
Optimal proof systems and acceptors:

Distributional proving problems, and beyond

Edward A. Hirsch

http://logic.pdmi.ras.ru/~hirsch

(joint with D. Itsykson, I. Monakhov, V. Nikolaenko, A. Smal)

Steklov Institute of Mathematics at St.Petersburg, RAS

St.Petersburg Academic University, RAS

1 / 13

http://logic.pdmi.ras.ru/~hirsch

Optimal proof systems

I A proof system Σ simulates a proof system Ω i�
Σ-proofs are at most as long as Ω-proofs (up to a polynomial p):

∀F ∈ L |shortest Σ-proof of F | ≤ p(|shortest Ω-proof of F |, |F |).

I p-simulation is a constructive version: For any w -size Ω-proof,
one can compute a p(w)-size Σ-proof in polynomial time.

I (p-)optimal proof system (p-)simulates any other proof system.

I Does it exist?..

Theorem

∃ p-optimal proof system ⇐⇒ ∃ optimal acceptor.

For TAUT: [Kraj��cek, Pudl�ak].
For paddable languages: [Messner].
For co -NP-complete languages: [Chen, Fl�um, M�uller].

2 / 13

Optimal proof systems

I A proof system Σ simulates a proof system Ω i�
Σ-proofs are at most as long as Ω-proofs (up to a polynomial p):

∀F ∈ L |shortest Σ-proof of F | ≤ p(|shortest Ω-proof of F |, |F |).

I p-simulation is a constructive version: For any w -size Ω-proof,
one can compute a p(w)-size Σ-proof in polynomial time.

I (p-)optimal proof system (p-)simulates any other proof system.

I Does it exist?..

Theorem

∃ p-optimal proof system ⇐⇒ ∃ optimal acceptor.

For TAUT: [Kraj��cek, Pudl�ak].
For paddable languages: [Messner].
For co -NP-complete languages: [Chen, Fl�um, M�uller].

2 / 13

Simulations

I pointwise simulation A ≺ B:
∃ polynomial p ∀x

tA(x) ≤ p(tB(x) + |x |)

I (weaker) average-case simulation A ≺D B w.r.t. D:
∀ε > 0 ∃c > 0

E
x←Dn

[tA
c(x)] = O(n E

y←Dn

[tB
ε(y)])

I (weaker) simulation scheme:
simulate everywhere except for the set of D-prob. 1/2d .

I (yet weaker!) worst-case simulation A ≺wc B:
∃ polynomials p, q ∀x

tA(x) ≤ p(max
|x′|≤q(|x|)

x′∈L

tB(x ′) + |x |)

3 / 13

Simulations

I pointwise simulation A ≺ B:
∃ polynomial p ∀x

tA(x) ≤ p(tB(x) + |x |)

I (weaker) average-case simulation A ≺D B w.r.t. D:
∀ε > 0 ∃c > 0

E
x←Dn

[tA
c(x)] = O(n E

y←Dn

[tB
ε(y)])

I (weaker) simulation scheme:
simulate everywhere except for the set of D-prob. 1/2d .

I (yet weaker!) worst-case simulation A ≺wc B:
∃ polynomials p, q ∀x

tA(x) ≤ p(max
|x′|≤q(|x|)

x′∈L

tB(x ′) + |x |)

3 / 13

Simulations

I pointwise simulation A ≺ B:
∃ polynomial p ∀x

tA(x) ≤ p(tB(x) + |x |)
I (weaker) average-case simulation A ≺D B w.r.t. D:
∀ε > 0 ∃c > 0

E
x←Dn

[tA
c(x)] = O(n E

y←Dn

[tB
ε(y)])

I (weaker) simulation scheme:
simulate everywhere except for the set of D-prob. 1/2d .

