Width-restricted clause learning

Jan Johannsen

Resolution Trees with Lemmas

The Pigeonhole Principle

The Ordering Principle

Small Width Formulas

Lower bounds for width-restricted clause learning

Jan Johannsen

Institut für Informatik LMU München

Banff, 04. 10. 2011

partially based on joint work with Sam Buss, Jan Hoffmann & Eli Ben-Sasson

Outline

Resolution Trees with Lemmas

Lower Bound for the Pigeonhole Principle

Lower Bound for the Ordering Principle

Lower Bound for Small Width Formulas

Width-restricted clause learning

Jan Johannsen

Resolution Trees vith Lemmas

The Pigeonhole Principle

The Ordering Principle

Resolution

Clause: disjunction $a_1 \lor \ldots \lor a_k$ of literals $a_i = x$ or $a_i = \bar{x}$.

The width of C is w(C) := k.

Formula (in CNF): conjunction $C_1 \land \ldots \land C_m$ of clauses.

Resolution rule If C, D are clauses with $x \in C$ and $\bar{x} \in D$, then

 $\operatorname{Res}_{x}(C,D) := (C \setminus x) \lor (D \setminus \overline{x})$

Width-restricted clause learning

Jan Johannsen

Resolution Trees with Lemmas

The Pigeonhole Principle

The Ordering Principle

Resolution proofs

Definition

A Resolution derivation R of clause C from formula F is a dag labelled with clauses s.t.

- there is exactly one sink labelled C
- If v has 2 predecessors u and u', then

 $C_v = \operatorname{Res}_x(C_u, C_{u'})$

for some variable x

• if v is a source, then $C_v \in F$

The width of R is the maximal width of a clause in R

If the dag is a tree, we call R tree-like

A Resolution refutation of F is a derivation of the empty clause \Box from F.

Width-restricted clause learning

Jan Johannsen

Resolution Trees with Lemmas

The Pigeonhole Principle

The Ordering Principle

DLL and Tree Resolution

Algorithm DLL (Davis, Logemann, Loveland 1962)

 $\begin{array}{lll} DLL(F,\alpha) \\ \text{test if} & \alpha \models F & \text{or} & \Box \in F\alpha \\ \text{pick variable } x \text{ in } F\alpha \\ \text{recursively solve} \\ DLL(F,\alpha[x := 0]) & \text{and} \\ DLL(F,\alpha[x := 1]) \end{array}$

Theorem

If unsatisfiable formula F is refuted by DLL in s steps, then F has a tree-like resolution refutation R of size s.

Width-restricted clause learning

Jan Johannsen

Resolution Trees with Lemmas

The Pigeonhole Principle

The Ordering Principle

Clause Learning

In the case $\Box \in F\alpha$:

- find $\alpha' \subseteq \alpha$ implying conflict
- add clause $\bigvee_{\alpha'(a)=0} a$ to F

```
(conflict)
(conflict analysis)
(learning)
```

Width-restricted clause learning

Jan Johannsen

Resolution Trees with Lemmas

The Pigeonhole Principle

The Ordering Principle

Small Width Formulas

Learning too many clauses \rightsquigarrow memory explosion \rightsquigarrow

Heuristic to decide which clauses to learn.

We show: Learning only short clauses does not help!

Resolution Trees with Lemmas

A Resolution tree with lemmas (RTL) for formula F is an ordered binary tree labelled with clauses s.t.

- $C_{\text{root}} = \Box$
- ▶ if v has 2 children u and u', then
 C_v = Res_x(C_u, C_{u'}) for some variable x
- if v has 1 child u, then $C_v \supseteq C_u$
- if v is a leaf, then

 $C_v \in F$ or $C_v = C_u$ for some $u \prec v$ (lemma)

 \prec is the post-order on trees.

