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Outline of My Talk

I Part I: Localized Solutions in Cross-Diffusion Systems
(joint work with T. Kolokolnikov )
(SIAM J. Appl. Math. 2011 online)

I Part II: Localized Solutions in Chemotaxis System Modeling
LA Crimes
(joint work with T. Kolokolnikov and M. Ward)



Part I: Cross-Diffusion Systems

We first discuss pattern formations in a cross-diffusion system

Standard Diffusion: ∇(J), J = ∇u

Self Diffusion: J = a(x, u)∇u

Cross-diffusion: J = a(x, u, v)∇u

Q: Can cross-diffusion create stable patterns?



A model of cross-diffusion

We consider cross-diffusion model of Shigesada, Kawasaki and
Teramoto (1979)





ut = ∆ [(d1 + ρ12v) u] + u(a1 − b1u− c1v)
vt = ∆ [(d2 + ρ21u) v] + v(a2 − b1u− c1v)

Neumann B.C. on [a, b]
(1)

The kinetics are just the classic Lotka-Volterra competition model;
d1, d2 represent self-diffusion
Cross-diffusion (ρ12, ρ21) represent inter-species avoidance:
abundance of v will cause u to diffuse faster and vice-versa.



Without cross-diffusion, only constant solution is stable
[Kishimoto, 1981].
A well-studied toy model [Lou, Ni, Yotsutani, Wu, Xu] is [after
scaling]: {

ut = (ρvu)xx + u(a1 − b1u− c1v)
vt = dvxx + v(a2 − b1u− c1v)

(2)

with the following assumptions:

d ¿ 1; ρ À 1; all other parameters are positive and of O(1).
(3)

Biologically, when ρ is large, v acts as an inhibitor on u, so that u
diffuses quickly in the regions of high concentration of v. This
effect is believed to be responsible for the segregation of the two
species.



Construction of steady state in 1D
I Lou, Ni, Yotsutani, 2004: Constructed a steady state in the

form of a spike for u, and in the form of an inverted spike for
v.

I More explicit computations [spike height] by Wu-Xu, 2010.
I Define

τ = uv

so that

0 = dvxx+a2v−b2τ−c2v
2; 0 = ρτxx+τ

(a1

v
− b1

τ

v2
− c1

)
;

(4)
I In the limit ρ →∞ the shadow system is:

0 = dvxx + a2v − b2τ + c2v
2; (5)

Lc1 =
∫ L

0

(a1

v
− b1

τ

v2

)
. (6)

(Keener, 1981, Nishiura)



I the solution to dvxx + a2v − b2τ + c2v
2 = 0 can be written as

v = C1 + C2 tanh2(C3x). Matching the integral condition
gives

I asymptotic behavior

v(x) ∼ a2

2c2

[
3
2

tanh2
( x

2ε

)
+ δ

(
2− 3 tanh2

( x

2ε

))]
;

u ∼ τ0

v(x)

where

ε :=
√

2d

a2
[spike width]

δ := (ε/L)2/3 3
4

(
b1

b2

π

2

)2/3 (
4
a1

a2
− b1

b2
− 3

c1

c2

)−2/3

[spike height]

τ0 :=
3
16

a2
2

b2c2
;
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I v has an inverted spike

v(x) ∼ a2

2c2

[
w(0)− w

( x

2ε

)
+ δ

(
2− 3 tanh2

( x

2ε

))]

wyy − w + w2 = 0; w → 0 as |y| → ∞, w′(0) = 0.

I Note that v(0) ∼ a2
c2

δ = O(ε2/3); u(0) ∼ O(ε−2/3).
I This construction works as long as

(
4
a1

a2
− b1

b2
− 3

c1

c2

)
> 0.

I Question: is the solution stable ?



Linearized problem

Linearized equations are

λφ = dφxx + a2φ− b2ψ − c22vφ;

λ

(
1
v
ψ − τ

v2
φ

)
= ρψxx +

(a1

v
− b12

τ

v2
− c1

)
ψ +

(
−a1τ

v2
+ 2b1

τ2

v3

)
φ.

