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Optimal proof systems

» A proof system X simulates a proof system Q iff
Y -proofs are at most as long as Q-proofs (up to a polynomial p):

VF € L |shortest X-proof of F| < p(|shortest Q-proof of F|,|F]).

» p-simulation is a constructive version: For any w-size Q-proof,
one can compute a p(w)-size X-proof in polynomial time.

» (p-)optimal proof system (p-)simulates any other proof system.
» Does it exist?..
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» A proof system X simulates a proof system Q iff
Y -proofs are at most as long as Q-proofs (up to a polynomial p):

VF € L |shortest X-proof of F| < p(|shortest Q-proof of F|,|F]).

» p-simulation is a constructive version: For any w-size Q-proof,
one can compute a p(w)-size X-proof in polynomial time.

» (p-)optimal proof system (p-)simulates any other proof system.
» Does it exist?..

Theorem

3 p-optimal proof system <= 3 optimal acceptor.

For TAUT: [Krajicek, Pudlak].
For paddable languages: [Messner].
For co-NP-complete languages: [Chen, Fliim, Miiller|.
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Simulations

» pointwise simulation A < B:
3 polynomial p Vx
ta(x) < p(ts(x) + [x])
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» pointwise simulation A < B:
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Simulations

» pointwise simulation A < B:
3 polynomial p Vx
ta(x) < p(ts(x) + [x])
» (weaker) average-case simulation A <p B w.r.t. D:
Ve>0dc>0
E [t0)] = O(n E [t5°()])
x<+Dp y<_Dn
» (weaker) simulation scheme:
simulate everywhere except for the set of D-prob. 1/2d.
> (yet weaker!) worst-case simulation A <, B:
3 polynomials p, g Vx
ta(x) < p( max ) t(x") + |x|)

[x"|<q(|x]|
x"eL
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Problems and complexities

» Decision problem L:is x € L7
Solved by decision algorithms: complexity measure = time.
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» Decision problem L:is x € L?
Solved by decision algorithms: complexity measure = time.
» Same problem, solved by acceptors: complexity measure = time on L.
» worst-case optimal acceptor for NP-complete problems:
Levin’s universal search + self-to-decision reduction:
On input x, run |x| algorithms in parallel:
1. Ai(x) (brute-force search); output the result;
2. Az(x); check the solution; output if it's correct;

n. Ajx(x); check the solution; output if it's correct.

4/13



Problems and complexities

» Decision problem L:is x € L?
Solved by decision algorithms: complexity measure = time.
» Same problem, solved by acceptors: complexity measure = time on L.
» worst-case optimal acceptor for NP-complete problems:
Levin’s universal search + self-to-decision reduction:
On input x, run |x| algorithms in parallel:

1. Ai(x) (brute-force search); output the result;

2. Az(x); check the solution; output if it's correct;

n. Ajx(x); check the solution; output if it's correct.

Not a pointwise optimal acceptor for co-NP problems;
Not a pointwise optimal acceptor for NP problems;
Main obstacle: how to verify a 1-bit answer to a decision problem?

Worst-case optimal acceptor for NP-complete problems:

extract satisfying assignment for F by queries to F[v = 0], F[v = 1]21/13'



Problems and complexities

» Decision problem L:is x € L?
Solved by decision algorithms: complexity measure = time.
» Same problem, solved by acceptors: complexity measure = time on L.
» worst-case optimal acceptor for NP-complete problems:
Levin's universal search + self-to-decision reduction.
» worst-case (and stronger) optimal randomized acceptor for GNI:
verification by Goldwasser-Micali-Sipser protocol.
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Problems and complexities

» Decision problem L:is x € L?

Solved by decision algorithms: complexity measure = time.
» Same problem, solved by acceptors: complexity measure = time on L.
» worst-case optimal acceptor for NP-complete problems:
Levin's universal search + self-to-decision reduction.
» worst-case (and stronger) optimal randomized acceptor for GNI.
» pointwise-optimal acceptor for Time(f)-immune sets [Messner],
pointwise-optimal algorithm for bi-immune sets [Chen,Flum,Miiller].
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Errorless average-case complexity: count E or give up with D-prob. 1/d.
» average-case optimal randomized acceptor for GNI for some D.
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Problems and complexities

