradigm can be used: break the problem into subproblems, recursively solve these subproblems, combine the solutions into a solution to the original problem.
sorting $d x_{1} \wedge d x_{4} \wedge d x_{2} \wedge d x_{3}$

Computational challenge for $\Phi_{\operatorname{Spin}(9)}$

- Differential geometry in Mathematica? (1) Rici; (2) EDf; (3) DIY;
- The implementation of the wedge product can be reduced to a sorting problem:

Wedge $\left(d x_{1} \wedge d x_{4}, d x_{2} \wedge d x_{3}\right) \quad$ concatenation $\quad d x_{1} \wedge d x_{4} \wedge d x_{2} \wedge d x_{3}$ $d x_{1} \wedge d x_{2} \wedge d x_{3} \wedge d x_{4}$

- Divide and conquer paradigm can be used: break the problem into subproblems, recursively solve these subproblems, combine the solutions into a solution to the original problem.
sorting $d x_{1} \wedge d x_{4} \wedge d x_{2} \wedge d x_{3}$
sorting $d x_{1} \wedge d x_{4}$ and $d x_{2} \wedge d x_{3}$

Computational challenge for $\Phi_{\operatorname{Spin}(9)}$

- Differential geometry in Mathematica? (1) Rici; (2) EDf; (3) DIY;
- The implementation of the wedge product can be reduced to a sorting problem:

Wedge $\left(d x_{1} \wedge d x_{4}, d x_{2} \wedge d x_{3}\right) \quad$ concatenation $\quad d x_{1} \wedge d x_{4} \wedge d x_{2} \wedge d x_{3}$ $d x_{1} \wedge d x_{2} \wedge d x_{3} \wedge d x_{4}$

- Divide and conquer paradigm can be used: break the problem into subproblems, recursively solve these subproblems, combine the solutions into a solution to the original problem.

Computational challenge for $\Phi_{\operatorname{Spin}(9)}$

- Differential geometry in Mathematica? (1) Rici; (2) EDf; (3) DIY;
- The implementation of the wedge product can be reduced to a sorting problem:

$$
\text { Wedge }\left(d x_{1} \wedge d x_{4}, d x_{2} \wedge d x_{3}\right) \quad \text { concatenation } \quad d x_{1} \wedge d x_{4} \wedge d x_{2} \wedge d x_{3}
$$ $d x_{1} \wedge d x_{2} \wedge d x_{3} \wedge d x_{4}$

- Divide and conquer paradigm can be used: break the problem into subproblems, recursively solve these subproblems, combine the solutions into a solution to the original problem.
sorting $d x_{1} \wedge d x_{4}$ and $d x_{2} \wedge d x_{3}$
next slide

Code to merge 2 sorted lists

```
[Adapted from the classical mergesort algorithm, thanks to Gianluca Amato and Francesca Scozzari]
(*Take care of sign when swapping*)
sign = 1;
    (*Induction base: what to do when one or both the arguments are empty*)
formWedge[{}, {}] = {};
formWedge[{}, right_] := right;
formWedge[left_, {}] := left;
(*Compare first terms, and recursively build the ordered list*)
formWedge[left_, right_] :=
Switch[Order[left[[1]], right[[1]]],
    1,
    Return[Prepend[formWedge[Drop[left, 1], right], left[[1]]]],
    -1,
        sign = sign*(-1)^Length[left];
    Return[Prepend[formWedge[left, Drop[right, 1]], right[[1]]]],
0,
    Abort[]
```

]

