
LECTURE 2: ELLIPTIC GENERA AND NONCOMMUTATIVE

MANIFOLDS

MATILDE MARCOLLI

Disclaimer: this is the writeup of a largely speculative lecture, given during an
informal discussion session at the workshop “Novel approaches to the finite simple
groups” in Banff. A more accurate paper based on some of the ideas described here
is in preparation.

1. Elliptic genus, Dirac operators on loop spaces, and the
Hirzebruch manifold

We recall briefly some of the main features of the Hirzebruch’s theory of mul-
tiplicative genera on ordinary manifolds, before sketching some ideas for possible
generalizations to the noncommutative world of spectral triples.

1.1. Genera for ordinary manifolds. For ordinary manifolds, a multiplicative
genus (see [13]) is a map φ from closed, oriented, smooth manifolds to a commuta-
tive, unital Q-algebra Λ, with the following properties:

(1) Additive on disjoint unions: φ(M qN) = φ(M) + φ(N).
(2) Multiplicative on products: φ(M ×N) = φ(M)φ(N).
(3) Vanishing on boundaries: φ(∂M) = 0.

In particular, the value φ(M) depends only on the cobordism class [M ] of M .

1.2. The genus series. Results of Thom showed that homomorphisms φ : ΩSOn →
Λ can be dfined via combination of Pontrjagin numbers. The fact that the oriented
cobordism ring ΩSO∗ ⊗Q = Q[CPn]n≥1 is a polynomial ring implies that a genus is
determined by the series

ψ(t) = t+
φ(CP2)

3
t3 +

φ(CP4)

5
t5 + · · · ∈ Λ[[t]]

1.3. Elliptic genera. A multiplicative genus φ is elliptic if vanishes on the pro-
jectivizations CP(E) of complex vector bundles E → M over a closed oriented
manifold M . In terms of the genus series this implies

ψ(t) =

∫ t

0

du√
1− 2δu2 + εu4

, some ε, δ ∈ Λ.

For Λ = C on obtains the signature for ε = δ = 1, or the Â-genus for δ = −1/8,
ε = 0.

By expressing the Jacobi quartics y2 = x4−2δx2 +ε as functions of τ , on obtains
modular forms ε, δ of level Γ0(2). An elliptic genus φ(M) is polynomial in ε, δ,
hence a modular form, with Λ = M∗(Γ0(2)).
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1.4. Dirac operator on loop spaces. The work of Witten connected the notion
of elliptic genera to the formal geometry of Dirac operators on loop spaces, [24].

Given a spin manifold X with an action of a group G, one has a character valued
Dirac index

F (g) = TrKer(D)(g)− TrCoker(D)(g),

which can be expressed in terms of fixed points Xα, component N = ⊕`N` of the
normal bundle, with g = eθP and P acting on N` as i`. One gets

Fα(θ) = εα〈Â(Mα)ch(
√

det(⊗`>0N`)
∏
`

eiθ`n`/2
⊗
`>0

1

1− ei`θN`
), Xα〉,

where (1− tV )−1 = 1 ⊕ tV ⊕ t2S2V ⊕ · · · ⊕ tkSkV ⊕ · · · and the sign εα depends
on orientations.

Formally, one takes X = L(M) to be the loop space over a manifold M , with M
identified with the set of fixed points of the circle action (trivial loops). The normal
bundle decomposes as ⊕`N`, with each N` = T = TM , and with n` = d = dimM .
Given a choice of a spin structure on M , one takes

√
det(⊗`>0N`) and one has

F (q) = q−d/24〈Â(M)ch(⊗∞`=1Sq`T ),M〉,

replacing
∏
`>0 e

iθn`/2 formally with

(

∞∏
n=1

qn)d/2 = (q
∑

n n)d/2 = qζ(−1)d/2 = q−d/24.

Then one can write F (q) = Φ(q)/η(q), with η(q) = q1/24
∏
`≥1(1 − q`) the

Dedekind eta function, and Φ(q) a modular form, which is the level one elliptic
genus, under the assumption that p1(M) = 0.

1.5. A 24-dimensional manifolds for the Monster group. Given a spin man-
ifold M with p1(M) = 0, the Witten genus ΦM is in the ring of modular forms
M∗ = Z[E − 4, E − 6,∆]/(E3

4 − E2
6 − 1728∆), with ∆ = q

∏
n(1− qn)24.