|

Decision problem L:is x € L?
Solved by decision algorithms: complexity measure = time.
Same problem, solved by acceptors: complexity measure = time on L.
» worst-case optimal acceptor for NP-complete problems:
Levin's universal search + self-to-decision reduction.
» worst-case (and stronger) optimal randomized acceptor for GNI.
» pointwise-optimal acceptor, algorithm for a set in E'\ P.
Distributional problem (D, L): is x € L with accuracy d?
Complexity measure = time(n, d).
Errorless average-case complexity: count E or give up with D-prob. 1/d.
» average-case optimal randomized acceptor for GNI for some D.
Same problem, solved by heuristic algorithms:
allow false negatives and positives with D-prob. 1/d.
» pointwise optimal randomized algorithm for Im of an injective function,
> “scheme-optimal” deterministic algorithm for —'—"—.
Distributional proving problem (D, L): supp D C L.
Solved by heuristic acceptors, may allow false positives only.
> pointwise optimal randomized heuristic acceptor for p-t.s. D, re. L.,/ ,



Heuristic acceptors

Distributional proving problem (D, L) consists of a language L of “theorems” and
a polynomial-time samplable distribution D = {D,},en on L.

Definition

Heuristic acceptor A for (D, L):

(completeness) Vx € LYd € N A(x,d) =1.
(correctness)  Prp, {Pra{A(r,d) =1} > %} < %.
(correctness’) Pryp,. a{A(r,d) =1} < %.
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Heuristic acceptor A for (D, L):

(completeness) Vx € LYd € N A(x,d) =1.
(correctness)  Prp, {Pra{A(r,d) =1} > %} < %.
(correctness’) Pryp,. a{A(r,d) =1} < %.

» Time 7a(x,d) is a random variable.
» For random variable X, define u(P)[X] = min{T: Pr[X > T] > p}.
> ta(x) = p(/2[ra(x, d)] is the median running time of A(x, d).
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Heuristic acceptors

Distributional proving problem (D, L) consists of a language L of “theorems” and
a polynomial-time samplable distribution D = {D,},en on L.

Definition

Heuristic acceptor A for (D, L):

(completeness) Vx € LYd € N A(x,d) =1.
(correctness)  Prp, {Pra{A(r,d) =1} > %} < %.
(correctness’) Pryp,. a{A(r,d) =1} < %.

» Time 7a(x,d) is a random variable.
» For random variable X, define u(P)[X] = min{T: Pr[X > T] > p}.
> ta(x) = p(/2[ra(x, d)] is the median running time of A(x, d).

Theorem

3 polynomial-time samplable D 3L € co-NP A polynomial-time heuristic

acceptor for (D, L) <= 3 infinitely-often one-way function. -



Optimal heuristic acceptor

Heuristic acceptor S simulates W if there are polynomials p and g such

that Vx € L, Vd € N, ts(x,d) < max p(tw(x,d’)-|x|-d).
d'<q(d"[x|)

Idea: Certify A; by testing it on samples x < D,.

6/13



Optimal heuristic acceptor

Heuristic acceptor S simulates W if there are polynomials p and g such

that Vx € L, Vd € N, ts(x,d) < max p(tw(x,d’)-|x|-d).
d'<q(d"[x|)

Idea: Certify A; by testing it on samples x < D,.
Optimal heuristic acceptor U(x, d):

» For each i < log |x]| in parallel:
1. Execute Aj(x,d").

6/13



Optimal heuristic acceptor

Heuristic acceptor S simulates W if there are polynomials p and g such

that Vx € L, Vd € N, ts(x,d) < max p(tw(x,d’)-|x|-d).
d'<q(d"[x|)

Idea: Certify A; by testing it on samples x < D,.
Optimal heuristic acceptor U(x, d):

» For each i < log|x| in parallel:
1. Execute Aj(x,d").
2. If it accepts (in T; steps), test its correctness:
let E; = 0 and execute k times:
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Optimal heuristic acceptor

Heuristic acceptor S simulates W if there are polynomials p and g such

that Vx € L, Vd € N, ts(x,d) < max p(tw(x,d’)-|x|-d).
d'<q(d"[x|)

Idea: Certify A; by testing it on samples x < D,.
Optimal heuristic acceptor U(x, d):

» For each i < log|x| in parallel:
1. Execute Aj(x,d").
2. If it accepts (in T; steps), test its correctness:
let E; = 0 and execute k times:
>or D|X|,
» if Ai(r,d") =1 in T; steps, then E; := E; + 1;
3. If E; < 0k, output “1”.