I (yet weaker!) worst-case simulation A ≺wc B:
∃ polynomials p, q ∀x

tA(x) ≤ p(max
|x′|≤q(|x|)

x′∈L

tB(x ′) + |x |)

3 / 13

Simulations

I pointwise simulation A ≺ B:
∃ polynomial p ∀x

tA(x) ≤ p(tB(x) + |x |)
I (weaker) average-case simulation A ≺D B w.r.t. D:
∀ε > 0 ∃c > 0

E
x←Dn

[tA
c(x)] = O(n E

y←Dn

[tB
ε(y)])

I (weaker) simulation scheme:
simulate everywhere except for the set of D-prob. 1/2d .

I (yet weaker!) worst-case simulation A ≺wc B:
∃ polynomials p, q ∀x

tA(x) ≤ p(max
|x′|≤q(|x|)

x′∈L

tB(x ′) + |x |)

3 / 13

Problems and complexities

I Decision problem L: is x ∈ L?
Solved by decision algorithms: complexity measure = time.

I Same problem, solved by acceptors: complexity measure = time on L.

I worst-case optimal acceptor for NP-complete problems:
I worst-case (and stronger) optimal randomized acceptor for GNI.

II Distributional problem (D, L): is x ∈ L with accuracy d?
Complexity measure = time(n, d).
Errorless average-case complexity: count E or give up with D-prob. 1/d .

I average-case optimal randomized acceptor for GNI for some D.
I Same problem, solved by heuristic algorithms:

allow false negatives and positives with D-prob. 1/d .
I pointwise optimal randomized algorithm for Im of an injective function,
I �scheme-optimal� deterministic algorithm for �����.

I Distributional proving problem (D, L): suppD ⊆ L.
Solved by heuristic acceptors, may allow false positives only.

I pointwise optimal randomized heuristic acceptor for p.-t.s. D, r.e. L.

4 / 13

Problems and complexities

I Decision problem L: is x ∈ L?
Solved by decision algorithms: complexity measure = time.

I Same problem, solved by acceptors: complexity measure = time on L.

I worst-case optimal acceptor for NP-complete problems:
I worst-case (and stronger) optimal randomized acceptor for GNI.

II Distributional problem (D, L): is x ∈ L with accuracy d?
Complexity measure = time(n, d).
Errorless average-case complexity: count E or give up with D-prob. 1/d .

I average-case optimal randomized acceptor for GNI for some D.
I Same problem, solved by heuristic algorithms:

allow false negatives and positives with D-prob. 1/d .
I pointwise optimal randomized algorithm for Im of an injective function,
I �scheme-optimal� deterministic algorithm for �����.

I Distributional proving problem (D, L): suppD ⊆ L.
Solved by heuristic acceptors, may allow false positives only.

I pointwise optimal randomized heuristic acceptor for p.-t.s. D, r.e. L.

4 / 13

Problems and complexities

I Decision problem L: is x ∈ L?
Solved by decision algorithms: complexity measure = time.

I Same problem, solved by acceptors: complexity measure = time on L.
I worst-case optimal acceptor for NP-complete problems:

Levin's universal search + self-to-decision reduction:

On input x , run |x | algorithms in parallel:

1. A1(x) (brute-force search); output the result;

2. A2(x); check the solution; output if it's correct;

.

n. A|x|(x); check the solution; output if it's correct.

I worst-case (and stronger) optimal randomized acceptor for GNI.

II Distributional problem (D, L): is x ∈ L with accuracy d?
Complexity measure = time(n, d).
Errorless average-case complexity: count E or give up with D-prob. 1/d .

I average-case optimal randomized acceptor for GNI for some D.
I Same problem, solved by heuristic algorithms:

allow false negatives and positives with D-prob. 1/d .
I pointwise optimal randomized algorithm for Im of an injective function,
I �scheme-optimal� deterministic algorithm for �����.

I Distributional proving problem (D, L): suppD ⊆ L.
Solved by heuristic acceptors, may allow false positives only.

I pointwise optimal randomized heuristic acceptor for p.-t.s. D, r.e. L.

4 / 13

Problems and complexities

I Decision problem L: is x ∈ L?
Solved by decision algorithms: complexity measure = time.

