
Pool vs Regular

An Improved Separation between

Regular Resolution and Pool Resolution

Sam Buss
(joint work with Maria Luisa Bonet)

BIRS Workshop, Proof Complexity, Banff, Oct. 4, 2011



Pool vs Regular

Introduction

SAT algorithms

SAT algorithms - Remarkably successful

◮ Routinely solve industrial instances with ≥100,000’s of
variables.

◮ Mostly based on depth-first search. (DPLL)

◮ Use a suite of methods to speed search: clause learning, fast
backtracking, restarts, implementation tuning.

◮ Find satisfying assignment or generate a resolution refutation.

◮ Algorithms lift to a useful fragments of first-order logic.
(SMT solvers.)

Questions for this talk: What is the logical complexity of SAT
algorithms? How does DPLL with clause learning compare to
resolution?



Pool vs Regular

Introduction

Clause learning is the main heuristic that has a logical
justification.

Fundamental idea: Set a trial (partial) satisfying assignment.
When blocked, use this “counter-example” to learn a new clause.
The new clause helps avoid repeatedly searching the same part of
the solution space.
GRASP: Marques-Silva & Sakallah [1999].

Several heuristics are used to decide which clauses to learn, e.g.,
First-UIP. These are all encompassed by “input resolution”, aka
“trivial resolution”. (Beame-Kautz-Sabarwal [2004].)

◮ Input resolution corresponds to contradictions that can be
discovered by unit propagation.

◮ Easy to decide if a given clause can be derived by input
resolution.



Pool vs Regular

Relation to resolution

Relationship to resolution?

[Folklore?] Resolution simulates all current DPLL-based algorithms,
including with clause learning, restarts, and pure literal selection.

DPLL with clause learning and restarts:

Theorem [BKS 2004] Non-greedy DPLL with clause learning and
restarts simulates full resolution.

Proof idea: Simulate a resolution refutation, using a new restart
for each clause in the refutation. Ignore contradictions (hence:
non-greedy) until able to learn the desired clause. �

Theorem [Pipatsrisawat-Darwiche, 2010] (Greedy) DPLL with
clause learning and (many) restarts simulates full resolution.

[Atserias, Fichte, Thurley ’11] - related results for bounded width.



Pool vs Regular

Relation to resolution

DPLL and clause learning without restarts:

[BKS ’04; B-H-P-vG ’08; B-H-J ’08] It is possible to add new
variables and clauses that preserve (un)satisfiability, so that DPLL
with clause learning can refute the augmented set of clauses if and
only if resolution can refute the original set of clauses.

In this way, DPLL with clause learning can “effectively p-simulate”
resolution.

These new variables and clauses are proof trace extensions or
variable extensions.

Drawback:

◮ The variable extensions yields contrived sets of clauses, and
the resulting DPLL executions are unnatural.



Pool vs Regular

Pool resolution

Pool resolution

[Van Gelder, 2005] introduced “pool resolution” as a system that
can simulate DPLL clause learning without restarts. Pool
resolution consists of:

a. A degenerate resolution inference rule, where the resolution
literal may be missing from either hypothesis. If so, the
conclusion is equal to one of the hypotheses.

b. A dag-like degenerate resolution refutation with a regular
depth-first traversal.

The degenerate rule is needed to learn more clauses. The regular
depth-first traversal corresponds to the fact that DPLL algorithms
do not change the value of literals without backtracking.

The “pool” is the set of literals assigned true by the DPLL search.

Thm [VG’05] Pool resolution p-simulates DPLL clause learning
without restarts.



Pool vs Regular

regWRTI

[Buss-Hoffmann-Johannsen ’08] gave a system that is equivalent to
non-greedy DPLL clause learning without restarts.

w-resolution:
C D

(C \ {x}) ∪ (D \ {x})
where x /∈ C and x /∈ D.

[BHJ] uses tree-like proofs with lemmas to simulate dag like
proofs. A lemma must be earlier derived in left-to-right order. A
lemma is input if derived by an input subderivation (allowing
lemmas in the subderivation).

Thm [BHJ]. Resolution trees with input lemmas simulates general
resolution (i.e., with arbitrary lemmas).



Pool vs Regular

regWRTI

Defn A “regWRTI” derivation is a regular tree-like w-resolution
with input lemmas.

Thm [BHJ] regWRTI p-simulates DPLL clause learning without
restarts. Conversely, non-greedy DPLL clause learning (without
restarts) p-simulates regWRTI.

The above theorem allows very general schemes of clause learning.

The greedy case still open: No exact formal system is known to be
p-equivalent.
However, regWRTI is a reasonable conjecture.



