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Goals
The autopsy data set

e The Markov model
@ The transition matrix
@ The state-vector
@ The steady-state

e Building the lung cancer network
@ A constrained optimization problem
@ The trained matrix
@ The lung cancer network
@ Unbiased diffusion process

e Biased random walks on the network
@ Individual trajectories
@ Mean first-passage times
@ Singular value decomposition
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Goals of the model:

@ Build a computational ‘platform’ for Monte Carlo
simulations of cancer progression

@ Start by building this for the generic ‘average’ patient,
focusing on lung cancer

@ Then build the model for other types of cancer for
comparison purposes

@ Compare with individual patient histories
@ Use model to quantify predictions

@ Use model to perform ‘tests’
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The autopsy data set

DiSibio & French (2008)
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The autopsy data set

DiSibio & French (2008)

3827 untreated patients (1914-1943)
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The autopsy data set

Key features of data set

@ 50 combined primary or metastatic sites
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The autopsy data set

Key features of data set

@ 50 combined primary or metastatic sites

@ 39 primaries, 11 metastatic sites that are not primary sites

@ Data set is large, but not comprehensive

@ Each row gives ensemble metastatic distribution from a
given primary

@ These distributions represent the ‘long-time’ steady-state

@ Patients are untreated males and females
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The autopsy data set
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The transition matrix
The state-vector
The steady-state

The Markov model

Defining the transition matrix

The Markov chain model

Vs = WA, (k=0,1,2,....)
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Defining the transition matrix

The Markov chain model

Vet = VA, (k=0,1,2,....)
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@ Ais a 50 x 50 transition matrix

@ Rows sum to 1

@ Entries are all primary and metastatic sites

@ These will be the ‘nodes’ of our network model
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The transition matrix
The state-vector
The steady-state

The Markov model

Defining the transition matrix

The Markov chain model

Vs = WA, (k=0,1,2,....)

@ 50 locations that are either primaries or metastatic sites

@ Ais a 50 x 50 transition matrix

@ Rows sum to 1

@ Entries are all primary and metastatic sites

@ These will be the ‘nodes’ of our network model

@ The nodes will be connected by directed edges

@ Edge weightings will be determined by solving an
optimization problem
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The transition matrix

The Markov model The state-vector

The steady-state

The 50 nodes that make up network

# Name # Name

1 Adrenal 26 Omentum

2 Anus 27 Ovaries

3 Appendix 28 Pancreas

4 Bile Duct 29 Penis

5] Bladder 30 Pericardium

6 Bone 31 Peritoneum

7 Brain 32 Pharynx

8 Branchial Cyst 33 Pleura

9 Breast 34 Prostate

10 Cervix 35 Rectum

11 Colon 36 Retroperitoneum
12 Diaphragm 37 Salivary

13 Duodenum 38 Skeletal Muscle
14 Esophagus 39 Skin

15 Eye 40 Small Intestine
16 Gallbladder 41 Spleen

17 Heart 42 Stomach

18 Kidney 43 Testes

19 Large Intestine 44 Thyroid

20 Larynx 45 Tongue

21 Lip 46 Tonsil

22 Liver 47 Unknown

23 Lung 48 Uterus

24 Lymph Nodes (reg) 49 Vagina

25 Lymph Nodes (dist) 50 Vulva
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The transition matrix
The state-vector
The steady-state

The Markov model

State-vector representation

Vo: The initial state-vector

@ Represents the distribution of primary tumors (and our
level of certainty)
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The transition matrix
The state-vector
The steady-state

The Markov model

State-vector representation

Vo: The initial state-vector

@ Represents the distribution of primary tumors (and our
level of certainty)

@ o =(1,0,0,0,....): Primary tumor located in Adrenal gland

@ p=(0,0,0,0,...,1,0,0,0,...): Primary tumor located in
Lung

@ \p =(1/50,1/50,1/50,....): Complete lack of information
on location of primary tumor
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The transition matrix
The state-vector
The steady-state

The Markov model

State-vector representation

Vo: The initial state-vector

@ Represents the distribution of primary tumors (and our
level of certainty)

