Optimal proof systems and acceptors: Distributional proving problems, and beyond

Edward A. Hirsch

http://logic.pdmi.ras.ru/~hirsch (joint with D. Itsykson, I. Monakhov, V. Nikolaenko, A. Smal) Steklov Institute of Mathematics at St.Petersburg, RAS St.Petersburg Academic University, RAS

Optimal proof systems

A proof system Σ simulates a proof system Ω iff
 Σ-proofs are at most as long as Ω-proofs (up to a polynomial p):

 $\forall F \in L |$ shortest Σ -proof of $F| \leq p(|$ shortest Ω -proof of F|, |F|).

- ► *p*-simulation is a constructive version: For any *w*-size Ω -proof, one can compute a p(w)-size Σ -proof in polynomial time.
- ► (*p*-)optimal proof system (*p*-)simulates any other proof system.
- Does it exist?..

Optimal proof systems

A proof system Σ simulates a proof system Ω iff
 Σ-proofs are at most as long as Ω-proofs (up to a polynomial p):

 $\forall F \in L |$ shortest Σ -proof of $F| \leq p(|$ shortest Ω -proof of F|, |F|).

- ► p-simulation is a constructive version: For any w-size Ω -proof, one can compute a p(w)-size Σ -proof in polynomial time.
- (p-)optimal proof system (p-)simulates any other proof system.
- Does it exist?..

Theorem

 \exists *p*-optimal proof system $\iff \exists$ optimal acceptor.

For **TAUT**: [Krajícek, Pudlák]. For paddable languages: [Messner]. For **co-NP**-complete languages: [Chen, Flüm, Müller].

▶ pointwise simulation $\mathcal{A} \prec \mathcal{B}$: ∃ polynomial $p \forall x$

 $t_{\mathcal{A}}(x) \leq p(t_{\mathcal{B}}(x) + |x|)$

▶ pointwise simulation $\mathcal{A} \prec \mathcal{B}$: ∃ polynomial $p \forall x$

 $t_{\mathcal{A}}(x) \leq p(t_{\mathcal{B}}(x) + |x|)$

(yet weaker!) worst-case simulation A ≺_{wc} B:
 ∃ polynomials p, q ∀x

$$t_{\mathcal{A}}(x) \leq p(\max_{\substack{|x'| \leq q(|x|)\\x' \in L}} t_{\mathcal{B}}(x') + |x|)$$

▶ pointwise simulation $\mathcal{A} \prec \mathcal{B}$: ∃ polynomial $p \forall x$

 $t_{\mathcal{A}}(x) \leq p(t_{\mathcal{B}}(x) + |x|)$

▶ (weaker) average-case simulation $\mathcal{A} \prec_D \mathcal{B}$ w.r.t. D: $\forall \epsilon > 0 \exists c > 0$

$$\mathop{\mathbf{E}}_{x\leftarrow D_n}[t_{\mathcal{A}}{}^c(x)] = O(n \mathop{\mathbf{E}}_{y\leftarrow D_n}[t_{\mathcal{B}}{}^\epsilon(y)])$$

(yet weaker!) worst-case simulation A ≺_{wc} B:
 ∃ polynomials p, q ∀x

$$t_{\mathcal{A}}(x) \leq p(\max_{\substack{|x'| \leq q(|x|)\\x' \in L}} t_{\mathcal{B}}(x') + |x|)$$

▶ pointwise simulation $\mathcal{A} \prec \mathcal{B}$: ∃ polynomial $p \forall x$

 $t_{\mathcal{A}}(x) \leq p(t_{\mathcal{B}}(x) + |x|)$

▶ (weaker) average-case simulation $\mathcal{A} \prec_D \mathcal{B}$ w.r.t. D: $\forall \epsilon > 0 \exists c > 0$

$$\mathop{\mathbf{E}}_{x\leftarrow D_n}[t_{\mathcal{A}}{}^c(x)] = O(n \mathop{\mathbf{E}}_{y\leftarrow D_n}[t_{\mathcal{B}}{}^c(y)])$$

- (weaker) simulation scheme: simulate everywhere except for the set of D-prob. 1/2d.
- (yet weaker!) worst-case simulation A ≺_{wc} B:
 ∃ polynomials p, q ∀x

$$t_{\mathcal{A}}(x) \leq p(\max_{\substack{|x'| \leq q(|x|)\\x' \in L}} t_{\mathcal{B}}(x') + |x|)$$

• Decision problem L: is $x \in L$?

