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Introduction 3

Our generic problem : from detector measurements, image a buried inclusion in a

random medium.

[ | The random medium models an un-

known heterogeneous medium (at-

mosphere, forest, ocean, etc)

[l We are interested in a regime in

which the interaction between the

wave and the medium is strong

[l To make this precise, we need to Detector

iIdentify the main scales.
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Introduction 4

4 important parameters :

] the overall distance of propagation L
(1 the wavelength A

L] the correlation length [

1 the strength of the fluctuations o

We use the standard wave equation to model the propagation :

6V Op
625 +Vp =0, K(x )875
X

p(0.%) =m0 (x,5) . v(0,%) =0,

where we assume k takes the form (k¢ is the background compressibility)

+V.v=0, on R%,

K(X) =Ko+ oV (?) : E(V) =0, E(V(ix+y)V(y)) = R(x)

V' being a mean-zero stationary process with correlation function .
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Scalings

L] We make first the high frequency assumption that

! <1
— =€ .
L

1 Several choices are possible for [ : we assume here that it is of order of the
wavelength so that the interaction between the wave and the medium is maximal.
Thus [ =~ . The alternatives [ << X or A < [ lead to different asymptotical
regimes.

1 Weak coupling regime : the strength of the fluctuations is supposed to be \/E. This
IS the intensity that provides an effect of order one of the medium over large

propagation distances.

Therefore k reads

k(X) = ko + VeV (E) .

€

< I > Banff — March 2011




Scalings 6

There is another important parameter : the mean free path 002_1 (depends on \ and

R), that can be interpreted as the average distance between 2 interactions of the wave

and the medium.

1 1f L < cyX"1, coherent regime : the wave has weakly interacted with the medium,

the wave front can me measured. In this regime, interferometry methods perform

well (L. Borcea, G. Papanicolaou, K. Sglna, C. Tsogka)

[ 1f L > cyX"1, incoherent regime : the wave strongly interacts with the medium, the

wave front is not available. We need a model to describe the multiple interactions.

In our configuration : L ~ 320\, coX~! ~ 40\, so that L ~ 8cyX""'. This is not the

diffusive regime yet.
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Asymptotic models 7

We already have a model : the wave equation. Not appropriate here, its solutions

strongly depend on the randomness.

We need a model that weakly depends on the random medium : transport equations.

They generally describe quantities quadratic in the wavefield as the wave energy

£°(t,%) 1= 5 (W(Ip(%) + polv (1. %))

It is well-known, at least formally [Ryzhik-Papanicolaou-Keller 96], that

hr% E{&°}(t,x) = / a(t, x, k)dk,
E—r Rd

where a i1s an amplitude solution to a radiative transfert equation

N bak ViatSa=Qu), k= “;‘ 5 = Q1)
Qa) = [Rd a(t,x,p)o(k,p)d(co|lp| — colk|)dp, o(k,p) = gig‘;PR(k D)
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Asymptotic models 8

Our approach then consists in solving an inverse transport problem using measurements

of £ and the model for a (that only depend on fi) rather than using the wave description.

Main Problem : statistical stability. a describes the limit of E{£°} and not that of £°. In
practical experiments, one cannot compute averages since one has access to one

realization of the random medium only, the physical medium.

One therefore expects the following self-averaging property to hold when € — 0
g° ~ E{E°). (1)
Quantifying precisely this relation is essential for our imaging problem since
5E° = E° — E{&°)

IS the main source of noise.
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Asymptotic models 9

Quantifying the instability 0E° is a very difficult task, essentially possible in simplified
settings, as the paraxial approximation in which the wave propagation is described by a
Schrodinger equation.

There are many results in the literature adressing the convergence of IE{E¢} (or of £ in
probability) for the Schrodinger equation, see e.g. Erdos-Yau, Bal-Papanicolaou-Ryzhik,

Fannjianng, Poupaud-Vasseur, without analyzing the convergence rate.
For some reduced models, we were able to make (1) precise so as to

1 obtain optimal error estimates

] quantify the dependence on some parameters of the problem as the concentration of
initial conditions or the size of detector

] characterize the first-order corrector to transport (at least its covariance)

] obtain convergence when the random medium has some long-range interactions.
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Some typical results 10

We suppose the propagation is described by the following Schrodinger equation :

(ZT/; + — A —l_\/_vn ( X>>wn(Z,X) :O’ Z>O, XERd—l ERD,
< n
(0, %) = wg(x) bounded in L?.