Width-restricted clause learning

Jan Johannsen

Resolution Trees with Lemmas

The Pigeonhole Principle

The Ordering Principle

Clause learning and RTL

Theorem (Buss, Hoffmann, JJ)

If unsatisfiable formula F is refuted by DLL+CL in s steps, then F has an RTL-refutation R of size $s \cdot n^{O(1)}$.

Moreover, the lemmas used in R are among the clauses learned by the algorithm.

In fact, the paper defines a subsystem WRTI < RTL for which also the converse holds.

Here: lower bounds for RTL(k):

A refutation R in RTL is in RTL(k), if every lemma C used in R is of width $w(C) \le k$.

Width-restricted clause learning

Jan Johannsen

Resolution Trees with Lemmas

The Pigeonhole Principle

The Ordering Principle

The Pigeonhole Principle

 \dots says: There is no injective map $[n+1] \rightarrow [n]$

The formula *PHP*_n:

- ► variables $x_{i,j}$ for $i \le n+1$ and $j \le n$
- ▶ pigeon clauses $x_{i,1} \lor \ldots \lor x_{i,n}$ for every *i*
- ► hole clauses $\bar{x}_{i,j} \lor \bar{x}_{i',j}$ for i < i'

Width-restricted clause learning

Jan Johannsen

Resolution Trees vith Lemmas

The Pigeonhole Principle

The Ordering Principle

Complexity of the Pigeonhole Principle

Theorem (Haken 1985) Resolution proofs of PHP_n require size $2^{\Omega(n)}$.

Theorem (Buss, Pitassi 1997)

There are regular resolution proofs of PHP_n of size n^32^n .

Theorem (Iwama, Miyazaki 1999) Tree-like resolution proofs of PHP_n require size $2^{\Omega(n \log n)}$. Width-restricted clause learning

Jan Johannsen

Resolution Trees with Lemmas

The Pigeonhole Principle

The Ordering Principle

The lower bound

Goal: solving *PHP_n* takes long when learning only short clauses.

To this end: lower bound for RTL(k)-refutations of PHP_n :

Theorem Every RTL(n/2)-refutation of PHP_n is of size $2^{\Omega(n \log n)}$.

Width-restricted clause learning

Jan Johannsen

Resolution Trees with Lemmas

The Pigeonhole Principle

The Ordering Principle

Matching restrictions

A restriction ρ is a partial truth assignment. Notation: $F \lceil \rho \text{ for } \rho \text{ applied to } F$.

Property: Let *R* be a derivation of *C* from *F*. There is a derivation *R'* of $C \lceil \rho$ from $F \lceil \rho$ of size $|R'| \leq |R|$. We denote *R'* by $R \lceil \rho$.

Matching restriction: defined by $\{(i_1, j_1), \dots, (i_k, j_k)\}$:

$$\rho(x_{i,j}) = \begin{cases} 1 & \text{if } (i,j) \in \rho \\ 0 & \text{if } (i,j') \in \rho \text{ or } (i',j) \in \rho \\ \text{undefined} & \text{otherwise.} \end{cases}$$

Property: $PHP_n[\rho \equiv PHP_{n-|\rho|}]$.

Width-restricted clause learning

Jan Johannsen

Resolution Trees with Lemmas

The Pigeonhole Principle

The Ordering Principle

Proof of the lower bound

- ▶ Let *R* be a refutation of *PHP_n*
- Find first C with $w(C) \leq k$
- Subtree R_C is tree-like derivation of C
- Pick ρ with $C \lceil \rho = 0$
- $R_C[\rho \text{ is refutation of } PHP_n[\rho$
- lower bound by IWAMA/MIYAZAKI

Main Lemma: For C in R with $w(C) \le k$, there is a matching restriction ρ with $C[\rho = 0 \text{ and } |\rho| \le k$

Width-restricted clause learning

Jan Johannsen

Resolution Trees with Lemmas

The Pigeonhole Principle

The Ordering Principle

The Ordering Principle

... says: An ordering of [n] has a maximum

The formula Ord_n:

- ▶ variables $x_{i,j}$ for $i,j \le n$ and $i \ne j$
- ► totality clauses $x_{i,j} \lor x_{j,i}$ for all i,j
- asymmetry clauses
- transitivity clauses

maximum clauses

 $\overline{x}_{i,j} \lor \overline{x}_{j,i}$ for all i, j $\overline{x}_{i,j} \lor \overline{x}_{j,k} \lor \overline{x}_{k,i}$ for all i, j, k $\bigvee_{i \neq i} x_{i,j}$ for all i Width-restricted clause learning

Jan Johannsen

Resolution Trees vith Lemmas

The Pigeonhole Principle

The Ordering Principle

Complexity of the Ordering Principle

Theorem (Stålmarck 1997)

There are regular resolution proofs of Ord_n of size $O(n^3)$.

Theorem (Bonet, Galesi 1999) Tree-like resolution proofs of Ord_n require size $2^{\Omega(n)}$. Width-restricted clause learning

Jan Johannsen

Resolution Trees vith Lemmas

The Pigeonhole Principle

The Ordering Principle

Ordering restrictions

Ordering restriction:

defined by $S \subseteq [n]$ and an ordering \prec on S.

$$\sigma(x_{i,j}) = \begin{cases} 1 & \text{if } i, j \in S \text{ and } i \prec j \\ 0 & \text{if } i, j \in S \text{ and } j \prec i \\ x_{s,j} & \text{if } i \in S \text{ and } j \notin S \\ x_{i,s} & \text{if } i \notin S \text{ and } j \in S \\ x_{i,j} & \text{otherwise,} \end{cases}$$

where $s \in S$ is fixed.

Property: $Ord_n [\sigma \equiv Ord_{n-|S|+1}]$.

Width-restricted clause learning

Jan Johannsen

Resolution Trees vith Lemmas

The Pigeonhole Principle

The Ordering Principle

Cyclic clauses

For clause C, the graph G(C) has edges

(i,j) for $\bar{x}_{i,j} \in C$ and (j,i) for $x_{i,j} \in C$

Definition: C is cyclic, if G(C) contains a cycle.

Lemma: A cyclic clause C has a tree-like resolution derivation from Ord_n of size O(w(C)).

Width-restricted clause learning

Jan Johannsen

Resolution Trees with Lemmas

The Pigeonhole Principle

The Ordering Principle

The main lemmas

Lemma

If there is an RTL(k)-refutation of Ord_n of size s, then there is another one using no cyclic lemmas of size O(sk).

Proof: Replace each cyclic lemma by its derivation of size O(k).

Lemma

If C is acyclic with $w(C) \le k$, then there is an ordering restriction σ with $|\sigma| \le 2k$ such that $C \lceil \sigma = 0$.

Proof: For C acyclic
$$G(C)$$
 is a dag
 \rightarrow obtain σ as a topological ordering of $G(C)$.

Width-restricted clause learning

Jan Johannsen

Resolution Trees with Lemmas

The Pigeonhole Principle

The Ordering Principle

The lower bound

Theorem

For k < n/4, every RTL(k)-refutation of Ord_n is of size $2^{\Omega(n)}$.

- Let R be a refutation of Ord_n
- Remove cyclic lemmas
- Find first C with $w(C) \leq k$
- Subtree R_C is tree-like derivation of C
- Pick σ with $C [\sigma = 0$
- $R_C [\sigma \text{ is refutation of } Ord_n [\sigma]$
- $Ord_n [\sigma = Ord_{n-|\sigma|+1}]$
- ▶ lower bound by BONET/GALESI

Width-restricted clause learning

Jan Johannsen

Resolution Trees with Lemmas

The Pigeonhole Principle

The Ordering Principle

A Game

Let X be a set of variables, and $w \leq |X|$.