Solved by decision algorithms: complexity measure = time.

• Decision problem L: is $x \in L$?

Solved by decision algorithms: complexity measure = time.

> Same problem, solved by acceptors: complexity measure = time on L.

• Decision problem L: is $x \in L$?

Solved by decision algorithms: complexity measure = time.

- Same problem, solved by acceptors: complexity measure = time on L.
 - worst-case optimal acceptor for NP-complete problems:
 Levin's universal search + self-to-decision reduction:
 On input x, run |x| algorithms in parallel:
 - 1. $A_1(x)$ (brute-force search); output the result;
 - 2. $A_2(x)$; check the solution; output if it's correct;
 - ••••
 - *n*. $A_{|x|}(x)$; check the solution; output if it's correct.

• Decision problem L: is $x \in L$?

Solved by decision algorithms: complexity measure = time.

- Same problem, solved by acceptors: complexity measure = time on L.
 - worst-case optimal acceptor for NP-complete problems:
 Levin's universal search + self-to-decision reduction:
 On input x, run |x| algorithms in parallel:
 - 1. $A_1(x)$ (brute-force search); output the result;
 - 2. $A_2(x)$; check the solution; output if it's correct;
 - •••
 - *n*. $A_{|x|}(x)$; check the solution; output if it's correct.

Not a pointwise optimal acceptor for **co-NP** problems;

Not a pointwise optimal acceptor for **NP** problems;

Main obstacle: how to verify a 1-bit answer to a decision problem?

Worst-case optimal acceptor for **NP**-complete problems: extract satisfying assignment for F by queries to F[v = 0], $F[v = 1]_{u/is}$

• Decision problem L: is $x \in L$?

Solved by decision algorithms: complexity measure = time.

- Same problem, solved by acceptors: complexity measure = time on L.
 - worst-case optimal acceptor for NP-complete problems: Levin's universal search + self-to-decision reduction.
 - worst-case (and stronger) optimal randomized acceptor for GNI: verification by Goldwasser-Micali-Sipser protocol.

• Decision problem L: is $x \in L$?

Solved by decision algorithms: complexity measure = time.

- Same problem, solved by acceptors: complexity measure = time on L.
 - worst-case optimal acceptor for NP-complete problems: Levin's universal search + self-to-decision reduction.
 - worst-case (and stronger) optimal randomized acceptor for GNI.
 - pointwise-optimal acceptor for Time(f)-immune sets [Messner], pointwise-optimal algorithm for bi-immune sets [Chen,Flum,Müller].

• Decision problem L: is $x \in L$?

Solved by decision algorithms: complexity measure = time.

- Same problem, solved by acceptors: complexity measure = time on L.
 - worst-case optimal acceptor for NP-complete problems: Levin's universal search + self-to-decision reduction.
 - worst-case (and stronger) optimal randomized acceptor for GNI.
 - pointwise-optimal acceptor, algorithm for a set in $\mathbf{E} \setminus \mathbf{P}$.
- ▶ Distributional problem (D, L): is $x \in L$ with accuracy d?

Complexity measure = time(n, d).

Errorless average-case complexity: count **E** or give up with D-prob. 1/d.

▶ average-case optimal randomized acceptor for GNI for some D.

• Decision problem L: is $x \in L$?

Solved by decision algorithms: complexity measure = time.

- Same problem, solved by acceptors: complexity measure = time on L.
 - worst-case optimal acceptor for NP-complete problems: Levin's universal search + self-to-decision reduction.
 - worst-case (and stronger) optimal randomized acceptor for GNI.
 - pointwise-optimal acceptor, algorithm for a set in $\mathbf{E} \setminus \mathbf{P}$.
- ▶ Distributional problem (D, L): is $x \in L$ with accuracy d?