I Same problem, solved by acceptors: complexity measure = time on L.
I worst-case optimal acceptor for NP-complete problems:

Levin's universal search + self-to-decision reduction:

On input x , run |x | algorithms in parallel:

1. A1(x) (brute-force search); output the result;

2. A2(x); check the solution; output if it's correct;

.

n. A|x|(x); check the solution; output if it's correct.

Not a pointwise optimal acceptor for co -NP problems;

Not a pointwise optimal acceptor for NP problems;

Main obstacle: how to verify a 1-bit answer to a decision problem?

Worst-case optimal acceptor for NP-complete problems:
extract satisfying assignment for F by queries to F [v = 0], F [v = 1], . . .

I worst-case (and stronger) optimal randomized acceptor for GNI.

II Distributional problem (D, L): is x ∈ L with accuracy d?
Complexity measure = time(n, d).
Errorless average-case complexity: count E or give up with D-prob. 1/d .

I average-case optimal randomized acceptor for GNI for some D.
I Same problem, solved by heuristic algorithms:

allow false negatives and positives with D-prob. 1/d .
I pointwise optimal randomized algorithm for Im of an injective function,
I �scheme-optimal� deterministic algorithm for �����.

I Distributional proving problem (D, L): suppD ⊆ L.
Solved by heuristic acceptors, may allow false positives only.

I pointwise optimal randomized heuristic acceptor for p.-t.s. D, r.e. L.

4 / 13

Problems and complexities

I Decision problem L: is x ∈ L?
Solved by decision algorithms: complexity measure = time.

I Same problem, solved by acceptors: complexity measure = time on L.
I worst-case optimal acceptor for NP-complete problems:

Levin's universal search + self-to-decision reduction.
I worst-case (and stronger) optimal randomized acceptor for GNI:

veri�cation by Goldwasser-Micali-Sipser protocol.

II Distributional problem (D, L): is x ∈ L with accuracy d?
Complexity measure = time(n, d).
Errorless average-case complexity: count E or give up with D-prob. 1/d .

I average-case optimal randomized acceptor for GNI for some D.
I Same problem, solved by heuristic algorithms:

allow false negatives and positives with D-prob. 1/d .
I pointwise optimal randomized algorithm for Im of an injective function,
I �scheme-optimal� deterministic algorithm for �����.

I Distributional proving problem (D, L): suppD ⊆ L.
Solved by heuristic acceptors, may allow false positives only.

I pointwise optimal randomized heuristic acceptor for p.-t.s. D, r.e. L.

4 / 13

Problems and complexities

I Decision problem L: is x ∈ L?
Solved by decision algorithms: complexity measure = time.

I Same problem, solved by acceptors: complexity measure = time on L.
I worst-case optimal acceptor for NP-complete problems:

Levin's universal search + self-to-decision reduction.
I worst-case (and stronger) optimal randomized acceptor for GNI.
I pointwise-optimal acceptor for Time(f)-immune sets [Messner],

pointwise-optimal algorithm for bi-immune sets [Chen,Flum,M�uller].

I Distributional problem (D, L): is x ∈ L with accuracy d?
Complexity measure = time(n, d).
Errorless average-case complexity: count E or give up with D-prob. 1/d .

I average-case optimal randomized acceptor for GNI for some D.
I Same problem, solved by heuristic algorithms:

allow false negatives and positives with D-prob. 1/d .
I pointwise optimal randomized algorithm for Im of an injective function,
I �scheme-optimal� deterministic algorithm for �����.

I Distributional proving problem (D, L): suppD ⊆ L.
Solved by heuristic acceptors, may allow false positives only.

I pointwise optimal randomized heuristic acceptor for p.-t.s. D, r.e. L.

4 / 13

Problems and complexities

I Decision problem L: is x ∈ L?
Solved by decision algorithms: complexity measure = time.

I Same problem, solved by acceptors: complexity measure = time on L.
I worst-case optimal acceptor for NP-complete problems:

Levin's universal search + self-to-decision reduction.
I worst-case (and stronger) optimal randomized acceptor for GNI.
I pointwise-optimal acceptor, algorithm for a set in E \ P.