Hirzebruch conjectured the existence of a spin manifold M as above, of dimension
24, such that ΦM = Â(M)∆̄+Â(M,TC)∆, with ∆̄ = E3

4−744∆. This is equivalent
to asking whether there exists a 24-dimensional compact spin manifold M , with
p1(M) = 0, and Â(M) = 1, and with Â(M,TC) = 0, or equivalently, such that
ΦM = ∆̄, that is, with Witten genus the j function, after normalization by η24.

This question was answered positively by Hopkins–Mahowald in [20].
Hirzebruch’s conjecture also predicted that there would be a manifold as above

with an action of the monster group M by isometries, such that one would obtains
the Monster representations, whose dimensions are related to the coefficients of the
modular function j, from the tensor powers of tangent bundle.

This second part of the Hirzebruch conjecture is still unsolved. Part of the
purpose of this lecture is to suggest that an answer may be found, perhaps more
naturally, not among ordinary manifolds, but among their noncommutative gener-
alizations, spectral triples.

2. Multiplicative genera for noncommutative manifolds

The notion of spin manifold is extended in the world of noncommutative geom-
etry by the notion of spectral triple.
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2.1. Spectral triples as noncommutative manifolds. We introduce here an
analogous notion of multiplicative genera for noncommutative manifolds.

The data of a spectral triple (see [5]) consist of:

• an involutive algebra A
• a representation π : A → B(H) as bounded operators on a separable Hilbert

space H
• a self-adjoint operator D on H, with dense domain and with compact re-

solvent, (1 +D2)−1/2 ∈ K.
• a compatibility condition between A and D requiring that the commutators

[a,D] are bounded operators on H for all a ∈ A
• in the even case, a Z/2- grading γ on H satisfying

[γ, a] = 0, ∀a ∈ A, and Dγ = −γD.

A spectral triple is θ-summable if its heat kernel is trace class,

(2.1) Tr(e−tD
2

) <∞, ∀t > 0.

Smooth compact Riemannian spin manifolds M define spectral triples, where the
data (A,H, D) are given by (C∞(M), L2(M,S), /∂M ). Under additional conditions,
an abelian spectral triple determines a smooth compact Riemannian spin manifold
via the reconstruction theorem of [6], [22]. In this sense spectral triples generalize
ordinary manifolds and can be regarded as “noncommutative manifolds”.

2.2. Real structure. A real structure on a spectral triple consists of an antilinear
isometry J : H → H with

J2 = ε, JD = ε′DJ, and Jγ = ε′′γJ,

where the signs ε, ε′, ε′′ ∈ {±1} determine the KO-dimension modulo eight, accord-
ing to the table:

n 0 1 2 3 4 5 6 7

ε 1 1 -1 -1 -1 -1 1 1
ε′ 1 -1 1 1 1 -1 1 1
ε′′ 1 -1 1 -1

The real structure J satisfied the properties:

(1) Commutation: [a, b0] = 0 for all a, b ∈ A, where b0 = Jb∗J−1, for all b ∈ A.
(2) Order one condition:

[[D, a], b0] = 0 ∀ a, b ∈ A.

2.3. Unions and products. One can take disjoint unions and products of non-
commutative manifolds according to the following prescription.

• Disjoint union (direct sum): the algebra is A = A1⊕A2, the Hilbert space
H = H1 ⊕H2, and the Dirac operator

D =

(
D1 0
0 D2

)
.
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• Products (tensor products): the algebra is A = A1⊗A2, the Hilbert space
H = H1 ⊗H2 and the Dirac operator (depending on the even/odd sign of
the spectral triple)

D = D1 ⊗ 1 + γ1 ⊗D2

γ = γ1 ⊗ γ2 J = J1 ⊗ J2

2.4. Dirac operator on manifolds with boundary. The ordinary Dirac oper-
ator on an n-dimensional spin manifold M with boundary defines a class [ /D] in
Kn(M,∂M), which maps, under the long exact sequence

→ Kn(∂M)→ Kn(M)→ Kn(M,∂M)
∂→ Kn−1(∂M)→

to the class [/∂] of the Dirac operator on the boundary manifold ∂M , see [1]. The
Chern character maps this to the long exact sequence in homology. In [11] it was
shown, using Melrose b-calculus, that an identity ∂Ch∗( /D) = Ch∗(/∂) holds at the
level of cyclic cochains. More recent results based on b-calculus techniques were
obtained in [19].