The dependence -or not- on z of V' is crucial for the mathematical analysis
1 Simplest case : V' is a white noise in z, regular in X

L] Most difficult case : V' is independent of z

We choose an initial condition of the form (a pure state)

1 X — X\ ;&x=%0)kg
ihy (%) = @x( . )6 g
n ’l

The main tool in the analysis is the Wigner transform

1 -
W (z,x,k) = (2m)D /RD e@kywn(z,x - %)%7( X+ %) dy.
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Some typical results 11

The Wigner transform provides a phase space description of the propagation and

W (z,x,k)dk = |1, (z,x)|> = wave energy
RD
The related initial condition reads
1 X — X k — ko
Wno(X, k) — _DWO ( P —a ) .
n Ui Ui

Another important tool is the scintillation function J77 , defined as

Jo(z, %k, y, p) = E{W, (2, x, k)W, (2,y, p) }—E{W, (2, x, k) }E{ W, (2,y,P)},

whose weak convergence to zero implies the convergence in probability :

P(I(Wy(2), ) — (E(W,}(2). 9] > 8) < 5 (Jy(2). 0 ® ).

When V' is white-noise in time, J77 satisfies a closed-form equation (it is a consequence

of the fast decorrelation in time) and a complete analysis of the limit 77 — 0 is possible.
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The It06-Schr 6dinger regime 12

The It0-Schrddinger equation reads :

1
dyy(z,x) = §i77AX¢n(z, x)dz + 1, (2,X) 0 dB(%, z), (2,x) € Ry x R”

where B is a Wiener process with correlation function
E{B(x,2)B(y,?)} = R(x—y)zAZ, RecL'NL>.
The Wigner transform satisfies the random Wigner equation

(dW, +k -V W,dz)(2,x,k) =

i 1 XP P p
(27-‘-)D Addpe K (Wﬁ(zﬁka_§)_W"?(Z7X7k_|—§)) OdB(p7Z)7

with B = Fy_,pB.
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The It06-Schr 6dinger regime 13

The key point the is that Jf,7 satisfies a closed-form equation :

9
(g +T5 +2R(0) = Q2 — Ky ) Jy = Kyay @ @, on R x R2P,
J"(z=0)=0,

’TQ:k'Vx‘FP'Vy, an:E{Wn}v

Oy — /R (RO~ K00~ ) + R(p — )30k — K) ) h(x, Ky, p)K dp

A~ . (x—y)-u
Knh = E €;€j / R(u)e' 7 " h (x, k + eiE,y, P+ € E) du.
€;,e;=+1 RP 2 2
1565 —
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The It6-Schr 6dinger regime 14

Theorem [Bal - P, CPDE 2010] For all « € |0, 1], J, — 0 weakly in &" and more

precisely
J?? — 91(777057 D)Jl =+ 92(777 Qx, D)JQ =+ Tm

where 1, is negligible in S’ compared to the first 2 terms. J; and .J, satisfy 4-transport
equations of the form

(% +To+2R(0) — Qo) Ji = Sifa, D) on R x B2,

Ji(z = 0) = J(a, D),

The data for J; are linear with respect to R (single scattering) while that of .J5 are
guadratic (double scattering). Higher-order scattering events therefore produce negligible

Instabilities compared to that of the simple and double scattering.

The single scattering contribution dominates when o > %
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The It06-Schr 6dinger regime

15

When o > % S; = 0 = instabilities generated by an initial condition

(This is consistant with a recent result of Komorowski-Ryzhik)
When o < % JZ-O = ( = instabilities generated by a source term.
Most stable configuration : « = 0 = g9 = 77D.

Least stable configuration: o« = 1 = g1 = 1.

We also have the following result : consider a test function of the form

1
nle

X

nst’

Psq (Xa k) — 90( k) .

Then, for o = 0
(Jns P51 @ @s,) = O™ 751y,

Hence, when the initial condition has a support of order one compared to 7, statistical

stability holds when the detector is of size e %", s; < 1.

e

Banff — March 2011



Another regime : time independent potential 16

The Schrodinger equation with time-independent potential reads in the weak coupling
regime :

(“7;2 T A +vnV (77)) y(2,%x) =0, 2>0, xeR",
(0, %) = wg(x) bounded in L?.

We know from Erdés-Yau (and Spohn) that when D > 2, E{TV/,, } converges to a

solution to a radiative transfer equation. Up to our knowledge, the convergence of the
whole process IV, is an open problem.