_ —2d3Ix|3 5= _1L
Here d’ =4d|x|, k =2d3|x|?, §= 3dx] 6/13




Derandomization

Deterministic scheme-optimal acceptor for (U, Imf), where. ..

Im f {01}

f:{0,1}* — {0,1}%,

£ = x|+ 1,

f is injective,

f is polynomial-time computable.

vV VvYyys.y
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Derandomization

Deterministic scheme-optimal acceptor for (U, Imf),

» Use pseudorandom graph based on expanders.
» The input is a source of randomness!
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Derandomization

Deterministic scheme-optimal acceptor for (U, Imf),

» Use pseudorandom graph based on expanders.
» The input is a source of randomness!
» Not optimal when the simulated algorithm is erroneously disqualified.

Definition
Simulation scheme of A by A’

Simulate everywhere except for the fraction %:
3 polynomials p,q Vn,d € N

Pr [tA(x d)<p(n-d-ta(x,q(nd)))])>1- —

q(n, d)>2d.
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Graph nonisomorphism

GNI = {(G1, G2) | G1 % G2, |V(GL)| = |V(G)]},

» nis the number of vertices,
» G™ is the result of permuting V(G) by m € S,,.
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GNI = {(G1, G2) | G1 % G2, |V(GL)| = |V(G)]},

» nis the number of vertices,
» G™ is the result of permuting V(G) by m € S,,.

Recall two-round interactive protocol for GNI
[Goldreich, Micali, Wigderson, 1987]:

v

Prover claims that Gy % Gp;
Verifier picks random i € {1,2}, m € S, and sends G[;

Prover sends j;

v

v

v

Verifier accepts if i = J.
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Graph nonisomorphism

GNI ={(G1, G2) | G1 # G2, |V(G1)| = [V (G2)

» nis the number of vertices,

i3

» G™ is the result of permuting V(G) by m € S,,.

Recall two-round interactive protocol for GNI
[Goldreich, Micali, Wigderson, 1987]:

v

Prover claims that Gy % Gp;
Verifier picks random i € {1,2}, m € S, and sends G[;

Prover sends j;

v

v

v

Verifier accepts if i = J.

If the claim is wrong, Verifier rejects with probability > 1/2.
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Correcting a GNI algorithm

SelfCorrecty n, corrects any (randomized) algorithm A:

» Run N + 1 instances of A in parallel for random 7j; € Sj:
A(Gl’fl':u’ Gl7T12)

A(Glﬂ'n’ Glﬂzz)

A(Gl‘frm:7 GlTer)

A(G17"N+1,17 GQTFN+1,2)

» Return 1 if the last instance was the fastest; otherwise diverge.

v

vV vy VvVvYyYy
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Correcting a GNI algorithm

SelfCorrecty n, corrects any (randomized) algorithm A:

> Run N + 1 instances of A in parallel for random 7j; € Sp:

> A(G ™, G ™)
A(GL™, 6™2)

v

A(Glﬂm , GlTrmz)
A(G17"N+1,1 , G27TN+1,2)

» Return 1 if the last instance was the fastest; otherwise diverge.

Lemma

» If Gi ~ G, then Pr[accept] < /\/+1
» If Gy # Gy and A errs with probability < —, then
Prlaccept] > 1 — ML,

vV VvYyy
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Optimal acceptor for GNI

Algorithm Opt( G, Gp):

» Execute in parallel:
A1(Gy, Gy) (brute-force search),
» 3 times SelfCorrecta, 30n(G1, G2),
» 3 times SelfCorrecta, 30n(G1, G2),
>
>

v

3 times SelfCorrecta, 30n(G1, G2).
» Accept if any of the 3n + 1 parallel threads accepts.
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>
>

v

3 times SelfCorrecta, 30n(G1, G2).
» Accept if any of the 3n + 1 parallel threads accepts.

Lemma (correctness)

If G1 ~ Gy, then Pr[Opt(Gy, Go) =1] < 30?1’;1 < %.
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Optimal acceptor for GNI

Algorithm Opt( G, Gp):
» Execute in parallel:
» A1(Gi, G) (brute-force search),
3 times SelfCorrecta, 30n(G1, G2),
3 times SelfCorrecta, 30n(G1, G2),

v

| 4
> ...
» 3 times SelfCorrecta, 30n(G1, G2).