2.5. Spectral triples with boundary. Chamseddine and Connes recently intro-
duced a notion of “spectral triples with boundary” [3], motivated by properties
of the spectral action functional and boundary terms in quantum gravity [4]. We
recall here the basic properties that describe the boundary of a spectral triple.

Suppose that (A,H, D) is an even spectral triple with Z/2Z-grading γ on H
with [a, γ] = 0 for all a ∈ A and assume that Dom(D) ∩ γDom(D) is dense in
H. The boundary algebra ∂A is then defined as the quotient A/(J ∩ J∗), by the
two-sided ideal J = {a ∈ A|aDom(D) ⊂ γDom(D)}. The boundary Hilbert space
∂H is the closure in H of D−1KerD∗0 , with D0 a symmetric operator restricting D
to Dom(D)∩ γDom(D). The action of ∂A on the boundary Hilbert space is given
by a−D−2[D2, a]. The boundary Dirac operator ∂D is defined on D−1KerD∗0 with

〈ξ, ∂Dη〉 = 〈ξ,Dη〉,

for ξ ∈ ∂H and η ∈ D−1KerD∗0 . It has bounded commutators with ∂A, [3], [7].

2.6. The notion of dimension for noncommutative manifolds. In noncom-
mutative geometry there are at least three different notions of dimension for a
spectral triple (A,H, D).

• The metric dimension is measured by the rate of growth of the eigenvalues
of the Dirac operator;

• The KO-dimension (which is an integer mod 8) is determined by the signs
of the commutation relations of the operators J , γ, D, mimicking the anal-
ogous relations for real spin manifolds and the mod 8 periodicity of real
K-theory;

• The dimension spectrum is a subset of the complex plane, consisting of the
poles of the zeta functions ζa,D(s) = Tr(a|D|−s). At each point s of the
dimension spectrum there is a corresponding integration in dimension s,
given by the residues of the zeta functions at that point.

For ordinary spin manifolds the first two notions of dimension agree (mod 8),
while the dimension spectrum contains the usual dimension, along with other inte-
ger points less than or equal to the dimension. For truly noncommutative spaces
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the KO-dimension is not always equal to the metric dimension mod 8, and the
dimension spectrum can contain non-integer and also non-real points.

2.7. The local index formula. The Connes–Moscovici local index formula [10]
can be thought of as a way to provide an analog of Pontrjagin classes in noncom-
mutative geometry.

Given an even, finitely summable spectral triple (A,H, D) with simple dimension
spectrum, the Chern character local formula looks like

φn(a0, . . . , an) =
∑

cn,kResTr(a0[D, a1](k1) · · · [D, an](kn)|D|−n−2|k|)

where

cn,k =
(−1)|k|Γ(|k|+ n/2)

k!((k1 + 1) · · · (k1 + k2 + · · ·+ kn + n))

and ∇(a) = [D2, a] and a(k) = ∇k(a).
It defines a pairing of cyclic cohomology HC∗(A) and K-theory K∗(A).
It is natural to ask whether, in the noncommutative context, there is a good no-

tion of cobordism ring, with a possible distinguished set of generators, and whether
there is a possible description of cobordism in terms of the (φn), seen as noncom-
mutative Pontrjagin classes. This would not be a straightforward generalization of
the Thom argument, which relies on notions of embeddings and normal bundles for
manifolds, which do not have a good noncommutative analog. However, in non-
commutative geometry one has good analogs of vector bundles (projective modules,
Hilbert modules), and morphisms of spectral triples (bimodules with connections)
among which some qualify as the right notion of “embeddings”, so it is possible
that parts of the Thom argument may turn out to have a suitable noncommutative
analog. This question is closely related to the question of whether there may exist
anything like a power series description of genera in noncommutative geometry.

2.8. Multiplicative genera for spectral triples. One can then define multi-
plicative genera for noncommutative manifolds by mimicking the definition for the
commutative case.

Let Λ be a unital commutative algebra. Then a multiplicative genus is a function
φ from θ-summable spectral triples to Λ with the following properties:

(1) Additive on disjoint unions (direct sums):

(2.2) φ((A1,H1, D1)⊕ (A2,H2, D2)) = φ(A1,H1, D1) + φ(A2,H2, D2).