I Distributional problem (D, L): is x ∈ L with accuracy d?
Complexity measure = time(n, d).
Errorless average-case complexity: count E or give up with D-prob. 1/d .

I average-case optimal randomized acceptor for GNI for some D.

I Same problem, solved by heuristic algorithms:
allow false negatives and positives with D-prob. 1/d .

I pointwise optimal randomized algorithm for Im of an injective function,
I �scheme-optimal� deterministic algorithm for �����.

I Distributional proving problem (D, L): suppD ⊆ L.
Solved by heuristic acceptors, may allow false positives only.

I pointwise optimal randomized heuristic acceptor for p.-t.s. D, r.e. L.

4 / 13

Problems and complexities

I Decision problem L: is x ∈ L?
Solved by decision algorithms: complexity measure = time.

I Same problem, solved by acceptors: complexity measure = time on L.
I worst-case optimal acceptor for NP-complete problems:

Levin's universal search + self-to-decision reduction.
I worst-case (and stronger) optimal randomized acceptor for GNI.
I pointwise-optimal acceptor, algorithm for a set in E \ P.

I Distributional problem (D, L): is x ∈ L with accuracy d?
Complexity measure = time(n, d).
Errorless average-case complexity: count E or give up with D-prob. 1/d .

I average-case optimal randomized acceptor for GNI for some D.
I Same problem, solved by heuristic algorithms:

allow false negatives and positives with D-prob. 1/d .
I pointwise optimal randomized algorithm for Im of an injective function,
I �scheme-optimal� deterministic algorithm for �����.

I Distributional proving problem (D, L): suppD ⊆ L.
Solved by heuristic acceptors, may allow false positives only.

I pointwise optimal randomized heuristic acceptor for p.-t.s. D, r.e. L.

4 / 13

Problems and complexities

I Decision problem L: is x ∈ L?
Solved by decision algorithms: complexity measure = time.

I Same problem, solved by acceptors: complexity measure = time on L.
I worst-case optimal acceptor for NP-complete problems:

Levin's universal search + self-to-decision reduction.
I worst-case (and stronger) optimal randomized acceptor for GNI.
I pointwise-optimal acceptor, algorithm for a set in E \ P.

I Distributional problem (D, L): is x ∈ L with accuracy d?
Complexity measure = time(n, d).
Errorless average-case complexity: count E or give up with D-prob. 1/d .

I average-case optimal randomized acceptor for GNI for some D.
I Same problem, solved by heuristic algorithms:

allow false negatives and positives with D-prob. 1/d .
I pointwise optimal randomized algorithm for Im of an injective function,
I �scheme-optimal� deterministic algorithm for �����.

I Distributional proving problem (D, L): suppD ⊆ L.
Solved by heuristic acceptors, may allow false positives only.

I pointwise optimal randomized heuristic acceptor for p.-t.s. D, r.e. L.4 / 13

Heuristic acceptors

Distributional proving problem (D, L) consists of a language L of �theorems� and

a polynomial-time samplable distribution D = {Dn}n∈N on L.

De�nition

Heuristic acceptor A for (D, L):

(completeness) ∀x ∈ L ∀d ∈ N A(x , d) = 1.

(correctness) Prr←Dn

{
PrA{A(r , d) = 1} > 1

8

}
< 1

d
.

(correctness') Prr←Dn; A {A(r , d) = 1} < 1
d
.

5 / 13

Heuristic acceptors

Distributional proving problem (D, L) consists of a language L of �theorems� and

a polynomial-time samplable distribution D = {Dn}n∈N on L.

De�nition

Heuristic acceptor A for (D, L):

(completeness) ∀x ∈ L ∀d ∈ N A(x , d) = 1.

(correctness) Prr←Dn

{
PrA{A(r , d) = 1} > 1

8

}
< 1

d
.

(correctness') Prr←Dn; A {A(r , d) = 1} < 1
d
.

I Time τA(x , d) is a random variable.
I For random variable X , de�ne µ(p)[X] = min{T : Pr[X ≥ T] ≥ p}.
I tA(x) = µ(1/2)[τA(x , d)] is the median running time of A(x , d).