Pool vs Regular

Regular resolution and resolution

Fact: DPLL clause learning without restarts (and regWRTI and
pool resolution) simulates regular resolution.

Thm [AJPU 2002] Regular resolution does not p-simulate
resolution.

[APJU] gave two examples of separations.

◮ Graph tautologies expressing the existence of a minimal
element in a linear order, obfuscated by making the axioms
more complicated.

◮ A Stone principle about pebbling dag’s.

The (non-obfuscated) graph tautologies were originally introduced
by [Krishnamurthy ’85]. Regular refutations were given by
[St̊almarck, ’96] and [Bonet-Galesi ’99].



Pool vs Regular

Regular resolution and resolution

We use the term guarded graph tautologies (GGTn) for [AJPU]’s
obfuscated graph tautologies. In these, initial clauses xi ,j , xj ,k , xk,i
are replaced by

xi ,j , xj ,k , xk,i , xr ,s and xi ,j , xj ,k , xk,i , x r ,s

for some r = r(i , j , k) and s = s(i , j , k). (All i , j , k , r , s distinct.)

The non-regular refutation of GGTn comes from resolving the two
above clauses to derive xi ,j , xj ,k , xk,i , for all i , j , k , and then using
the (regular) refutation of GTn.



Pool vs Regular

Regular resolution and resolution

Theorem [Bonet-Buss] There are polynomial size pool refutations
and also regRTI refutations of the GGTn clauses. Consequently,
DPLL clause learning without restarts can show the unsatisfiability
of the GGTn clauses in polynomial time.

Note that w-resolution is not needed, only resolution.

Proof sketch: Next two slides...

Parts of the following corollary were already shown by [BKS] and
Van Gelder using proof trace extensions:

Corollary Regular resolution does not simulate regWRTI, or pool
resolution, or DPLL clause learning without restarts.



Pool vs Regular

Regular resolution and resolution

Proof sketch.
Idea is to have a partially defined “bipartite” ordering π on the
vertices of the underlying graph. The clause (

∨
π) contains the

negations of the literals set true in π (i.e., states that π does not
hold). Initially π is empty.

The refutation is constructed in stages, in left-to-right order. At
each stage, the goal is to give a subderivation of a clause (

∨
π).

This is done by considering a regular refutation of GGTn ↾ π, and
then weakening to get (

∨
π), and then replacing GTn initial

clauses with GGTn clauses as needed.

In some cases, it is possible to further transform the refutation (be
introducing extra side literals) so as to keep the partially completed
refutation valid.

But in some cases, there is an initial axiom xi ,j , xj ,k , xk,i which
cannot be derived from its GGTn initial clauses without violating
regularity.



Pool vs Regular

Regular resolution and resolution

In these cases, we instead add a subproof that learns xi ,j , xj ,k , xk,i .

xi ,j , xj ,k , xk,i , xr .s xi ,j , xj ,k , xk,i , x r .s
xi ,j , xj ,k , xk,i

(
∨
π1)
...

xi ,j , xj ,k ,C1

(
∨
π2)
...

xi ,j ,C2

(
∨
π3)
...

(
∨
π)

◮ The regularity condition will hold.
◮ Side literals C1,C2 can be chosen to make the resolution

inferences valid.
◮ Each (

∨
πi) is a bipartite partial restriction that will be

handled in later stages. The omitted parts contain inferences
to ensure this.

◮ This construction is needed only polynomially many time since
there are only polynomially many GTn initial clauses. �



Pool vs Regular

Regular resolution and resolution

Open Questions.

Can this be extended, for instance, is it possible that pool
resolution or even regWRTI p-simulates full resolution? In this
case, (non-greedy) DPLL clause learning without restarts will
simulate full resolution.

Next cases to consider: The Stone tautologies of [AJPU] or the
refined versions by [Urquhart ’11] have polynomial size regWRTI or
pool resolution proofs?



Pool vs Regular

Meta-Questions

Meta-questions:

1. Can we find more systematic or rigorous methods for evaluating
the effectiveness of different proof search hueristics.

2. For example, there are at least four competing theories for why
restarts are so useful:

◮ High variance in search space size.

◮ Back door sets.

◮ Inferring easy clauses before a deep search.

◮ Clearing the search space of unwanted decisions.

Can we systematically evaluate why restarts work well?

Can logical considerations help?



Pool vs Regular

Thank you

Thank you!


	Introduction
	Relation to resolution
	Pool resolution
	regWRTI
	Regular resolution and resolution
	Meta-Questions
	Thank you