Two kinds of eigenvalues

I large eigenvalues: λ = O(1)
I small eigenvalues:λ = o(1)



Principal stability result

Define

ρK,small := d−1/3L8/3 c2

2

(
b1

b2

π

2

)−2/3 a
1/3
2

21/3

(
4
a1

a2
− b1

b2
− 3

c1

c2

)5/3

;

(7)
ρb := 0.747ρK,small; (8)

ρK,large := ρK,small
2× 0.747

1− cos [π (1− 1/K)]
. (9)



Then:

I A single boundary spike is stable for all ρ (not exponentially
large in ε).

I A double-boundary steady state is stable if ρ < ρb and is
unstable otherwise. The instability is due to a large
eigenvalue.

I A K-interior spike steady state with K ≥ 2 is stable if
ρ < min (ρK,small, ρK,large) and is unstable otherwise. When
K = 1, it is stable provided that ρ is not exponentially large in
ε.

I The critical scaling is

ρ = O(d−1/3) = O(ε−2/3) À 1.



Stability: small vs. large eigenvalues

I K spikes are always stable whenever 1 ¿ ρ ¿ d−1/3 and
unstable when K ≥ 2 and ρ À d−1/3.

I Recall that ρK,large := ρK,small
2×0.747

1−cos[π(1−1/K)] and

2× 0.747
1− cos [π (1− 1/K)]

=





1.494 > 1, K = 2
0.996 < 1, K = 3
0.875 < 1, K = 4

I ρK,large > ρK,small if K = 2 but ρK,large < ρK,small if K ≥ 3. It
follows that the primary instability is due to small eigenvalues
if K = 2but is due to large eigenvalues if K ≥ 3. This is in
agreement with numerical simulations.



Boundary Conditions

Possible boundary conditions (as in van der Ploeg-Doelman,
Indiana Univ.Math. J. 2005):

Config type Boundary conditions for φ

1 interior spike on [−L,L]
even eigenvalue

φ′(0) = 0 = φ′(L)

1 interior spike on [−L,L]
odd eigenvalue

φ(0) = 0 = φ′(L)

2 1/2-spikes at [0, L] φ′(0) = 0 = φ(L)
K spikes on [−L, (2K − 1)L],

Periodic BC
φ(L) = zφ(−L), φ′(L) = zφ′(−L),
z = exp (2πik/K) , k = 0 . . .K − 1

K spikes on [−L, (2K − 1)L],
Neumann BC

φ(L) = zφ(−L), φ′(L) = zφ′(−L),
z = exp (πik/K) , k = 0 . . . K − 1

(same BC for ψ)



Reduced problem, large eigenvalues

I Using asymptotic matching, eventually we get a new
point-weight eigenvalue problem (PWEP):

{
λΦ = Φyy − Φ + 2wΦ− χΦ(0)

Φ is even and is bounded as |y| → ∞ (PWEP)

where w(y) = 3
2 sech2

(y
2

)
satisfies

wyy − w + w2 = 0; w → 0 as |y| → ∞, w′(0) = 0.

I For double-boundary spike,

χ = χb :=
ε−2/3

4ρ

(
4
a1

a2
− b1

b2
− 3

c1

c2

)5/3

c2

(
b1

b2

π

2

)−2/3

L8/3.

I For K spikes, Neumann BC, there are K choices for χ, namely

χ =
2

1− cos πk
K

χb, k = 0 . . .K−1 and χ = very large positive.



Analysis of PWEP λΦ = Φyy − Φ + 2wΦ− χΦ(0)

I λ = 0, Φ = wy is a solution [corresponds to translation
invariance]

I If χ = 0 then there is an unstable eigenvalue λ1 > 0 and
another eigenvalue λ3 < 0.

I Decompose:

Φ(y) = Φ? + Φ0(y); where Φ? = lim
y→±∞Φ(y).