@ o =(1,0,0,0,....): Primary tumor located in Adrenal gland

@ p=(0,0,0,0,...,1,0,0,0,...): Primary tumor located in
Lung

@ \p =(1/50,1/50,1/50,....): Complete lack of information
on location of primary tumor

® \p=(1/2,0,0,0,....,1/2,0,0,0,...): Primary tumor located
in Adrenal and/or Lung
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The transition matrix
The state-vector
The steady-state

The Markov model

Metastatic progression

State-vector dynamics

Vi = VWA

h = VA=A
Vs = hA=ipA°
Vi1 = VA= RAT
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The transition matrix
The state-vector
The steady-state

The Markov model

The steady-state ‘statistical’ distribution

Vs = lim A~
k—oo
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The transition matrix
The state-vector
The steady-state

The Markov model

The steady-state ‘statistical’ distribution

Vs = lim A~
k—oo
Ve = VoA
V(A=) =0
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The transition matrix
The state-vector
The steady-state

The Markov model

The steady-state ‘statistical’ distribution

Vs = lim A~
k—oo

Voo = VoA

Vs(A— 1) =0

@ V. is an eigenvector of A corresponding to eigenvalue 1
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The transition matrix
The state-vector
The steady-state

The Markov model

The steady-state ‘statistical’ distribution

Vs = lim A~
k—oo

Voo = VoA

Vs(A— 1) =0

@ V. is an eigenvector of A corresponding to eigenvalue 1
@ Since Ais stochastic, must have at least one steady-state
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The transition matrix
The state-vector
The steady-state

The Markov model

The steady-state ‘statistical’ distribution

Vs = lim A~
k—oo

Voo = VoA

Vs(A— 1) =0

@ V. is an eigenvector of A corresponding to eigenvalue 1
@ Since Ais stochastic, must have at least one steady-state
@ Find entries of A so that vy, = V7t
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A constrained optimization problem
The trained matrix

Building the lung cancer network The lung cancer network
Unbiased diffusion process

Constrained linear optimization problem

Find the entries a; of the transition matrix A, subject to:
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A constrained optimization problem
The trained matrix

Building the lung cancer network The lung cancer network
Unbiased diffusion process

Constrained linear optimization problem

Find the entries a; of the transition matrix A, subject to:

vr(A—1)=0

@ Constraints: 0 < g; < 1; 215:01 aj = 1.
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A constrained optimization problem
The trained matrix

Building the lung cancer network The lung cancer network
Unbiased diffusion process

“Training’ the matrix

A; is a 50 x 50 transition matrix

Vr(Ai—1) # 0
WA-1) =0
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A constrained optimization problem
The trained matrix

Building the lung cancer network The lung cancer network
Unbiased diffusion process

“Training’ the matrix

A; is a 50 x 50 transition matrix

Vr(Ai—1) # 0
WA-1) =0

r;: The residual vector

(4~ 1) = (Vr — V(A — D=7
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A constrained optimization problem
The trained matrix

Building the lung cancer network The lung cancer network
Unbiased diffusion process

“Training’ the matrix

Two-step process
@ Step 1: Approximate (Ag, j = 0)
@ Step 2: lterate (A;, j =1,2,...)
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A constrained optimization problem
The trained matrix

Building the lung cancer network The lung cancer network
Unbiased diffusion process

“Training’ the matrix

Two-step process
@ Step 1: Approximate (Ag, j = 0)
@ Step 2: lterate (A;, j =1,2,...)

@ Goal: Drive the residual norm ||7;|2 to zero as j — cc.
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A constrained optimization problem
The trained matrix

Building the lung cancer network The lung cancer network
Unbiased diffusion process

“Training’ the matrix

Two-step process
@ Step 1: Approximate (Ag, j = 0)
@ Step 2: lterate (A;, j =1,2,...)

