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SAT translations: case studies and theory

Some remarks on the genesis of this research:
1 We started by translating AES and DES into SAT.
2 Trying to develop good translations, we came up with

some general ideas.
3 In this talk, only this theory side is considered.
4 See the forthcoming technical report

[Gwynne and Kullmann, 2011], where we will then
also present extensive experimental data (and their
analysis).

All software is available in the OKlibrary
(http://www.ok-sat-library.org).

http://www.ok-sat-library.org
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Generalised UCP

In [Kullmann, 1999, Kullmann, 2004] the following
hierarchy of reductions rk : CLS → CLS has been
investigated:

r0(F ) :=

{
{⊥} if ⊥ ∈ F

F otherwise

rk+1(F ) :=


rk+1(〈x → 0〉 ∗ F ) if ∃ x ∈ lit(F ) :

rk (〈x → 1〉 ∗ F ) = {⊥}
F otherwise

r1 is unit-clause propagation (UCP)

r2 is failed-literal reduction
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Running time

rk (F ) can be computed in time

`(F ) ·O(n(F )2k−2)

for fixed k ≥ 1.

Using `(F ) for the length of F and n(F ) for the
number of variables.

This comes from linear-time computation of r1 (which
is optimal).

It is not known whether for k ≥ 2 this can be
improved.
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Hardness for unsatisfiable clause-sets

For unsatisfiable F the hardness is defined as

hd(F ) := min{k ∈ N0 : rk (F ) = {⊥}}.

We call F k -soft if hd(F ) ≤ k .

For the tree-resolution complexity Comp*
R(F ) (minimum

number of leaves in a tree representing a resolution
refutation of F ) we have

2hd(F ) ≤ Comp*
R(F ) ≤ (n(F ) + 1)hd(F ).

Computing r0(F ), r1(F ), . . . achieves quasi-automisation
of tree resolution.
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The levelled height of trees

Let the levelled height hl(T ) of a rooted tree be defined
as follows:

1 If T is trivial then hl(T ) := 0.
2 Otherwise consider the subtrees T1, . . . ,Tk , k ≥ 1, at

the root, and let m := maxk
i=1 hl(Ti).

3 If there is exactly one i ∈ {1, . . . , k} with hl(Ti) = m,
then hl(T ) := m.

4 Otherwise hl(T ) := m + 1.

We have the following equivalent descriptions:

For binary trees T we have that hl(T ) + 1 is the
pebbling complexity of T in the black-pebbles game
allowing shifting of pebbles.

For arbitrary rooted trees T we have that hl(T ) + 1 is
the Strahler number of T .
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Space complexity

For an unsatisfiable F we have hd(F ) ≤ k iff there is
a resolution tree refutation of F with hl(T ) ≤ k .

Thus hd(F ) is the space-complexity of F w.r.t. tree
resolution.

As shown in [Kullmann, 2004], the characterisation of
hd(F ) in terms of hl(T ) for resolution trees carries
over to a very general form of constraint satisfaction
problems (with non-boolean variables).

However for non-boolean variables the
characterisation via space-complexity breaks down.
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Generalisation for all clause-sets

In [Kullmann, 1999, Kullmann, 2004] also an
algorithmically motivated extension of hd(F ) for all
clause-sets F has been introduced and discussed.

Here now we investigate (for the first time) another
extension which shall measure how good F is as a
representation of some underlying boolean function:

For clause-set F the hardness hd(F ) is the
smallest k ∈ N0 such that

for all clauses C with F |= C
this can be verified by means of rk , i.e.,

hd(〈x → 0 : x ∈ C〉 ∗ F ) ≤ k .

(Using F |= C ⇔ F ∧ ¬C |= ⊥.)
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Generalised input resolution

hd(F ) ≤ k if and only if
for every clause C with F |= C

there is a tree resolution derivation T
of C′ ⊆ C from F with hl(T ) ≤ k .

We have hd(F ) ≤ 1 iff for every clause C with F |= C
there is a input derivation of C′ ⊆ C from F .
And in general we have hd(F ) ≤ k iff for every clause
C with F |= C there is a k -times nested input
derivation of C′ ⊆ C from F .

Here a k-times nested input-resolution derivation is just a
resolution tree T with hl(T ) ≤ k .

1 For k = 1 this is just input resolution.
2 And a k + 1-times nested derivation has the shape of

an input resolution, where at the axiom-places we
have k -times nested derivations.
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Relations

Likely decision whether hd(F ) ≤ k holds is
Π2-complete (for fixed k ).

Apparently the first time this extension (to satisfiable
clause-sets) of the basic hardness measure (as
introduced in [Kullmann, 1999, Kullmann, 2004]) was
(briefly) mentioned in the literature is
[Ansótegui et al., 2008].