Complexity measure = time(n, d).

Errorless average-case complexity: count E or give up with D-prob. 1/d.

- ▶ average-case optimal randomized acceptor for GNI for some D.
- Same problem, solved by heuristic algorithms: allow false negatives and positives with D-prob. 1/d.
 - pointwise optimal randomized algorithm for Im of an injective function,
 - ▶ "scheme-optimal" deterministic *algorithm* for —"—".

• Decision problem L: is $x \in L$?

Solved by decision algorithms: complexity measure = time.

- Same problem, solved by acceptors: complexity measure = time on L.
 - worst-case optimal acceptor for NP-complete problems: Levin's universal search + self-to-decision reduction.
 - worst-case (and stronger) optimal randomized acceptor for GNI.
 - pointwise-optimal acceptor, algorithm for a set in $\mathbf{E} \setminus \mathbf{P}$.
- ▶ Distributional problem (D, L): is $x \in L$ with accuracy d?

Complexity measure = time(n, d).

Errorless average-case complexity: count E or give up with D-prob. 1/d.

- ▶ average-case optimal randomized acceptor for GNI for some D.
- Same problem, solved by heuristic algorithms: allow false negatives and positives with D-prob. 1/d.
 - pointwise optimal randomized algorithm for Im of an injective function,
 - ▶ "scheme-optimal" deterministic *algorithm* for —"—"—.
- ▶ Distributional proving problem (D, L): supp $D \subseteq \overline{L}$. Solved by heuristic acceptors, may allow false positives only.
 - ▶ pointwise optimal randomized heuristic acceptor for p.-t.s. D, r.e. $L_{4/13}$

Heuristic acceptors

Distributional proving problem (D, L) consists of a language L of "theorems" and a polynomial-time samplable distribution $D = \{D_n\}_{n \in \mathbb{N}}$ on \overline{L} .

Definition

 $\begin{array}{l} \mbox{Heuristic acceptor A for (D,L):} \\ \mbox{(completeness)} & \forall x \in L \; \forall d \in \mathbb{N} \quad A(x,d) = 1. \\ \mbox{(correctness)} & \mbox{Pr}_{r \leftarrow D_n} \left\{ \mbox{Pr}_A \{ A(r,d) = 1 \} > \frac{1}{8} \right\} < \frac{1}{d}. \\ \mbox{(correctness')} & \mbox{Pr}_{r \leftarrow D_n; \; A} \left\{ A(r,d) = 1 \right\} < \frac{1}{d}. \end{array}$

Heuristic acceptors

Distributional proving problem (D, L) consists of a language L of "theorems" and a polynomial-time samplable distribution $D = \{D_n\}_{n \in \mathbb{N}}$ on \overline{L} .

Definition

Heuristic acceptor A for (D, L): (completeness) $\forall x \in L \ \forall d \in \mathbb{N} \quad A(x, d) = 1$. (correctness) $\Pr_{r \leftarrow D_n} \left\{ \Pr_A \{A(r, d) = 1\} > \frac{1}{8} \right\} < \frac{1}{d}$. (correctness') $\Pr_{r \leftarrow D_n; A} \{A(r, d) = 1\} < \frac{1}{d}$.

- Time $\tau_A(x, d)$ is a random variable.
- For random variable X, define $\mu^{(p)}[X] = \min\{T : \Pr[X \ge T] \ge p\}$.
- $t_A(x) = \mu^{(1/2)}[\tau_A(x, d)]$ is the median running time of A(x, d).

Heuristic acceptors

Distributional proving problem (D, L) consists of a language L of "theorems" and a polynomial-time samplable distribution $D = \{D_n\}_{n \in \mathbb{N}}$ on \overline{L} .