From Pfaffians to $\Phi_{\text {Spin(9) }}$

$$
\Phi_{\operatorname{Spin}(9)} \stackrel{\text { utc }}{=} \sum_{1 \leq \alpha_{1}<\alpha_{2}<\alpha_{3}<\alpha_{4} \leq 9}\left(\psi_{\alpha_{1} \alpha_{2}} \wedge \psi_{\alpha_{3} \alpha_{4}}-\psi_{\alpha_{1} \alpha_{3}} \wedge \psi_{\alpha_{2} \alpha_{4}}+\psi_{\alpha_{1} \alpha_{4}} \wedge \psi_{\alpha_{2} \alpha_{3}}\right)^{2}
$$

$$
\begin{array}{lll}
\psi_{12}=(-12+34+56-78)-()^{\prime} & \psi_{13}=(-13-24+57+68)-()^{\prime} & \psi_{14}=(-14+23+58-67)-()^{\prime} \\
\psi_{15}=(-15-26-37-48)-()^{\prime} & \psi_{16}=(-16+25-38+47)-()^{\prime} & \psi_{17}=(-17+28+35-46)-()^{\prime} \\
\psi_{18}=(-18-27+36+45)-()^{\prime} & \psi_{23}=(-14+23-58+67)+()^{\prime} & \psi_{24}=(13+24+57+68)+()^{\prime} \\
\psi_{25}=(-16+25+38-47)+()^{\prime} & \psi_{26}=(15+26-37-48)+()^{\prime} & \psi_{27}=(18+27+36+45)+()^{\prime} \\
\psi_{28}=(-17+28-35+46)+()^{\prime} & \psi_{34}=(-12+34-56+78)+()^{\prime} & \psi_{35}=(-17-28+35+46)+()^{\prime} \\
\psi_{36}=(-18+27+36-45)+()^{\prime} & \psi_{37}=(+15-26+37-48)+()^{\prime} & \psi_{38}=(16+25+38+47)+()^{\prime} \\
\psi_{45}=(-18+27-36+45)+()^{\prime} & \psi_{46}=(17+28+35+46)+()^{\prime} & \psi_{47}=(-16-25+38+47)+()^{\prime} \\
\psi_{48}=(15-26-37+48)+()^{\prime} & \psi_{56}=(-12-34+56+78)+()^{\prime} & \psi_{57}=(-13+24+57-68)+()^{\prime} \\
\psi_{58}=(-14-23+58+67)+()^{\prime} & \psi_{67}=(14+23+58+67)+()^{\prime} & \psi_{68}=(-13+24-57+68)+()^{\prime} \\
\psi_{78}=(12+34+56+78)+()^{\prime} & & \\
\psi_{19}=-11^{\prime}-22^{\prime}-33^{\prime}-44^{\prime}-55^{\prime}-66^{\prime}-77^{\prime}-88^{\prime} & \psi_{29}=-12^{\prime}+21^{\prime}+34^{\prime}-43^{\prime}+56^{\prime}-65^{\prime}-78^{\prime}+87^{\prime} \\
\psi_{39}=-13^{\prime}-24^{\prime}+31^{\prime}+42^{\prime}+57^{\prime}+68^{\prime}-75^{\prime}-86^{\prime} & \psi_{49}=-14^{\prime}+23^{\prime}-32^{\prime}+41^{\prime}+58^{\prime}-67^{\prime}+76^{\prime}-85^{\prime} \\
\psi_{59}=-15^{\prime}-26^{\prime}-37^{\prime}-48^{\prime}+51^{\prime}+62^{\prime}+73^{\prime}+84^{\prime} & \psi_{69}=-16^{\prime}+25^{\prime}-38^{\prime}+47^{\prime}-52^{\prime}+61^{\prime}-74^{\prime}+83^{\prime} \\
\psi_{79}=-17^{\prime}+28^{\prime}+35^{\prime}-46^{\prime}-53^{\prime}+64^{\prime}+71^{\prime}-82^{\prime} & \psi_{89}=-18^{\prime}-27^{\prime}+36^{\prime}+45^{\prime}-54^{\prime}-63^{\prime}+72^{\prime}+81^{\prime}
\end{array}
$$

Berger and calibrations

Curiosity

Berger appears to know about the fact that $\Phi_{\operatorname{Spin}(9)}$ is a calibration on $\mathbb{O} P^{2}$ already in 1970 [Berger, L’Enseignement Math. 1970] and more explicitly in 1972 [Berger, Ann. Éc. Norm. Sup. 1972, Theorem 6.3], very early with respect to the forthcoming calibration theory.