(2) Multiplicative on products (tensor products):

(2.3) φ((A1,H1, D1)⊗ (A2,H2, D2)) = φ(A1,H1, D1)φ(A2,H2, D2).

(3) Vanishing on boundaries:

(2.4) φ(A,H, D) = 0 if (A,H, D) = ∂(A′,H′, D′).

2.9. Elliptic genera? A natural question regarding the definition of multiplica-
tive genera for noncommutative manifold is what should be the right notion that
generalizes ellipticity.

If one defines ellipticity, in the case of ordinary manifolds, as the vanishing on
the projective bundles CP(E) of complex vector bundles E →M , then it would be
natural to seek an analog of CP(E) in the noncommutative world.

A possible way to proceed may be to reformulate the usual notion of projec-
tivization of a vector bundle. A projective bundle on M can be thought of, by
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Banach–Steinhaus, as a principal PU(H)-bundle. Isomorphism classes correspond
to sheaf cohomology H1(M,PU(H)M ). Projective bundles that are projectiviza-
tions P = CP(E) of a complex vector bundle E are then characterized as being
those P for which the Dixmier–Douady class δ(P ) ∈ H3(M,Z) is trivial, δ(P ) = 0.

This formulation appears suitable to generalizations to the noncommutative case,
whenever one can make sense of a Dixmier–Douady class. This is the case, for
instance, within the class of continuous trace C∗-algebras. Ellipticity of a multi-
plicative genus for noncommutative manifolds would then be characterized by the
vanishing on all P with δ(P ) = 0, in this more general setting.

It is unclear whether such an approach to ellipticity would maintain any connec-
tion to modularity, as in the ordinary manifold case.

3. The JLO cocycle

3.1. A noncommutative geometry view of the elliptic genus. Part of the
reason for expecting that a good generalization of multiplicative genera and elliptic
genera in noncommutative geometry may exist is coming from the fact that one al-
ready has a formulation of the elliptic genera for ordinary manifolds in the language
of noncommutative geometry, due to Jaffe [15], [16].

Given a θ-summable spectral triple (A,H, D), for which Tr(|D|−s) need not be

finite but Tr(e−tD
2

) < ∞, for all t > 0, the JLO-cocycle gives a Chern character
pairing with K-theory K0(A) by

τJLOn (a0, . . . , an; g) =

∫
Σn

Tr(γU(g)a0e
−s0D2

da1e
−s1D2

· · · dane−snD
2

)dv

where da = [D, a], a ∈ A and the integration chain is a simplex Σn = {
∑
j sj = 1},

dv = ds0 · · · dsn. The JLO cocycle is a super-KMS-functional generalizing the
notion of a Gibbs state.

Jaffe realized the elliptic genus as a partition function

TrH(γe−iθJ−iσP−βH)

with Hamiltonian H = Q2 − P , supercharge Q, twisting angle J , and translations
P . The supercharge operator Q can be viewed as a Dirac operator of a θ-summable
spectral triple, and the equivariant index of the Dirac operator Q on the loop space
can be computed by evaluation of a JLO cocycle, [15], [16].

3.2. The JLO cocycle as multiplicative genus. The results of [15] and [16]
suggest that, more generally, the JLO cocycle of [14] should provide the main
example of a multiplicative genus for noncommutative manifolds.

As above, given operators Ti, for i = 0, . . . , k on the even Hilbert space H with
Z/2Z grading γ, one defines

〈T0, . . . , Tk〉 =

∫
∆k

Tr(γ(T0e
−t0D2

· · ·Tke−tkD
2

)dt0 · · · dtk

with ∆k the k-simplex in Rk+1
+ .

The JLO cocycle of a θ-summable triple (A,H, D) is the entire cyclic cochain
defined by [14]

ϕk(a0, . . . , ak) = 〈a0, [D, a1], . . . , [D, ak]〉.
This satisfies (b + B)ϕ∗ = 0 and it represents the Chern character from K-theory
to entire cyclic homology.
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The multiplicative behavior of the JLO-cocycle over products of spectral triples
was in fact already shown in a recent paper of Uuye, [23].

3.3. The loop space of a noncommutative manifold? A related question is
whether there is a good geometric construction of an analog of the (formal) loop
space for an arbitrary noncommutative manifold (spectral triple).