5 / 13

Heuristic acceptors

Distributional proving problem (D, L) consists of a language L of �theorems� and

a polynomial-time samplable distribution D = {Dn}n∈N on L.

De�nition

Heuristic acceptor A for (D, L):

(completeness) ∀x ∈ L ∀d ∈ N A(x , d) = 1.

(correctness) Prr←Dn

{
PrA{A(r , d) = 1} > 1

8

}
< 1

d
.

(correctness') Prr←Dn; A {A(r , d) = 1} < 1
d
.

I Time τA(x , d) is a random variable.
I For random variable X , de�ne µ(p)[X] = min{T : Pr[X ≥ T] ≥ p}.
I tA(x) = µ(1/2)[τA(x , d)] is the median running time of A(x , d).

Theorem

∃ polynomial-time samplable D ∃L ∈ co -NP 6 ∃ polynomial-time heuristic

acceptor for (D, L) ⇐⇒ ∃ in�nitely-often one-way function.
5 / 13

Optimal heuristic acceptor

De�nition

Heuristic acceptor S simulates W if there are polynomials p and q such
that ∀x ∈ L, ∀d ∈ N, tS(x , d) ≤ max

d ′≤q(d ·|x |)
p(tW (x , d ′) · |x | · d).

Idea: Certify Ai by testing it on samples x ← Dn.

6 / 13

Optimal heuristic acceptor

De�nition

Heuristic acceptor S simulates W if there are polynomials p and q such
that ∀x ∈ L, ∀d ∈ N, tS(x , d) ≤ max

d ′≤q(d ·|x |)
p(tW (x , d ′) · |x | · d).

Idea: Certify Ai by testing it on samples x ← Dn.

Optimal heuristic acceptor U(x , d):

I For each i ≤ log |x | in parallel:
1. Execute Ai (x , d

′).

2. If it accepts (in Ti steps), test its correctness:
let Ei = 0 and execute k times:

I r ← D|x |,
I if Ai (r , d

′) = 1 in Ti steps, then Ei := Ei + 1;
3. If Ei < δk , output �1�.

6 / 13

Optimal heuristic acceptor

De�nition

Heuristic acceptor S simulates W if there are polynomials p and q such
that ∀x ∈ L, ∀d ∈ N, tS(x , d) ≤ max

d ′≤q(d ·|x |)
p(tW (x , d ′) · |x | · d).

Idea: Certify Ai by testing it on samples x ← Dn.

Optimal heuristic acceptor U(x , d):

I For each i ≤ log |x | in parallel:
1. Execute Ai (x , d

′).
2. If it accepts (in Ti steps), test its correctness:

let Ei = 0 and execute k times:
I r ← D|x |,
I if Ai (r , d

′) = 1 in Ti steps, then Ei := Ei + 1;

3. If Ei < δk , output �1�.

6 / 13

Optimal heuristic acceptor

De�nition

Heuristic acceptor S simulates W if there are polynomials p and q such
that ∀x ∈ L, ∀d ∈ N, tS(x , d) ≤ max

d ′≤q(d ·|x |)
p(tW (x , d ′) · |x | · d).

Idea: Certify Ai by testing it on samples x ← Dn.

Optimal heuristic acceptor U(x , d):

I For each i ≤ log |x | in parallel:
1. Execute Ai (x , d

′).
2. If it accepts (in Ti steps), test its correctness:

let Ei = 0 and execute k times:
I r ← D|x |,
I if Ai (r , d

′) = 1 in Ti steps, then Ei := Ei + 1;
3. If Ei < δk , output �1�.

Here d ′ = 4d |x |, k = 2d3|x |3, δ = 1
2d|x| . 6 / 13

Derandomization

Deterministic scheme-optimal acceptor for (U, Im f), where. . .

I f : {0, 1}∗ → {0, 1}∗,
I |f (x)| = |x |+ 1,
I f is injective,
I f is polynomial-time computable.