Definition

 $\begin{array}{l} \mbox{Heuristic acceptor A for (D,L):} \\ (\mbox{completeness}) \ \forall x \in L \ \forall d \in \mathbb{N} \quad A(x,d) = 1. \\ (\mbox{correctness}) \quad \mbox{Pr}_{r \leftarrow D_n} \left\{ \mbox{Pr}_A \{ A(r,d) = 1 \} > \frac{1}{8} \right\} < \frac{1}{d}. \\ (\mbox{correctness}') \quad \mbox{Pr}_{r \leftarrow D_n; \ A} \left\{ A(r,d) = 1 \right\} < \frac{1}{d}. \end{array}$

- Time $\tau_A(x, d)$ is a random variable.
- For random variable X, define $\mu^{(p)}[X] = \min\{T : \Pr[X \ge T] \ge p\}$.
- $t_A(x) = \mu^{(1/2)}[\tau_A(x, d)]$ is the median running time of A(x, d).

Theorem

 \exists polynomial-time samplable $D \exists L \in \mathbf{co} \mathsf{-NP} \not\exists$ polynomial-time heuristic acceptor for $(D, L) \iff \exists$ infinitely-often one-way function.

Definition

Heuristic acceptor S simulates W if there are polynomials p and q such that $\forall x \in L, \forall d \in \mathbb{N}, \quad t_S(x,d) \leq \max_{\substack{d' \leq q(d \cdot |x|)}} p(t_W(x,d') \cdot |x| \cdot d).$

Idea: Certify A_i by testing it on samples $x \leftarrow D_n$.

Definition

Heuristic acceptor S simulates W if there are polynomials p and q such that $\forall x \in L, \forall d \in \mathbb{N}, \quad t_S(x, d) \leq \max_{\substack{d' \leq q(d \cdot |x|)}} p(t_W(x, d') \cdot |x| \cdot d).$

Idea: Certify A_i by testing it on samples $x \leftarrow D_n$.

Optimal heuristic acceptor U(x, d):

Definition

Heuristic acceptor S simulates W if there are polynomials p and q such that $\forall x \in L, \ \forall d \in \mathbb{N}, \quad t_S(x, d) \leq \max_{\substack{d' \leq q(d \cdot |x|)}} p(t_W(x, d') \cdot |x| \cdot d).$

Idea: Certify A_i by testing it on samples $x \leftarrow D_n$.

Optimal heuristic acceptor U(x, d):

- For each $i \leq \log |x|$ in parallel:
 - 1. Execute $A_i(x, d')$.
 - 2. If it accepts (in T_i steps), test its correctness:
 - let $E_i = 0$ and execute k times:
 - ▶ $r \leftarrow D_{|x|}$, ▶ if $A_i(r, d') = 1$ in T_i steps, then $E_i := E_i + 1$;

Definition

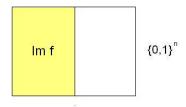
Heuristic acceptor S simulates W if there are polynomials p and q such that $\forall x \in L, \forall d \in \mathbb{N}, \quad t_S(x, d) \leq \max_{\substack{d' \leq q(d \cdot |x|)}} p(t_W(x, d') \cdot |x| \cdot d).$

Idea: Certify A_i by testing it on samples $x \leftarrow D_n$.

Optimal heuristic acceptor U(x, d):

Here
$$d' = 4d|x|$$
, $k = 2d^3|x|^3$, $\delta = \frac{1}{2d|x|}$.

Deterministic *scheme*-optimal acceptor for $(U, \overline{\text{Im } f})$, where...



- ▶ $f: \{0,1\}^* \to \{0,1\}^*$,
- ► |f(x)| = |x| + 1,
- f is injective,
- ► f is polynomial-time computable.

Derandomization

Deterministic scheme-optimal acceptor for $(U, \overline{\operatorname{Im} f})$,

- Use pseudorandom graph based on expanders.
- The input is a source of randomness!

Derandomization

Deterministic *scheme*-optimal acceptor for $(U, \overline{\operatorname{Im} f})$,

- Use pseudorandom graph based on expanders.
- The input is a source of randomness!
- > Not optimal when the simulated algorithm is erroneously disqualified.