@ Goal: Drive the residual norm ||7;|2 to zero as j — cc.

o ||(vr— )2 =0
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A constrained optimization problem
The trained matrix

Building the lung cancer network The lung cancer network
Unbiased diffusion process

Finding a ‘good’ Ay

Our first approximation

@ For each primary in data set, use raw numbers to fill out
rows

P.K. Newton Metastatic progression on networks
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Finding a ‘good’ Ag

Our first approximation

@ For each primary in data set, use raw numbers to fill out
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@ Normalize each of those rows by dividing by sum
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A constrained optimization problem
The trained matrix

Building the lung cancer network The lung cancer network
Unbiased diffusion process

Finding a ‘good’ Ay

Our first approximation

@ For each primary in data set, use raw numbers to fill out
rows

@ Normalize each of those rows by dividing by sum

@ Fill out entries for the remaining empty rows with
‘unbiased’ values a; = 1/50

P.K. Newton Metastatic progression on networks



A constrained optimization problem
The trained matrix

Building the lung cancer network The lung cancer network
Unbiased diffusion process

Finding a ‘good’ Ay

Our first approximation

@ For each primary in data set, use raw numbers to fill out
rows

@ Normalize each of those rows by dividing by sum

@ Fill out entries for the remaining empty rows with
‘unbiased’ values a; = 1/50

@ A constructed this way is a stochastic transition matrix
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A constrained optimization problem
The trained matrix

Building the lung cancer network The lung cancer network
Unbiased diffusion process

Finding a ‘good’ Ay

Our first approximation

@ For each primary in data set, use raw numbers to fill out
rows

@ Normalize each of those rows by dividing by sum

@ Fill out entries for the remaining empty rows with
‘unbiased’ values a; = 1/50

@ A constructed this way is a stochastic transition matrix
@ But \7T(A0 — /) 75 0
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The lung cancer network
Unbiased diffusion process

The trained matrix
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A constrained optimization problem
The trained matrix

Building the lung cancer network The lung cancer network
Unbiased diffusion process

Dynamics using Ay

Does not converge to the correct steady
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A constrained optimization problem
The trained matrix

Building the lung cancer network The lung cancer network
Unbiased diffusion process

lterating A;, j=0,1,2, ...

The iteration scheme

@ Calculate the residual 7; at step j
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A constrained optimization problem
The trained matrix

Building the lung cancer network The lung cancer network
Unbiased diffusion process

lterating A;, j=0,1,2, ...

The iteration scheme

@ Calculate the residual 7; at step j

@ Pick column of A; corresponding to position of max entry of
7
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A constrained optimization problem
The trained matrix

Building the lung cancer network The lung cancer network
Unbiased diffusion process

lterating A;, j=0,1,2, ...

The iteration scheme

@ Calculate the residual 7; at step j

@ Pick column of A; corresponding to position of max entry of
7

© Pick column of A; corresponding to position of min entry of
7
J
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A constrained optimization problem
The trained matrix

Building the lung cancer network The lung cancer network
Unbiased diffusion process

lterating A;, j=0,1,2, ...

The iteration scheme

@ Calculate the residual 7; at step j

@ Pick column of A; corresponding to position of max entry of
7

© Pick column of A; corresponding to position of min entry of
F
J

© Pick a row of A; at random
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A constrained optimization problem
The trained matrix

Building the lung cancer network The lung cancer network
Unbiased diffusion process

lterating A;, j=0,1,2, ...

The iteration scheme

Calculate the residual r; at step j

Pick column of A; corresponding to position of max entry of
i

Pick column of A; corresponding to position of min entry of
lj

Pick a row of A; at random

Decrease entry of A; in step 2 by 4, increase entry of A; in
step 3 by §, where § scales with ||7j[|2. The new matrix is
Aj+1 .

00 ©0 060
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A constrained optimization problem
The trained matrix

Building the lung cancer network The lung cancer network
Unbiased diffusion process

lterating A;, j=0,1,2, ...

