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1 Overview
From a historical perspective Algebraic Geometry was initially concerned with the study of zero sets of
polynomials. It was realized from the outset that the subject was closely related to Number Theory, and work
during the middle third of the last century, e.g. by Zariski and Weil, suggested that a reformulation of the
subject, so as to incorporate such related fields, was in order. Such a reformulation was soon accomplished
by Grothendieck, and subsequently refined by Deligne and others. It seems somewhat of an understatement
to assert that Grothendieck’s ideas revolutionized the way one views Algebraic Geometry.

Differential Algebraic Geometry began, somewhat more recently, as the study of zero sets of differential
polynomials, e.g. ifK denotes the fieldR(cos t, sin t) with derivation ′ = d/dt, then (cos t, sin t) ∈ K2 is a
zero of the differential polynomial x2

1 − x′

1x2 − 1 [11,12]. Although there have been significant attempts to
reformulate the subject in the style of Grothendieck (e.g. see [4,5,6,10,12,13,15] and references therein), in
particular so as to make use of those recently-developed techniques, these innovations have not been widely
accepted. One reason for this, in the opinion of the organizers, is that many individuals who work in algebraic
geometry and/or number theory are simply not familiar with differential algebra.

This meeting was conceived as an attempt to maintain a focus on, if not to alleviate, this problem. Several
of the participants were selected specifically because they knew nothing about differential algebra, but were
familiar with at least one of these two other areas.

2 Presentation Highlights
There were four talks. We give a summary of each, in the order presented.

1. Jim Freitag “Local Problems in Differential Algebra”
The first part of the talk covered basic notions in differential algebraic geometry by extending the basics
of algebraic geometry to the differential setting. Notions of dimension were then introduced, illustrated
by several important examples and the end of the talk designed to indicate some of the power of model
theory in differential algebraic geometry (e.g. see [14]).

2. Henri Gillet “ Differential Algebra, Functors, and Arithmetic Geometry”
The first part of the talk dealt with an application to deformations of a family of varieties that enables
one to lift a derivation from the base space to the total space. This was done in characteristic 0 by

1



2

means on an exponential map. The second part established an analogous result in characteristic p using
formal group actions in place of derivations.

3. Andy Magid “Grothendieck Topology”
The talk was an introduction, in outline form for a general audience, to Grothendieck topologies,
abelian sheaves on such entities, and the Cech and derived functor cohomologies of the latter. The
0 and 1 Cech cohomology sets on non-abelian sheaves were also explained, as well as the connection
to principal homogeneous spaces.

4. Ray Hoobler “Cohomology in a Differential Algebra Setting”
The talk examined how a differential Azumaya algebra over an ordinary differential ring could be
made locally isomorphic to a matrix ring with coordinate-wise differentiation. The basic idea was
to use a Grothendieck topology to set up and locally solve a differential equation whose solutions
provide a constant basis for the matrix ring. In this way the differential Azumaya algebras become
local principal homogeneous spaces in the Grothendieck topology; well-known cohomological tools
could then be used to identify the differential Brauer group with the ordinary Brauer group [7]. The
partial case follows a similar pattern using results of Andre [1].

3 Outcome of the Workshop
There were several ongoing discussions outside of the main talks. They centered around questions such as:

• What kind of differential ring extension is analogous to a separable ring extension and can it be used
to generate a useful Grothendieck topology?

• What do the ”points” in the∆−flat topology look like?

• What kind of differential ring extensions have lifting properties analogous to Grothendieck’s definition
of a formally smooth extension?

• How would a differential algebraic space be defined?

Some of these issues continue to be discussed by email and may ultimately lead to full understanding and,
possibly, publication.
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