7 / 13

Derandomization

Deterministic scheme-optimal acceptor for (U, Im f),

I Use pseudorandom graph based on expanders.
I The input is a source of randomness!

I Not optimal when the simulated algorithm is erroneously disquali�ed.

De�nition

Simulation scheme of A by A′:

Simulate everywhere except for the fraction 1
2d
:

∃ polynomials p, q ∀n, d ∈ N

Pr
x←Dn

[tA(x , d) ≤ p(n · d · tA′(x , q(n, d)))] ≥ 1− 1

2d
,

q(n, d) ≥ 2d .

7 / 13

Derandomization

Deterministic scheme-optimal acceptor for (U, Im f),

I Use pseudorandom graph based on expanders.
I The input is a source of randomness!
I Not optimal when the simulated algorithm is erroneously disquali�ed.

De�nition

Simulation scheme of A by A′:

Simulate everywhere except for the fraction 1
2d
:

∃ polynomials p, q ∀n, d ∈ N

Pr
x←Dn

[tA(x , d) ≤ p(n · d · tA′(x , q(n, d)))] ≥ 1− 1

2d
,

q(n, d) ≥ 2d .

7 / 13

Graph nonisomorphism

GNI = {(G1,G2) | G1 6' G2, |V (G1)| = |V (G2)|},
I n is the number of vertices,

I Gπ is the result of permuting V (G) by π ∈ Sn.

Recall two-round interactive protocol for GNI
[Goldreich, Micali, Wigderson, 1987]:

I Prover claims that G1 6' G2;

I Veri�er picks random i ∈ {1, 2}, π ∈ Sn and sends Gπ
i ;

I Prover sends j ;

I Veri�er accepts if i = j .

If the claim is wrong, Veri�er rejects with probability ≥ 1/2.

8 / 13

Graph nonisomorphism

GNI = {(G1,G2) | G1 6' G2, |V (G1)| = |V (G2)|},
I n is the number of vertices,

I Gπ is the result of permuting V (G) by π ∈ Sn.

Recall two-round interactive protocol for GNI
[Goldreich, Micali, Wigderson, 1987]:

I Prover claims that G1 6' G2;

I Veri�er picks random i ∈ {1, 2}, π ∈ Sn and sends Gπ
i ;

I Prover sends j ;

I Veri�er accepts if i = j .

If the claim is wrong, Veri�er rejects with probability ≥ 1/2.

8 / 13

Graph nonisomorphism

GNI = {(G1,G2) | G1 6' G2, |V (G1)| = |V (G2)|},
I n is the number of vertices,

I Gπ is the result of permuting V (G) by π ∈ Sn.

Recall two-round interactive protocol for GNI
[Goldreich, Micali, Wigderson, 1987]:

I Prover claims that G1 6' G2;

I Veri�er picks random i ∈ {1, 2}, π ∈ Sn and sends Gπ
i ;

I Prover sends j ;

I Veri�er accepts if i = j .

If the claim is wrong, Veri�er rejects with probability ≥ 1/2.

8 / 13

Correcting a GNI algorithm

SelfCorrectA,N , corrects any (randomized) algorithm A:

I Run N + 1 instances of A in parallel for random πij ∈ Sn:
I A(G1

π11 ,G1
π12)

I A(G1
π21 ,G1

π22)
I . . .
I A(G1

πN1 ,G1
πN2)

I A(G1
πN+1,1 ,G2

πN+1,2)

I Return 1 if the last instance was the fastest; otherwise diverge.

Lemma

I If G1 ' G2, then Pr[accept] ≤ 1
N+1

.

I If G1 6' G2 and A errs with probability ≤ 1
2n
, then

Pr[accept] ≥ 1− N+1
2n

.

9 / 13

Correcting a GNI algorithm

SelfCorrectA,N , corrects any (randomized) algorithm A:

I Run N + 1 instances of A in parallel for random πij ∈ Sn:
I A(G1

π11 ,G1
π12)

I A(G1
π21 ,G1

π22)
I . . .
I A(G1

πN1 ,G1
πN2)

I A(G1
πN+1,1 ,G2

πN+1,2)

I Return 1 if the last instance was the fastest; otherwise diverge.