We consider hd(F ) for satisfiable F not as a
measure of solving-hardness (it would be asking too
much!), but as

target for constructing good representations.
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Representing boolean functions by CNFs

A boolean function is a map f : {0,1}V → {0,1} for
some (finite) set V of variables.

A clause-set F represents f if

var(f ) ⊆ var(F )

taking the set of satisfying total assignments for F
and restricting it to V , we obtain exactly the set of
satisfying assignments for f .

If F has exactly the same number of satisfying total
assignments as f , then the representation has the
unique extension property (uep).

Remark: In practice all representations seem to have uep
— could there be a proof that we need only to consider
representations with uep “without loss of power”?
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A different point of view

For a clause-set F , the boolean functions represented by
F are obtained as follows:

1 Let f0 be the boolean function underlying F (with
var(f0) = var(F )).

2 Now the boolean functions represented by F are
exactly the “1-projections” of f0 to V ⊆ var(F ).

3 Such a 1-projection for an assignment to V yields 1
iff there exists an extension to a satisfying
assignment of F .

4 So F represents (0)x∈{0,1}∅ iff F is unsatisfiable.
5 And F represents (1)x∈{0,1}∅ iff F is satisfiable.
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The SAT Representation Hypothesis (SRH)

SRH is the following hypothesis under development:

A representation F of a boolean function f is “good”
for SAT solving if and only if

F has low hardness
(and F is not too large).

Two features:
1 A representation F of f with low hardness must allow

to derive all clauses which follow from F — not just
those which follow from f .

2 There is a tradeoff between hardness and the size of
the representation.
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Low hardness is “knowing the truth-table”

What is the meaning of having low hardness?

“Knowing” a boolean function means “knowing the
truth-table”.

Similarly, “knowing” a constraint means knowing the
satisfying (and falsifying!) assignments.

In the same vein, now “knowing” means “falsification
can be detected by rk -reduction”.

So having a representation F of f with “low hardness” can
be interpreted as a parameterised version of

“F acting as a constraint”.
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Hardness 1 versus “hyperarc consistency”
In the literature one finds the related notion of “(hyper)arc
consistency”:

This (seems) to mean that for every partial
assignment in the original variables (that is, var(f ))
one can find all forced assignments by UCP.

In contrast, our approach also takes the new
variables into account (i.e., var(F )).

Instead of UCP (i.e., r1) we now consider rk .

We treat as the central category the detection of
mere falsification, not forced assignments.

The term “(hyper)arc consistency” is not appropriate,
since the notion of “constraint” is very fuzzy here.

So we propose to consider our notion of hardness as a
good replacement of “hyperarc consistency” (of course,
only for SAT translations).
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Remarks on Extended Resolution (ER)

The SRH says: The whole business of Extended
Resolution is to construct some (poly-size) k -soft
representation for appropriate (fixed!) k ≥ 1.

Later we will discuss this w.r.t. PHP.

SRH needs only to consider tree-like resolution,
since w.r.t. ER full resolution and tree-like resolution
have the same power.

Two natural questions here:

Can we make the application of our framework more
powerful by looking at smaller boolean functions
inside the “big” constant-0 function?

Is splitting on the new variables of importance, or is
the sole purpose of the new variables to enable
compression of prime implicates via rk -reduction?
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Remarks on “too big” boolean functions

We don’t know the truth-table of DES or AES.

So we have to decompose the big function into small
functions.

We do not understand how to make a “good
decomposition”.

For this first phase of our investigations, we only
considered the obvious decomposition, and apply
SRH to the small functions.
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Prime implicates I

A prime implicate of a boolean function f is a clause
C with f |= C and ∀C′ ⊂ C : f 6|= C′.

And a prime implicate of a clause-set F is a prime
implicate of the underlying boolean function.

By prc0(f ) resp. prc0(F ) we denote the set of all prime
implicates (“0” for unsat – falsifying assignments).

prc0(f ) is the prototypical representation of f
with hardness 0 — in the light of SRH,

“all what remains” is to find suitable abbreviations
for this set (which is mostly too large for SAT solving).
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Prime implicates II

“Smurfs” ([Franco et al., 2004]) yield representations
of boolean functions comprising all prime implicates
and all prime implicants via a BDD-like approach.

We on the other hand “believe in CNF”.

CNF offer the potential of breaking up the barriers
between “constraints”.

And representations by CNFs offer the potential of
splitting on new variables.

That is, we break up the black box.
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Bases

A basic systematic approach for finding a k -soft
representation of f is

1 Start with F := prc0(f ).
2 Repeatedly remove clauses C ∈ F such that F

remains k -soft.

A completed such computation yields a k -base.

We have developed some heuristic improvements of
this basic algorithm.

Given the truth-table of f (which we always assume),
decision of “F is k -base for f ” is in polytime.

So finding a k -base is a search problem in NP.