Definition

```
Simulation scheme of A by A':
```

Simulate everywhere except for the fraction $\frac{1}{2d}$:

 \exists polynomials $p, q \ \forall n, d \in \mathbb{N}$

$$\Pr_{\substack{x \leftarrow D_n}} [t_A(x,d) \le p(n \cdot d \cdot t_{A'}(x,q(n,d)))] \ge 1 - \frac{1}{2d},$$

$$q(n,d) \ge 2d.$$

Graph nonisomorphism

$\mathsf{GNI} = \{ (G_1, G_2) \mid G_1 \not\simeq G_2, |V(G_1)| = |V(G_2)| \},\$

- *n* is the number of vertices,
- G^{π} is the result of permuting V(G) by $\pi \in S_n$.

Graph nonisomorphism

$\mathsf{GNI} = \{ (G_1, G_2) \mid G_1 \not\simeq G_2, |V(G_1)| = |V(G_2)| \},\$

- n is the number of vertices,
- G^{π} is the result of permuting V(G) by $\pi \in S_n$.

Recall **two-round interactive protocol** for GNI [Goldreich, Micali, Wigderson, 1987]:

- Prover claims that $G_1 \not\simeq G_2$;
- ▶ Verifier picks random $i \in \{1, 2\}$, $\pi \in S_n$ and sends G_i^{π} ;
- Prover sends j;
- Verifier accepts if i = j.

Graph nonisomorphism

 $\mathsf{GNI} = \{ (G_1, G_2) \mid G_1 \not\simeq G_2, |V(G_1)| = |V(G_2)| \},\$

- *n* is the number of vertices,
- G^{π} is the result of permuting V(G) by $\pi \in S_n$.

Recall **two-round interactive protocol** for GNI [Goldreich, Micali, Wigderson, 1987]:

- Prover claims that $G_1 \not\simeq G_2$;
- ▶ Verifier picks random $i \in \{1, 2\}$, $\pi \in S_n$ and sends G_i^{π} ;
- Prover sends j;
- Verifier accepts if i = j.

If the claim is wrong, Verifier rejects with probability $\geq 1/2$.

Correcting a GNI algorithm

SelfCorrect_{A,N}, corrects any (randomized) algorithm A:

- ▶ Run N + 1 instances of A in parallel for random $\pi_{ij} \in S_n$:
 - $A(G_1^{\pi_{11}}, G_1^{\pi_{12}})$ • $A(G_1^{\pi_{21}}, G_1^{\pi_{22}})$
 - ... • $A(G_1^{\pi_{N_1}}, G_1^{\pi_{N_2}})$
 - $\blacktriangleright A(G_1^{\pi_{N+1,1}}, G_2^{\pi_{N+1,2}})$
 - Return 1 if the last instance was the fastest; otherwise diverge.

Correcting a GNI algorithm

SelfCorrect_{A,N}, corrects any (randomized) algorithm A:

- ▶ Run N + 1 instances of A in parallel for random $\pi_{ij} \in S_n$:
 - $A(G_1^{\pi_{11}}, G_1^{\pi_{12}})$ • $A(G_1^{\pi_{21}}, G_1^{\pi_{22}})$
 - ... • $A(G_1^{\pi_{N_1}}, G_1^{\pi_{N_2}})$
 - $A(G_1^{\pi_{N+1,1}}, G_2^{\pi_{N+1,2}})$
- Return 1 if the last instance was the fastest; otherwise diverge.

Lemma

• If $G_1 \simeq G_2$, then $\Pr[accept] \leq \frac{1}{N+1}$.

▶ If $G_1 \not\simeq G_2$ and A errs with probability $\leq \frac{1}{2^n}$, then $\Pr[accept] \geq 1 - \frac{N+1}{2^n}$.

Algorithm $Opt(G_1, G_2)$:

- Execute in parallel:
 - $A_1(G_1, G_2)$ (brute-force search),
 - > 3 times SelfCorrect_{A₂,30n}(G_1, G_2),
 - > 3 times SelfCorrect_{A₃,30n}(G_1, G_2),

▶ ...

▶ 3 times SelfCorrect_{A_n,30n}(G_1, G_2).

• Accept if any of the 3n + 1 parallel threads accepts.