Lemma

I If G1 ' G2, then Pr[accept] ≤ 1
N+1

.

I If G1 6' G2 and A errs with probability ≤ 1
2n
, then

Pr[accept] ≥ 1− N+1
2n

.

9 / 13

Optimal acceptor for GNI

Algorithm Opt(G1,G2):
I Execute in parallel:

I A1(G1,G2) (brute-force search),
I 3 times SelfCorrectA2,30n(G1,G2),
I 3 times SelfCorrectA3,30n(G1,G2),
I . . .
I 3 times SelfCorrectAn,30n(G1,G2).

I Accept if any of the 3n + 1 parallel threads accepts.

10 / 13

Optimal acceptor for GNI

Algorithm Opt(G1,G2):
I Execute in parallel:

I A1(G1,G2) (brute-force search),
I 3 times SelfCorrectA2,30n(G1,G2),
I 3 times SelfCorrectA3,30n(G1,G2),
I . . .
I 3 times SelfCorrectAn,30n(G1,G2).

I Accept if any of the 3n + 1 parallel threads accepts.

Lemma (correctness)

If G1 ' G2, then Pr[Opt(G1,G2) = 1] ≤ 3n
30n+1

< 1
10
.

10 / 13

Optimal acceptor for GNI

Algorithm Opt(G1,G2):
I Execute in parallel:

I A1(G1,G2) (brute-force search),
I 3 times SelfCorrectA2,30n(G1,G2),
I 3 times SelfCorrectA3,30n(G1,G2),
I . . .
I 3 times SelfCorrectAn,30n(G1,G2).

I Accept if any of the 3n + 1 parallel threads accepts.

Lemma (correctness)

If G1 ' G2, then Pr[Opt(G1,G2) = 1] ≤ 3n
30n+1

< 1
10
.

Lemma (simulation)

For any randomized acceptor A for GNI ∃ polynomial p such that

∀x ∈ GNI , tOpt(x) ≤ p
(
µ
(1/4)
y←U(Cx)

[τA(y)]
)
, where

C(G1,G2) = {(Gπ1
1 ,Gπ2

2) | π1, π2 ∈ Sn} is a cluster of (G1,G2).
10 / 13

Optimal acceptor for GNI

Algorithm Opt(G1,G2):
I Execute in parallel:

I A1(G1,G2) (brute-force search),
I 3 times SelfCorrectA2,30n(G1,G2),
I 3 times SelfCorrectA3,30n(G1,G2),
I . . .
I 3 times SelfCorrectAn,30n(G1,G2).

I Accept if any of the 3n + 1 parallel threads accepts.

Lemma (simulation)

For any randomized acceptor A for GNI ∃ polynomial p such that

∀x ∈ GNI , tOpt(x) ≤ p
(
µ
(1/4)
y←U(Cx)

[τA(y)]
)
, where

C(G1,G2) = {(Gπ1
1 ,Gπ2

2) | π1, π2 ∈ Sn} is a cluster of (G1,G2).

10 / 13

Optimal acceptor for GNI

Algorithm Opt(G1,G2):
I Execute in parallel:

I A1(G1,G2) (brute-force search),
I 3 times SelfCorrectA2,30n(G1,G2),
I 3 times SelfCorrectA3,30n(G1,G2),
I . . .
I 3 times SelfCorrectAn,30n(G1,G2).

I Accept if any of the 3n + 1 parallel threads accepts.

Lemma (simulation)

For any randomized acceptor A for GNI ∃ polynomial p such that

∀x ∈ GNI , tOpt(x) ≤ p
(
µ
(1/4)
y←U(Cx)

[τA(y)]
)
, where

C(G1,G2) = {(Gπ1
1 ,Gπ2

2) | π1, π2 ∈ Sn} is a cluster of (G1,G2).