The optimisation problem seems very tough, even for
boolean functions with just, say, 8 variables.
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The canonical translation: The idea

A class of alternative approaches for finding 1-soft
representations of f is based on the following idea:

1 Consider the canonical DNF DNF(f ), consisting of all
prime implicants of f (i.e., all satisfying total
assignments, as DNF-clauses).

2 Apply the Tseitin translation to DNF(f ).

This yields a 1-soft representation of f .

There is more to it than just “Tseitin translation
applied to DNF”, and we present a more systematic
development.

For DES/AES, the main boolean functions are the
“boxes”, which are permutations, and permutations
have unique DNFs which are also small.
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The semantics: 1-extensions
For a boolean function f and C ∈ DNF(f ) we consider a
new variable vctf (C).
The canonical 1-extension of f is the boolean function

ce(f ) := f ∧
∧

C∈DNF(f )

vctf (C)↔
∧

x∈C

x .

A general canonical representation of f is a
representation of ce(f ) without new variables.

We believe that it is important to start with the
semantical side, the boolean function.
And not directly jumping to syntactical manipulations
— like the Tseitin translation.
The point here is that there are many general
canonical representations!
And we can apply the ideas underlying the notion of
a k -base to ce(f ).
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Recall PHP

For m ∈ N0 pigeons and k ∈ N0 holes we have the
clause-sets PHPm

k :

variables are pi,j for i ∈ {1, . . . ,m} and j ∈ {1, . . . , k}
expressing “pigeon i sits in hole j”

we have binary clauses expressing that no two
pigeons sit in the same hole

and we have m clauses of length k , expressing that
every pigeon sits in one hole.

PHPm
k is satisfiable iff m ≤ k .
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Hardness of PHP

In [Kullmann, 1999] it was established hd(PHPm
k ) = k for

m > k . This is generalised now by

hd(PHPm
k ) = min(max(m − 1,0), k)

for m, k ∈ N0.

The upper bound is established by the observation
that setting any variable to true and applying r1 yields
PHPm−1

k−1 .

For the lower bound we additionally observe that
when setting any variable to false, then setting any
remaining variable to true we again obtain PHPm−1

k−1 .
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Remarks on tree-resolution complexity
From hd(PHPm

k ) = k for m > k we get
2k ≤ Comp*

R(PHPm
k ) ≤ (m · k + 1)k .

This lower bound appeared first in
[Buss and Pitassi, 1998].

In [Iwama and Miyazaki, 1999] this was sharpened to
(k

4 )
k
4 ≤ Comp*

R(PHPk+1
k ) ≤ O(k2 · k !).

In [Dantchev and Riis, 2001] this was generalised to
kΩ(k) ≤ Comp*

R(PHPm
k ) ≤ mO(k).

Here actually the upper bound holds for any regular
tree-resolution refutation.

In [Beyersdorff et al., 2010] one finds a simpler proof
for kΩ(k) ≤ Comp*

R(PHPm
k ).

The hardness parameter hd(F ) in general does not yield
very sharp bounds for tree-resolution, however it seems
to be the simplest general method.
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Reminder Extended Resolution

It seems best to us to split ER into two steps:
1 Extension The original clause-set F is extended to

F ′ stepwise, by adding representations (without new
variables) of

v ↔ f

where v is a new variable and f is a boolean function
in the old variables.

2 Resolution F ′ is used for a resolution refutation.

ER is polynomially equivalent to Extended Frege with
Substitution.
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Extended Resolution for PHP

[Cook, 1976] introduced a specific extension EPHPk of
PHPk+1

k :

In this way the (very simple) inductive proof of “there
is no injection from {1, . . . , k + 1} to {1, . . . , k}” can
be simulated.

And this by a polysize resolution refutation.

We wondered about the tree-resolution complexity of
EPHPk :

Possibly hd(EPHPk ) = k .

That is, tree-resolution can’t do much with the extension.
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Tree- versus full resolution for ER (?!?)
Given a clause-set F and a resolution refutation R of F ,
we get an extension F ′R(F ) by adding the equivalences

v ↔ C

for all the (different!) clauses in R (axioms and
resolvents). Then

hd(F ′R(F )) ≤ 2.

In this sense ER-with-tree-resolution and
ER-with-full-resolution are polynomially equivalent:

However this equivalence is non-uniform!
That is, given just F and an extension F ′, it is not known
how to compute an extension F ′′ of F ′ in polytime, such

that if F ′ has a polysize resolution refutation, then F ′′ has
a polysize tree-resolution refutation.
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Summary

I We investigated a general notion of “hardness” for
clause-sets.

II We sketched the SRH, that is, “good representation”
means “low hardness”.

III (We introduced two methods for constructing
representations of low hardness.)

IV We applied hardness considerations to PHP.

V (We presented first data on attacking DES and AES
using these methods.)
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