» Accept if any of the 3n + 1 parallel threads accepts.
Lemma (correctness)

If G1 ~ Gy, then Pr[Opt(Gy, Go) =1] < 30?1’;1 < %.

Lemma (simulation)

For any randomized acceptor A for GNI 3 polynomial p such that

Vx € GNI, tope(x) < p (ME/IL‘B(CX)[TA(y)]), where

Ci61,62) = 1(G*, G3?) | m1,m2 € Sp} is a cluster of (G, Ga).
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Optimal acceptor for GNI

Algorithm Opt( G, Gp):

» Execute in parallel:
A1(Gy, Gy) (brute-force search),
» 3 times SelfCorrecta, 30n(G1, G2),
» 3 times SelfCorrecta, 30n(G1, G2),
>
>

v

3 times SelfCorrecta, 30n(G1, G2).
» Accept if any of the 3n + 1 parallel threads accepts.

Lemma (simulation)

For any randomized acceptor A for GNI 3 polynomial p such that
Vx € GNI, tope(x) < p (IMEIZ‘B(CX)[TA()/)]), where

C(61,6,) = (G, G3?) | m1,m2 € Sp} is a cluster of (G1, G2).

Corollary

Opt is average-case optimal provided D is uniform on every cluster.
10/13



From acceptors to proof systems

L is paddable if there is an injective non-length-decreasing polynomial-time
padding function pad; : {0,1}* x {0,1}* — {0,1}* that is polynomial-time
invertible on its image and such that Vx,w (x € L <= pad;(x,w) € L).

Optimal proof [Messner, 99]:
» A proof m of x in some system TT;
» padding.
Verification:
> run optimal acceptor on pad; (x, 7);
» for a correct proof 7, it accepts in a polynomial time because for a
correct system 1, the set {pad;(x,7) | x € L, M(x,7) =1} C L can
be accepted in a polynomial time.
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Applicability:

» Messner’s proof goes for randomized algorithms.
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From acceptors to proof systems

Optimal proof [Messner, 99]:
» A proof 7 of x in some system [1;
» padding.

Verification:
» run optimal acceptor on pad; (x, 7);

» for a correct proof 7, it accepts in a polynomial time because for a
correct system 1, the set {pad;(x,7) | x € L, M(x,7) =1} C L can
be accepted in a polynomial time.

Applicability:
» Messner’s proof goes for randomized algorithms.

» Does not go for heuristic, average-case algorithms.
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Heuristic proof systems

» Allow probabilistic proof verification (with bounded error).

» Allow small number of false theorems (unbounded error there)
according to D.

» Heuristic computation: gets d on input and makes at most % errors.
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» Allow small number of false theorems (unbounded error there)
according to D.
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Definition

Heuristic proof system for (D, L) is a polynomial-time I1 such that

(completeness) Vx € LVd € N3w  Pr{l(x,w,d) =1} > 1.
(Such w is a [M-proof with confidence d.)

(correctness)  Prr—p,{3w {Pr{N(r,w,d) =1} > 1} < 1}.
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Heuristic proof systems

» Allow probabilistic proof verification (with bounded error).

» Allow small number of false theorems (unbounded error there)
according to D.

» Heuristic computation: gets d on input and makes at most % errors.

Definition

Heuristic proof system for (D, L) is a polynomial-time I1 such that

(completeness) Vx € LVd € N3w  Pr{l(x,w,d) =1} > 1.
(Such w is a [M-proof with confidence d.)

(correctness)  Prr—p,{3w {Pr{N(r,w,d) =1} > 1} < 1}.

Open question: Devise an interesting heuristic p.s.,

i.e., distinguish between distributions hard for heuristic acceptors and
heuristic proof systems.
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Open questions

3 optimal proof system <= I optimal heuristic acceptor;

v

v

3 optimal heuristic proof system <= - optimal heuristic acceptor;

- optimal proof system with advice <= 3 optimal acceptor with advice;

v

v

3 average-case optimal acceptor?

v

3 optimal acceptor for GNI or any other co-NP \ P problem?

v

3 optimal proof system for any problem outside P?

v

(D, L) € (co-NP,PSamplable) with no polynomially-bounded heuristic
proof system <= 7
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