Corollary

Opt is average-case optimal provided D is uniform on every cluster.
10 / 13

From acceptors to proof systems

De�nition

L is paddable if there is an injective non-length-decreasing polynomial-time
padding function padL : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ that is polynomial-time
invertible on its image and such that ∀x ,w (x ∈ L ⇐⇒ padL(x ,w) ∈ L).

Optimal proof [Messner, 99]:
I A proof π of x in some system Π;
I padding.

Veri�cation:
I run optimal acceptor on padL(x , π);
I for a correct proof π, it accepts in a polynomial time because for a

correct system Π, the set {padL(x , π) | x ∈ L, Π(x , π) = 1} ⊆ L can
be accepted in a polynomial time.

I Messner's proof goes for randomized algorithms.
I Does not go for heuristic, average-case algorithms.

11 / 13

From acceptors to proof systems

Optimal proof [Messner, 99]:

I A proof π of x in some system Π;

I padding.

Veri�cation:

I run optimal acceptor on padL(x , π);

I for a correct proof π, it accepts in a polynomial time because for a
correct system Π, the set {padL(x , π) | x ∈ L, Π(x , π) = 1} ⊆ L can
be accepted in a polynomial time.

Applicability:

I Messner's proof goes for randomized algorithms.

I Does not go for heuristic, average-case algorithms.

11 / 13

From acceptors to proof systems

Optimal proof [Messner, 99]:

I A proof π of x in some system Π;

I padding.

Veri�cation:

I run optimal acceptor on padL(x , π);

I for a correct proof π, it accepts in a polynomial time because for a
correct system Π, the set {padL(x , π) | x ∈ L, Π(x , π) = 1} ⊆ L can
be accepted in a polynomial time.

Applicability:

I Messner's proof goes for randomized algorithms.

I Does not go for heuristic, average-case algorithms.

11 / 13

Heuristic proof systems

I Allow probabilistic proof veri�cation (with bounded error).
I Allow small number of false theorems (unbounded error there)

according to D.
I Heuristic computation: gets d on input and makes at most 1

d
errors.

12 / 13

Heuristic proof systems

I Allow probabilistic proof veri�cation (with bounded error).
I Allow small number of false theorems (unbounded error there)

according to D.
I Heuristic computation: gets d on input and makes at most 1

d
errors.

De�nition

Heuristic proof system for (D, L) is a polynomial-time Π such that

(completeness) ∀x ∈ L ∀d ∈ N ∃w Pr{Π(x ,w , d) = 1} > 1
2
.

(Such w is a Π-proof with con�dence d .)

(correctness) Prr←Dn
{∃w {Pr{Π(r ,w , d) = 1} > 1

8
} < 1

d
}.

12 / 13

Heuristic proof systems

I Allow probabilistic proof veri�cation (with bounded error).
I Allow small number of false theorems (unbounded error there)

according to D.
I Heuristic computation: gets d on input and makes at most 1

d
errors.

De�nition

Heuristic proof system for (D, L) is a polynomial-time Π such that

(completeness) ∀x ∈ L ∀d ∈ N ∃w Pr{Π(x ,w , d) = 1} > 1
2
.

(Such w is a Π-proof with con�dence d .)

(correctness) Prr←Dn
{∃w {Pr{Π(r ,w , d) = 1} > 1

8
} < 1

d
}.

Open question: Devise an interesting heuristic p.s.,
i.e., distinguish between distributions hard for heuristic acceptors and
heuristic proof systems.

12 / 13

Open questions

I ∃ optimal proof system ⇐⇒ ∃ optimal heuristic acceptor;

I ∃ optimal heuristic proof system
?⇐⇒ ∃ optimal heuristic acceptor;

I ∃ optimal proof system with advice
?⇐⇒ ∃ optimal acceptor with advice;

I ∃ average-case optimal acceptor?

I ∃ optimal acceptor for GNI or any other co -NP \ P problem?

I ∃ optimal proof system for any problem outside P?

I ∃(D, L) ∈ (co -NP,PSamplable) with no polynomially-bounded heuristic
proof system ⇐⇒ ?

13 / 13

