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BERNSTEIN INEQUALITY

Let X1, Xo,..., be a sequence of independent
random variables such that for all i > 1, EX =
0 and for some £ > 0 and v > 0 for mtegers

m > 2, E1X;|™ < oml™2/2.

The classic Bernstein inequality (cf. p. 855 of

Shorack and Wellner (1986) says that in this

situation for allm > 1 and ¢ > 0
)
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MAXIMAL VERSION

Moreover, (cf. Theoréme B.2 in Rio (2000) its
maximal form also holds, i.e. we have
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GENERAL BERNSTEIN
INEQUALITY

It turns out that, under a variety of assump-
tions, a sequence of not necessarily independent
random variables X1, Xo, ..., will satisfy a gen-
eralized Bernstein-type inequality of the follow-
ing form: for suitable constants A > 0, a > 0,
b>0and 0 <y <2foralls >0, n>1and
t >0,

P{|S(t+ 1,i+n)| >t}

at?
= AexP{n%—bﬂ}’

(GB)
where for any choice of 1 <1 < 7 < oo we de-

note the partial sum S(z,7) = Zi:@ X}.. Here
are some examples.




BERNSTEIN EXAMPLE 1

Let X1, Xo,..., be a stationary sequence satis-
fying
EX{=0 and VarX; =1.
For each integer n > 1 set
Sn=X1+-+X,
and B2 = Var (Sp).

Assume that for some J% > ()

we have B2 > Ugn for all n > 1.

Statulevicius and Jakimavicius (1988) prove that
the partial sums satisfy GB with constants de-
pending on the particular mixing and bounding
condition that the sequence may fulfill.



BENTKUS AND RUDZKIS

Their Bernstein-type inequalities are derived via
the following result of Bentkus and Rudzkis (1980)
relating cumulant behavior to tail behavior:

For an arbitrary random variable & with expec-
tation 0, whenever there exist v > 0, H > 0
and A > 0 such that its cumulants I';. (£) satisfy
0, (8)] < (B2 HIAR 2 for k=2,3,...,
then for all z > 0

P{+¢ > x}

<expyq —




BERNSTEIN EXAMPLE 2

Doukhan and Neumann (2007) have shown us-

ing the result in Bentkus and Rudzkis (1980)
cited in the previous example that if a sequence
of mean zero random variables X1, Xo, ..., sat-
isfies a general covariance condition then the
partial sums satisfy GB.

Refer to their Theorem 1 and Remark 2, and
also see Kallabis and Neumann (2006).



BERNSTEIN EXAMPLE 3

Assume that X, Xo, ..., is a strong mixing se-
quence with mixing coefficients « (n), n > 1,
satisfying for some d > 0, a (n) < exp (—2dn).
Also assume that £EX; = 0 for some M > 0
| X;| < M, for all & > 1. Theorem 2 of Mer-

levéde, Peligrad and Rio (2009) implies that for
some constant D > O forallt > 0and n > 1,

D2
P {|Sy| > t} < exp (— t ) |

nv? 4+ M2 + tM (log n)?
where Sy, = > 1" 1 X; and

112 =sup | Var (XZ) + 2 Z |COU (Xia Xj)’

1>0 j>i



EXPLANATION

To see how this last example satisfies GB, notice
that for any 0 < 1 < 1 there exists a D1 > 0
such that for all ¢t > 0 and n > 1,

nv’+M>+tM (logn)* < n (112 + MQ) + Dot 1.

Thus GB holds wit

h v = 14 n for suitable
A>0a>0andb>0.



GENERAL MAXIMAL
BERNSTEIN INEQUALITY

For any choice of 1 <17 < 5 < oo define

M{(i,7) = max{|5(¢,7)],...,[5(z,7)[}.

Somewhat unexpectedly, if a sequence of ran-
dom variables X1, Xo, ..., satisfies a Bernstein-
type inequality of the form GB, then without
any additional assumptions a modified version
of it also holds for

M(m+1,m+n)= max |S(1+m,i+m)|.
1<i<n

10



GMB Inequality Assume that for constants
A>0,a>0b>0and~ € (0,2), inequal-
ity GB holds for all t > 0,n > 1 and t > 0.
Then for every 0 < ¢ < a there exists a
C' > 0 depending only on A,a, b and ~ such
that for allm >0, n>1and t > 0,

ct?
P{M 1 >t <C — .
{M(m+1,m+n) >t} < exp{ n+m}
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REMARK

Clearly ¢ < a can be chosen arbitrarily close to
a.

The case b = 0 is a special case of Thereom 1 of

Moricz (1979).