In the case of an ordinary manifold, one defines the loop space as the space
of maps Maps(S1, X). At the level of their (commutative) algebras of functions
these would translate into homomorphisms χ : C(X)→ C(S1) of commutative C∗-
algebras. A version of (infinitesimal) loops for schemes was similarly formulated by
Kapranov–Vasserot, essentially as ring homomorphisms Hom(A,R[[t]]).

However, this kind of definition runs into the same problem one encounters in
trying to define “points” on noncommutative spaces. For noncommutative algebras
there are typically not enough characters (or equivalently, two sided ideals).

With points, a good replacement notion that corrects for the lack of characters, is
to think of points as extremal measures. The notion of probability measures on an
ordinary space generalizes to the notion of states on a C∗-algebra, that is, continuous
linear functionals ϕ : A → C that satisfy a positivity condition ϕ(a∗a) ≥ 0, for all
a ∈ A, and are normalized (for unital algebras) by ϕ(1) = 1.

This suggests that a possible way of generalizing the notion of loops and loop
spaces may be via a version of “states”, given in terms of linear functionals ` :
C(X) → C(S1), that are no necessarily algebra-homomorphisms, but that satisfy
a suitable analog of the “positivity” condition of states. Following this point of
view would lead to a definition of a loop space L(X) of a noncommutative space
X that is not itself an algebra, but at best a module or bimodule over the algebra
of coordinates of the noncommutative space. However, this may still suffice to the
purpose of building a noncommutative analog of the Dirac operator on loop spaces,
as a spectral triple.

3.4. Formal Dirac operators and noncommutative loop spaces? Notice
that, in the case of ordinary manifolds, in order to define a formal Dirac opera-
tor on loop spaces, one does not need a full rigorous construction of the loop space
as an infinite dimensional spin manifold, but only an “infinitesimal neighborhood”
of the constant loops. The main ingredient is the normal bundle N = ⊕ 6̀=0T` of a
manifold M in the loop space L(M), with T` ' TM . The bundle T = TL(M) is
the pullback of TM to loops γ : S1 →M . Given E , a notrivial real line bundle on
S1, and T̂ = E ⊗ TL(M), one has

T̂ |M = ⊕m∈Z+1/2q
mTm

with Tm ' TM , where qm corresponds to the S1-action.
Thus, if one wants to phrase a similar construction in the setting of spectral

triples, one can, for instance, aim at constructing a spectral triple for L(M) with
H = ⊕mqmHm, where the graded pieces are identified with copies of (sections of)
the spinor bundle Hm = L2(M,S).

A twisted Dirac operator on M is obtained by

/DM ⊗⊗n≥1S
qn(TMC)⊗ S ⊗⊗n>0Λq

n

(TMC).

In trying to build the right setup for a spectral triple formulation of the Dirac
operator on loop spaces, one should keep in mind that the construction should be
compatible with known results (Landweber) about Dirac operators for loop groups
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LG and possibly with recent approaches relating string structures on manifolds to
spin connections on the loop space.

4. Looking for a noncommutative Hirzebruch manifold

The considerations elaborated in the previous sections were aimed at providing
a framework of supporting evidence and intuition for the idea that the manifold
conjectured by Hirzebruch, along with the desired isometric action of the monster
group may in fact not be a manifold in the ordinary sense but a noncommutative
manifold, in the form of a spectral triple.

More direct evidence supporting this possibility lies in two different sources:

• Recently discovered relations between the noncommutative spaces under-
lying the quantum statistical mechanics of the GL2-system of [8] (see also
Chapter 3 of [9]) and the moonshine of the monster group. This is the
content of ongoing work of Jorge Plazas, [21].
• An operator algebra approach to conformal field theory, developed by Longo,

Kawahigashi, [17], [18]

The first work provides a natural connection between a noncommutative space
of lattices with additional structure (degenerate level structures) and modular func-
tions, which can be adapted to the replicable functions of moonshine theory.

The second, on the other hand, provides a framework where the vertex operator
algebra of Borcherds’ formulation of moonshine [2] can be seen in terms of von
Neumann algebras and data closely related to JLO cocycles and spectral triples.

Making these connections precise is the purpose of some ongoing work of the
author and the results will be presented elsewhere.
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