A *w*-system of restrictions over *X* is $\mathcal{H} \neq \emptyset$ with

- $|\rho| \leq w$ for $\rho \in \mathcal{H}$,
- ► downward closure: if $\rho' \subseteq \rho \in \mathcal{H}$, then $\rho' \in \mathcal{H}$
- extension property:

if $\rho \in \mathcal{H}$ with $|\rho| < w$, and $v \in X \setminus \operatorname{dom} \rho$, then there is $\rho' \supseteq \rho$ in \mathcal{H} that sets v.

 \mathcal{H} avoids C if $C \lceil \rho \neq 0$ for all $\rho \in \mathcal{H}$

 $\mathcal H$ avoids F if $\mathcal H$ avoids all $C \in F$

Width-restricted clause learning

Jan Johannsen

Resolution Trees vith Lemmas

The Pigeonhole Principle

The Ordering Principle

Resolution width and systems of restrictions

Theorem (Atserias & Dalmau)

F requires resolution width *w* iff there is a *w*-system of restrictions that avoids *F*.

Theorem (Ben-Sasson & Wigderson) If a d-CNF formula F requires resolution width w, then tree-like resolution proofs of F require size 2^{w-d} .

Width-restricted clause learning

Jan Johannsen

Resolution Trees vith Lemmas

The Pigeonhole Principle

The Ordering Principle

Restricted systems

Lemma

Let \mathcal{H} be a w-system of restrictions over X, and $\rho \in \mathcal{H}$.

$$\mathcal{H}\lceil \rho := \left\{ \sigma ; \ \operatorname{dom} \sigma \subseteq X \setminus \operatorname{dom} \rho \ \text{ and} \\ \sigma \cup \rho \in \mathcal{H} \ \text{ and} \\ |\sigma| \le w - |\rho| \right\}$$

is a $w - |\rho|$ system of restrictions over $X \setminus \operatorname{dom} \rho$

Lemma If \mathcal{H} avoids F, then $\mathcal{H}[\rho]$ avoids $F[\rho]$.

Width-restricted clause learning

Jan Johannsen

Resolution Trees vith Lemmas

The Pigeonhole Principle

The Ordering Principle

The general lower bound

Theorem

If F requires resolution width w, then every RTL(k)-refutation of F is of size 2^{w-2k} .

- Let *R* be a refutation of *F*.
- Find first C with $w(C) \leq k$ not avoided by \mathcal{H}
- Let G := lemmas in subtree R_C. Note that H avoids G, and w(G) ≤ k
- Pick $\rho \in \mathcal{H}$ with $C \lceil \rho = 0$ and $|\rho| \leq k$
- $R_C \lceil \rho \text{ is refutation of } F' := F \land G \lceil \rho$
- $\mathcal{H}\lceil \rho \text{ avoids } F'$, thus F' requires width w k
- ► $R_C[\rho \text{ is of size } 2^{w-2k} \text{ by Ben-Sasson & Wigderson}$

Width-restricted clause learning

Jan Johannsen

Resolution Trees vith Lemmas

The Pigeonhole Principle

The Ordering Principle

Application

 $E_3(F) := 3$ -CNF expansion of F

Theorem (Bonet, Galesi, JJ) $E_3(Ord_n)$ requires resolution width n/2.

Corollary

Every RTL(n/6)-refutation of $E_3(Ord_n)$ is of size $2^{n/6}$.

Corollary Every RTL(n/6)-refutation of Ord_n is of size $2^{n/6-\log n}$.

Width-restricted clause learning

Jan Johannsen

Resolution Trees

The Pigeonhole Principle

The Ordering Principle

Newsflash!

Theorem

For every k, there is a family of formulas $F_n^{(k)}$ such that

- *F*^(k)_n have *RTL*(k + 1)-refutations of size n^{O(1)}.
 Even regular, without weakening.
- $F_n^{(k)}$ requires RTL(k)-refutations of size $2^{\Omega(n/\log n)}$.

This even holds for k = k(n) when $k(n) = O(\log n)$.

Width-restricted clause learning

Jan Johannsen

Resolution Trees with Lemmas

The Pigeonhole Principle

The Ordering Principle