Nevertheless, it is possible to analyze the scintillation of the single and double scattering
contributions (that are expected to be dominant in some regimes according the

1t6-Schrodinger case) and also obtain optimal estimates.
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Another regime : time independent potential 17

The random Wigner equation reads :
) Lk.V W, (z,x,k)
- o X Z’ }(7 p—
0z !
' xp P P

\/ﬁ(;W)D /Rd de(p) et n (Wn(z, x, k — 5) —W,(z,x, k + 5))

We then formally expand VVf,7 in terms of multiple scattering and only retain the terms at

most quadratic in /. The corresponding scintillation is
__ 715 D
Jy=J5 + JP.
We consider again an initial condition of the form

1 X —Xxg k—k
WnQ(X, k) — _dWO ( > O, 1—a0> .
Ui Ui Ui
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Examples of results 18

[ Again, the single scattering contribution dominates when av > %
L] Single scattering

4+1 (to be compared with N2 for I1t8-S.).

Most stable configuration: oo = 0 =1
Least stable configuration : o« = 1 (v > % in 1D) = 1) (same as It0-S.)
The single scattering is always stable, even in 1D
Localization is generated in 1D by higher order scattering events

1 Double scattering
Least stable configuration for D > 2 : 77%.
Least stable configuration for /) = 1 : scintillation of order 1 when o« = 0
Instability in 1D when v = 0

Stability in 1D when o > 0
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Statistical stability 19

The conclusion of the theoretical analysis is that the Wigner function (i.e. the energy) is

self-averaging in many configurations for reduced models of propagation.

Besides, the instabilities critically depend on some parameters of the problem as the

Initial conditions or the detector.

Owing these results, we (formally) assume that they can be extrapolated to the wave

equation and then perform reconstructions.
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Imaging results 20

Imaging procedure (in 2D) :

[]
[]

We measure the energy £° for one realization of the random medium.
We assume we can form differential measurements (ie both in absence and
presence of the inclusion)
this removes a substantial amount of noise
Imaging with direct measurements only is possible if the inclusion is large
enough or if the mean free path is important
We find the deterministic transport prediction that best fits the (weakly) random
measurements.

The procedure is carried out over 20 realizations to quantify the variance of the

reconstructed parameters.
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Imaging results

21

[] First step : estimation of the transport parameters

For simplicity, we use a random medium associated with an isotropic cross-section,

and an initial condition with only one frequency content.
one parameter to reconstruct, the mean free time -1

we minimize over Y1

/ Tl () — AWt

£5(1) = /D gt x)dx  Alt) = /D /S aft, koK) dxk

[1 Second step : reconstruction of the inclusion
We suppose the inclusion is spherical and perfectly reflecting.

we minimize over (X,Y, R)

/T 6E°(t) — 6A[X,Y, R](t)|*dt

e
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Example of random media

22
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Validity of transport 23
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Statistical Stability 24

Wavelength A = 1, mean free path =~ 40, isotropic cross section.
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Measurements (mean free path

~ 40)

25

0&,. = differential measurements of the wave energy
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Measurements (mean free path =~ 40) 26

Smoothing of d E. « 1 RBconstructions using energies with averaged datas, R=8
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Reconstructed parameters with averaged datas (168.6, 157.9,7.6).
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27

~ 40)

Reconstructions (mean free path
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Improving the stabllity 28

The stability can be improved if one is able to form the correlation of the wavefield in

presence and in absence of the inclusion :

1 11
C2(t,x) = 5 (753 (X)L (%) p2(E %) + pov (1) - V() ).

In this case, the corresponding transport solution satisfies Dirichlet boundary conditions

at the inclusion boundary rather than specular conditions for the energies.

Formal calculations then show that, in the transport regime, the correlation should be

more stable than the energy.

In the diffusion regime, we have, ford > 3:
0E° = O(RY), 6C° = O(R?)

so that

OE® <« 6C°
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Correlations (mean free path

~ 40)
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Reconstructions (mean free path ~ 40) 30
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Reconstructions (mean free path

~ 40) 31
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Conclusion 32

] Models for imaging in strongly heterogeneous environments were proposed and
validated

1 They consist in solving an inverse transport problem rather than imaging using a
wave description

L] Quantifying their precision requires a careful analysis of the limit random wave
equation — transport equation

L1 In simplified settings some optimal rates of convergence were obtained and the

corrector was characterized
Some open questions

L] Kinetic limit for the wave equation

[ ] Comparison transport-based and interferometry methods
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