This result has appeared in Kevei and M (2011).
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MOTIVATION

The GMB inequality was partially motivated
by Theorem 2.2 of Modricz, Serfling and Stout
(1982), who showed that whenever for a suitable
positive function g (i, j) of (¢,7) € {1,2,...} X
{1,2,...}, positive function ¢ (¢) defined on
(0,00) and constant K > 0, for all 1 < ¢ <
7 <ooandt >0,

P{|5(¢,7)| > 1} < Kexp{—=9¢(t) /g(i,7)},

then there exist constants ¢ > 0 and C > 0
such that for allm >0, n>1and ¢t > 0,

P{M(m+1,m+mn) >t}
< Cexp{—co(t)/g(1,n)}.

This inequality is clearly not applicable to ob-
tain a maximal form of the generalized Bern-
stein inequality:.
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APPLICATIONS OF GMB
INEQUALITY

An obvious application of the GMB inequality
is the following bounded law of the iterated log-
arithm.

Bounded LIL Under the assumptions of the
previous theorem, with probability 1,

S(1 1
lim sup S, )] <

n—oo Vnloglogn — va
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OBSERVATION

In general one cannot replace “<” by "=" our
bounded LIL. To see this, let Y, 7, ZQ, . be a

sequence of independent random variables such
that Y takes on the value 0 or 1 with probability

1/2 and Zq, Zs,... are independent standard
normals. Now define X; =Y Z,, 1 =1,2,... It
is easily checked that assumptions of the GMB
inequality are satisfied with A = 2, a = 1/2,
b=0and v=1.

When Y = 1 the usual law of the iterated log-
arithm gives with probability 1,

limsup |S(1,n)|/v/nloglogn = v2 =1/va

n—o0

whereas, when Y = 0 the above limsup is 0.
This agrees with the bounded LIL, which says

that with probability 1 the limsup is < V2.
However, we see that with probability 1/2 it

equals v/2 and with probability 1/2 it equals
0.
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A MORE GENERAL MAXIMAL
BERNSTEIN INEQUALITY

THEOREM Assume that there exist constants
A > 0 and a > 0 and a sequence of non-
decreasing non-negative functions {gp},~; on
(0,00), such that for all ¢ > 0 and n > 1,
gn (t) < gpaq(t) and for all 0 < v < 1

MY L.
limin gn(t)logt'gn YN p = 00,

where the infinum of the empty set is defined to
be infinity, such that for all m > 0, n > 1 and
t >0,

at2

P{S(m+1,m+n)| >t} < Ae —
{15 )| >t} xp{ e
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Then for every 0 < ¢ < a there exists a C' > 0
depending only on A, a and {gn},,~1 such that
foralln>1 m>0andt >0, a

2
P{M(m+1,m+n) >t} < Cexp {n Jj; (t)} .
n

Note that the more general maximal Bernstein
inequality implies the previous one by choosing
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EXAMPLE 1 Assume that X, Xo,...,1s a
stationary Markov chain satistying the condi-

tions of Theorem 6 of Adamczak (2008) and let
f be any bounded function f such that Ef (X7) =
0.

This theorem implies that for suitable positive
constants D, dy, do for allt > 0 and n > 1,

Dit?
P > < Dl _
{Sn(f)| =t} < exp ( nd1—|—td210gn> ,

where Sp(f) = >0 [ (X5).
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In this example one can verify that the assump-
tions of the theorem hold with

A=D1 a=D/d; and

gn (1) = (tjl > log .
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EXAMPLE 2 Assume that X{, Xo,...,1sa

strong mixing sequence with mixing coeflicients
a(n),n > 1, satisfying for some d > 0, a (n) <
exp (—2dn). Also assume that EFX; = 0 for
some M > 0 |X;| < M, for all i > 1. Theorem

2 of Merlevéde, Peligrad and Rio (2009) implies

tha;: {or some constant D > 0 for all £ > 0 and
n —_ )

P {|Sn| =}

_ Dt?
<exp|— ,
nv? + M2 + tM (logn)?

where S, = > 1" ; X; and

v2 =sup | Var (XZ) + 2 Z |COU (Xia Xj)’
1>0 ]>Z
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In this example the assumptions of the theorem

hold with A =1, a = D/v? and
M*  [(tM
an (t) — 7 -+ (?> (10g n)Q |

which leads to the inequality valid for all n > 1
and ¢ > 0

P{ max | Sy, Zt}
1<m<n

cDt?
< (Cexp| — > > ;
nv- + M?* 4+ tM (logn)

for some constants C' > 1 and 0 < ¢ < 1.
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MOTIVATION OF MORE GMB

See Corollary 24 of Merlevéde and Peligrad (in

press) for a closely related inequality that holds
for all n > 2 and t > K logn for some K > 0.

They remark that their maximal inequality can-
not be derived the Kevei and M (2011) GMB

inequality. We formulated and proved our more
GMB inequality to include results like theirs.
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