The iteration scheme

Calculate the residual r; at step j

Pick column of A; corresponding to position of max entry of
i

Pick column of A; corresponding to position of min entry of
lj

Pick a row of A; at random

Decrease entry of A; in step 2 by 4, increase entry of A; in
step 3 by §, where § scales with ||7j[|2. The new matrix is
Aj+1 -

@ Stopif ||711]? < ¢, otherwise go to step 2 and repeat.
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A constrained optimization problem
The trained matrix

Building the lung cancer network The lung cancer network
Unbiased diffusion process

Convergence to the fully ‘trained’ matrix
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The trained matrix

The lung cancer network

Building the lung cancer network

Unbiased diffusion process
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The trained matrix

The lung cancer network

Building the lung cancer network

Unbiased diffusion process
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The trained matrix

The lung cancer network

Building the lung cancer network

Unbiased diffusion process
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A constrained optimization problem
The trained matrix

Building the lung cancer network The lung cancer network
Unbiased diffusion process

Eigenvalue distribution of lung cancer matrix

0.15 T T T T T T

Imaginary Axis

-0.05 * 1

-0.15 1

0.2 L L L L L L
-0.2 0 0.2 0.4 0.6 08 1 12

Real Axis

Metastatic progressi



Building the lung cancer network

The lung cancer network

A constrained optimization problem
The trained matrix

The lung cancer network

Unbiased diffusion process




A constrained optimization problem
The trained matrix

Building the lung cancer network The lung cancer network
Unbiased diffusion process

Summary of network structure
@ Total of 913 edges
@ Lung node has 21 outgoing edges

@ Lung node has 49 incoming edges
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A constrained optimization problem

The trained matrix

The lung cancer network

Building the lung cancer network

Unbiased diffusion process
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A constrained optimization problem

The trained matrix

The lung cancer network

Building the lung cancer network

Unbiased diffusion process
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A constrained optimization problem

The trained matrix
Unbiased diffusion process

The lung cancer network
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A constrained optimization problem

The trained matrix
Unbiased diffusion process

The lung cancer network
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A constrained optimization problem
The trained matrix

Building the lung cancer network The lung cancer network
Unbiased diffusion process

‘Second order’ cancers (from primary lung)

Mets from mets

@ bladder
@ prostate

@ skeletal muscle
@ skin

@ uterus

@ vagina
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A constrained optimization problem
The trained matrix

The lung cancer network
Unbiased diffusion process

The most heavily weighted incoming connections
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A constrained optimization problem
The trained matrix

Building the lung cancer network The lung cancer network
Unbiased diffusion process

Cut-off: 0.4

Strongest connections all go to the (24) Lymph nodes (reg) and
(33) Pleura to (1) Adrenal.

P.K. Newton Metastatic progression on networks



A constrained optimization problem
The trained matrix

Building the lung cancer network The lung cancer network
Unbiased diffusion process

Cut-off: 0.25

Strongest connections to (24) Lymph nodes (reg), (25) Lymph
nodes (dist), (23) Lung, and (46) Tonsil to (41) Spleen.

P.K. Newton Metastatic progression on networks



A constrained optimization problem
The trained matrix
Building the lung cancer network The lung cancer network

Unbiased diffusion process

Cut-off: 0.1

Connections to (24) Lymph nodes (reg), (25) Lymph nodes
(dist), (23) Lung, (22) Liver, new connections to (1) Adrenal, (6)
Bone, (7) Brain, and (17) Heart.
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A constrained optimization problem
The trained matrix

Building the lung cancer network The lung cancer network
Unbiased diffusion process

Would a ‘pure diffusion’ process work?

Metastatic progressi



A constrained optimization problem
The trained matrix

Building the lung cancer network The lung cancer network
Unbiased diffusion process

Would a ‘pure diffusion’ process work?

@ Suppose we replace the heterogeneous edge weightings
with ‘unbiased’ weighting where edge weights are
distributed equally across all outgoing edges at each node.