Algorithm $Opt(G_1, G_2)$:

- Execute in parallel:
 - $A_1(G_1, G_2)$ (brute-force search),
 - > 3 times SelfCorrect_{A2,30n}(G_1, G_2),
 - > 3 times SelfCorrect_{A3,30n}(G_1, G_2),

▶ ...

• 3 times SelfCorrect_{$A_n,30n}(G_1, G_2)$.</sub>

• Accept if any of the 3n + 1 parallel threads accepts.

Lemma (correctness)

If
$$G_1\simeq G_2$$
, then $\Pr[\mathit{Opt}(G_1,G_2)=1]\leq rac{3\,n}{30\,n+1}<rac{1}{10}$.

Algorithm $Opt(G_1, G_2)$:

- Execute in parallel:
 - $A_1(G_1, G_2)$ (brute-force search),
 - ▶ 3 times SelfCorrect_{A₂,30n}(G_1, G_2),
 - ▶ 3 times SelfCorrect_{A₃,30n}(G_1, G_2),
 - ▶ ...
 - 3 times SelfCorrect_{$A_n,30n}(G_1, G_2)$.</sub>
- Accept if any of the 3n + 1 parallel threads accepts.

Lemma (correctness)

If
$$G_1 \simeq G_2$$
, then $\Pr[Opt(G_1, G_2) = 1] \leq \frac{3n}{30n+1} < \frac{1}{10}$.

Lemma (simulation)

For any randomized acceptor A for GNI \exists polynomial p such that $\forall x \in GNI, t_{Opt}(x) \leq p\left(\mu_{y \leftarrow U(C_x)}^{(1/4)}[\tau_A(y)]\right)$, where $C_{(G_1,G_2)} = \{(G_1^{\pi_1}, G_2^{\pi_2}) \mid \pi_1, \pi_2 \in S_n\}$ is a cluster of (G_1, G_2) .

Algorithm $Opt(G_1, G_2)$:

- Execute in parallel:
 - $A_1(G_1, G_2)$ (brute-force search),
 - ▶ 3 times SelfCorrect_{A₂,30n}(G_1, G_2),
 - ▶ 3 times SelfCorrect_{A₃,30n}(G_1, G_2),
 - ▶ ...
 - 3 times SelfCorrect_{$A_n,30n}(G_1, G_2)$.</sub>
- Accept if any of the 3n + 1 parallel threads accepts.

Lemma (simulation)

For any randomized acceptor A for GNI \exists polynomial p such that $\forall x \in GNI, t_{Opt}(x) \leq p\left(\mu_{y \leftarrow U(C_x)}^{(1/4)}[\tau_A(y)]\right)$, where $C_{(G_1,G_2)} = \{(G_1^{\pi_1}, G_2^{\pi_2}) \mid \pi_1, \pi_2 \in S_n\}$ is a cluster of (G_1, G_2) .

Algorithm $Opt(G_1, G_2)$:

- Execute in parallel:
 - $A_1(G_1, G_2)$ (brute-force search),
 - ▶ 3 times SelfCorrect_{A₂,30n}(G_1, G_2),
 - > 3 times SelfCorrect_{A3,30n}(G_1, G_2),
 - ▶ ...
 - 3 times SelfCorrect_{$A_n,30n}(G_1, G_2)$.</sub>
- Accept if any of the 3n + 1 parallel threads accepts.

Lemma (simulation)

For any randomized acceptor A for GNI \exists polynomial p such that $\forall x \in GNI, t_{Opt}(x) \leq p\left(\mu_{y \leftarrow U(C_x)}^{(1/4)}[\tau_A(y)]\right)$, where $C_{(G_1,G_2)} = \{(G_1^{\pi_1}, G_2^{\pi_2}) \mid \pi_1, \pi_2 \in S_n\}$ is a cluster of (G_1, G_2) .

Corollary

Opt is average-case optimal provided D is uniform on every cluster.