P.K. Newton Metastatic progression on networks



A constrained optimization problem

The trained matrix

The lung cancer network

Building the lung cancer network

Unbiased diffusion process
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A constrained optimization problem

The trained matrix

The lung cancer network

Building the lung cancer network

Unbiased diffusion process
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The trained matrix

The lung cancer network

Building the lung cancer network

Unbiased diffusion process
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A constrained optimization problem

The trained matrix
Unbiased diffusion process

The lung cancer network
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Individual trajectories
Mean first-passage times

. Singular value decomposition
Biased random walks on the network guiar va P

One ‘Monte Carlo’ trajectory from the lung

@ How many steps (on average) does it take to go from lung
— node i ?

P.K. Newton Metastatic progression on networks



Individual trajectories
Mean first-passage times

’ Singular value decomposition
Biased random walks on the network 9 ° P

Mean first-passage time matrix

= (I-P+WwW)!
nx n identity matrix

Z
/
P : nxn ftransition matrix
w rows are steady-state

Z matrix also gives variances

P.K. Newton Metastatic progression on networks



Individual trajectories
Mean first-passage times

. Singular value decomposition
Biased random walks on the network guiar va P

Mean First Passage Time from Lung Variance
Lymph Nodes (reg) 5.3295 4.86733
Lymph Nodes (dist) 7.8069 7.38658
Liver 9.7405 9.21283
Adrenal 9.9006 9.38006
Lung 12.8793 12.5152
Bone 18.3202 18.2009
Kidney 20.1983 19.9714
Pleura 21.9595 21.368

Pancreas 26.0553 25.4704
Spleen 34.7067 34.1273
Heart 36.6631 35.8982
Thyroid 40.4995 39.5196
Brain 40.9396 41.1525
Pericardium 48.652 46.7418
Peritoneum 51.0337 50.0885
Diaphragm 52.1855 50.7323
Large Intestine 68.9146 68.2363
Skin 79.334 77.3178
Gallbladder 104.151 101.483
Small Intestine 104.491 102.993
Stomach 122.915 122.968
Omentum 156.996 155.52

Skeletal Muscle 308.253 308.538
Uterus 604.221 600.579
Bladder 614.423 622.782
Prostate 619.438 628.354
Vagina 629.237 642.475

Metastatic progressio



Individual trajectories

Mean first-passage times

Singular value decomposition
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Individual trajectories
Mean first-passage times

’ Singular value decomposition
Biased random walks on the network 9 ° P

The mean first-passage time trajectory
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Individual trajectories
Mean first-passage times

Biased random walks on the network gy D G e

Mean first-passage time ordering

Lung — Lymph nodes (reg) (1 time unit)
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Individual trajectories
Mean first-passage times

Biased random walks on the network gy D G e

Mean first-passage time ordering

Lung — Lymph nodes (reg) (1 time unit)
Lung — Lymph nodes (dist) (1.46 time units)
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Individual trajectories
Mean first-passage times

Biased random walks on the network S D sl

Mean first-passage time ordering

Lung — Lymph nodes (reg) (1 time unit)
Lung — Lymph nodes (dist) (1.46 time units)
Lung — Liver (1.83 time units)
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Individual trajectories
Mean first-passage times

Biased random walks on the network gy D G e

Mean first-passage time ordering

Lung — Lymph nodes (reg) (1 time unit)
Lung — Lymph nodes (dist) (1.46 time units)
Lung — Liver (1.83 time units)

Lung — Adrenal (1.86 time units)

P.K. Newton Metastatic progression on networks



Individual trajectories
Mean first-passage times

Biased random walks on the network gy D G e

Mean first-passage time ordering

Lung — Lymph nodes (reg) (1 time unit)
Lung — Lymph nodes (dist) (1.46 time units)
Lung — Liver (1.83 time units)

Lung — Adrenal (1.86 time units)

Lung — Lung (2.42 time units)
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Individual trajectories
Mean first-passage times

Singular value decomposition

Biased random walks on the network

Mean first-passage time ordering

Lung — Lymph nodes (reg) (1 time unit)
Lung — Lymph nodes (dist) (1.46 time units)
Lung — Liver (1.83 time units)

Lung — Adrenal (1.86 time units)

Lung — Lung (2.42 time units)

Lung — Bone (3.44 time units)
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Individual trajectories
Mean first-passage times

Singular value decomposition

Biased random walks on the network

Mean first-passage time ordering

Lung — Lymph nodes (reg) (1 time unit)
Lung — Lymph nodes (dist) (1.46 time units)
Lung — Liver (1.83 time units)

Lung — Adrenal (1.86 time units)

Lung — Lung (2.42 time units)

Lung — Bone (3.44 time units)

Lung — Kidney (3.79 time units)
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Individual trajectories
Mean first-passage times

Singular value decomposition

Biased random walks on the network

Mean first-passage time ordering

Lung — Lymph nodes (reg) (1 time unit)
Lung — Lymph nodes (dist) (1.46 time units)
Lung — Liver (1.83 time units)

Lung — Adrenal (1.86 time units)

Lung — Lung (2.42 time units)

Lung — Bone (3.44 time units)

Lung — Kidney (3.79 time units)

Lung — Pleura (4.12 time units)

P.K. Newton Metastatic progression on networks



Individual trajectories
Mean first-passage times

Singular value decomposition

Biased random walks on the network

Mean first-passage time ordering

Lung — Lymph nodes (reg) (1 time unit)
Lung — Lymph nodes (dist) (1.46 time units)
Lung — Liver (1.83 time units)

Lung — Adrenal (1.86 time units)

Lung — Lung (2.42 time units)

Lung — Bone (3.44 time units)

Lung — Kidney (3.79 time units)

Lung — Pleura (4.12 time units)

Lung — Pancreas (4.89 time units)
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Individual trajectories
Mean first-passage times
Singular value decomposition

Biased random walks on the network

Mean first-passage times are
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Individual trajectories
Mean first-passage times

Biased random walks on the network S VS R pesiter

Singular value distribution of lung cancer matrix

25
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Conclusions

Conclusions

@ Metastatic progression can be thought of as a ‘biased’ random
walk process on a network of potential metastatic sites.
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@ Metastatic progression can be thought of as a ‘biased’ random
walk process on a network of potential metastatic sites.

@ Pure diffusion process (unbiased random walk) is not a good
model.
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Conclusions

Conclusions

@ Metastatic progression can be thought of as a ‘biased’ random
walk process on a network of potential metastatic sites.

@ Pure diffusion process (unbiased random walk) is not a good
model.

@ Model identifies 21 ‘first-order’ sites, and 6 ‘second-order’ sites
(‘mets from mets’)
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Conclusions

Conclusions

@ Metastatic progression can be thought of as a ‘biased’ random
walk process on a network of potential metastatic sites.

@ Pure diffusion process (unbiased random walk) is not a good
model.

@ Model identifies 21 ‘first-order’ sites, and 6 ‘second-order’ sites
(‘mets from mets’)

@ Model flags 9 sites (out of the 50 total number) with very short
mean first-passage times.
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Conclusions

Conclusions

Secondary points

@ Complex web of connections are important, not just outgoing
ones from lung.

P.K. Newton Metastatic progression on networks



Conclusions

Conclusions

Secondary points

@ Complex web of connections are important, not just outgoing
ones from lung.

@ Model supports the idea that metastatic development is the
result of a complex and intricate pattern of cross-talk and
communication among a large collection of potential nodes.
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Conclusions

Conclusions

Secondary points

@ Complex web of connections are important, not just outgoing
ones from lung.

@ Model supports the idea that metastatic development is the
result of a complex and intricate pattern of cross-talk and
communication among a large collection of potential nodes.

@ Next: Comparisons of different cancer networks (lung, liver,
breast, colon, prostate, ovarian)
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Conclusions

Conclusions

Secondary points

@ Complex web of connections are important, not just outgoing
ones from lung.

@ Model supports the idea that metastatic development is the
result of a complex and intricate pattern of cross-talk and
communication among a large collection of potential nodes.

@ Next: Comparisons of different cancer networks (lung, liver,
breast, colon, prostate, ovarian)

@ Individual patient histories and Bayesian updating

P.K. Newton Metastatic progression on networks
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