Definition

L is paddable if there is an injective non-length-decreasing polynomial-time padding function $\text{pad}_L \colon \{0,1\}^* \times \{0,1\}^* \to \{0,1\}^*$ that is polynomial-time invertible on its image and such that $\forall x, w \ (x \in L \iff \text{pad}_L(x, w) \in L)$.

Optimal proof [Messner, 99]:

- A proof π of x in some system Π ;
- ► padding.

Verification:

- run optimal acceptor on $pad_L(x, \pi)$;
- ▶ for a correct proof π , it accepts in a polynomial time because for a correct system Π , the set $\{\text{pad}_L(x,\pi) \mid x \in L, \ \Pi(x,\pi) = 1\} \subseteq L$ can be accepted in a polynomial time.

From acceptors to proof systems

Optimal proof [Messner, 99]:

- A proof π of x in some system Π ;
- ► padding.

Verification:

- run optimal acceptor on $pad_L(x, \pi)$;
- ▶ for a correct proof π , it accepts in a polynomial time because for a correct system Π , the set $\{\text{pad}_L(x,\pi) \mid x \in L, \ \Pi(x,\pi) = 1\} \subseteq L$ can be accepted in a polynomial time.

Applicability:

Messner's proof goes for randomized algorithms.

From acceptors to proof systems

Optimal proof [Messner, 99]:

- A proof π of x in some system Π ;
- ► padding.

Verification:

- run optimal acceptor on $pad_L(x, \pi)$;
- ▶ for a correct proof π , it accepts in a polynomial time because for a correct system Π , the set $\{\text{pad}_L(x,\pi) \mid x \in L, \ \Pi(x,\pi) = 1\} \subseteq L$ can be accepted in a polynomial time.

Applicability:

- Messner's proof goes for randomized algorithms.
- Does not go for heuristic, average-case algorithms.

Heuristic proof systems

- > Allow probabilistic proof verification (with bounded error).
- Allow small number of false theorems (unbounded error there) according to D.
- Heuristic computation: gets d on input and makes at most $\frac{1}{d}$ errors.

Heuristic proof systems

- Allow probabilistic proof verification (with bounded error).
- Allow small number of false theorems (unbounded error there) according to D.
- Heuristic computation: gets d on input and makes at most $\frac{1}{d}$ errors.

Definition

Heuristic proof system for (D, L) is a polynomial-time Π such that (completeness) $\forall x \in L \ \forall d \in \mathbb{N} \ \exists w \quad \Pr\{\Pi(x, w, d) = 1\} > \frac{1}{2}$. (Such w is a Π -proof with confidence d.) (correctness) $\Pr_{r \leftarrow D_n}\{\exists w \ \{\Pr\{\Pi(r, w, d) = 1\} > \frac{1}{8}\} < \frac{1}{d}\}.$

Heuristic proof systems

- Allow probabilistic proof verification (with bounded error).
- Allow small number of false theorems (unbounded error there) according to D.
- Heuristic computation: gets d on input and makes at most $\frac{1}{d}$ errors.

Definition

Heuristic proof system for (D, L) is a polynomial-time Π such that (completeness) $\forall x \in L \ \forall d \in \mathbb{N} \ \exists w \quad \Pr\{\Pi(x, w, d) = 1\} > \frac{1}{2}$. (Such w is a Π -proof with confidence d.) (correctness) $\Pr_{r \leftarrow D_n} \{\exists w \ \Pr\{\Pi(r, w, d) = 1\} > \frac{1}{8}\} < \frac{1}{d}\}.$

Open question: Devise an interesting heuristic p.s.,

i.e., distinguish between distributions hard for heuristic acceptors and heuristic proof systems.

- ▶ \exists optimal heuristic proof system \Leftrightarrow \exists optimal heuristic acceptor;
- ▶ \exists optimal proof system with advice \Leftrightarrow \exists optimal acceptor with advice;
- ► ∃ average-case optimal acceptor?
- ▶ \exists optimal acceptor for GNI or any other **co**-**NP** \ **P** problem?
- ► ∃ optimal proof system for any problem outside **P**?
- ► ∃(D, L) ∈ (co-NP, PSamplable) with no polynomially-bounded heuristic proof system ⇔?