Then
λΦ? = −Φ? − χ (Φ0(0) + Φ?)

and Φ0 satisfies

λΦ0 = Φ0yy − Φ0 + 2wΦ0 + 2wΦ?

so the PWEP becomes

λΦ0 = Φ0yy − Φ0 + 2wΦ0 − 2χ

χ + λ + 1
Φ0(0)w (10)



λΦ0 = Φ0yy − Φ0 + 2wΦ0 − 2χ

χ + λ + 1
Φ0(0)w

I Anzatz: if Φ0 = w, λ = 0 then χ = 1
2 .

I Rigorous result: there is an unstable eigenvalue λ > 0 for all
χ < 1

2

I The above two facts seem to suggest: stability when
χ > 1

2???)

I In the limit χ →∞, the limiting problem is

λΦ0 = Φ0,yy − Φ0 + 2wΦ0 − 2Φ0(0)w (11)



Hypergeometric reduction

Theorem: the eigenvalues of λΦ = Φyy − Φ + 2wΦ− χΦ(0)
are given implicitly by:

λ = −1− χ + 2χΦ0(0)

where

Φ0(0) =
6πλ (λ + 1)

sin (πα) (4λ− 5) (4λ + 3)
− 3

2
1
λ

3F2

(
1, 3,−1/2

2 + α, 2− α
; 1

)

α =
√

1 + λ

Similar idea has been used in
Doelman-Gardner-Kaper, Mem. AMS 2002, Indiana Univ. Math.
J. 2001
Wei-Winter, MAA 2002, SIAM J.Math.Anal. 2003



I Numerical result+winding argument of Ward-Wei EJAM
2003: all λ < 0 whenever χ > 0.669; stabilization is via a hopf
bifurcation.

I desperate need for an analytical study of the limiting
eigenvalue problem

λΦ0 = Φ0,yy − Φ0 + 2wΦ0 − 2Φ0(0)w



Small eigenvalues

I Construct asymmetric spike steady states

I These bifurcate from the symmetric branch

I The instability thresholds for the small eigenvalues correspond
precisely to this bifurcation point!
Iron-Ward-Wei Phys D 2001
van der Ploeg-Doelman, Indiana Univ.Math. J. 2005
Proof is Needed !!!

I Main result: For 2 spikes, small eigenvalues is the dominant
instability. For 3 or more, large eigenvalues dominate.



Radial equilibrium in two dimensions

Consider Ω ∈ R2. Let w be the ground state in 2D:

∆w − w + w2 = 0; w → 0 as |y| → ∞, maxw = w(0)

and define
m := max w(y) = w(0) ≈ 2.39195.

Suppose that

a1

a2
(2m− 1)− (m− 1)

b1

b2
−m

c1

c2
> 0 (12)

and consider the asymptotic limit

d ¿ 1; ρ À 1. (13)



If Ω is radially symmetric, there is a steady state at x = 0, in the
form of an inverted spike for v. More precisely, we have

v(x) ∼ 1
2m− 1

a2

c2
(1− 2δ)

(
w(0)− w

(
1− δ

ε
x

)
+ (2m− 1) δ

)
;

u ∼ τ0

v(x)

∆w − w + w2 = 0; w → 0 as |y| → ∞, maxw = w(0)



where

ε :=

√
(2m− 1)d

a2
; τ0 :=

(m− 1)m
(2m− 1)2

a2
2

b2c2
.

δ ∼ ε2

|Ω|
4πb1m

b2 (2m− 1)
1(

a1
a2

(2m− 1)− (m− 1) b1
b2
−m c1

c2

) ;

In particular,

v(0) ∼ a2

c2
δ = O(d); u(0) ∼ (m− 1)m

(2m− 1)2
a2

b2

1
δ

= O

(
1
d

)
. (14)

Stability:????



Interesting patterns: ρ = O(1)

I Spike insertion, spatio-temporal chaos

Sensitivity to initial conditions. The left and right figure differ only
in the initial conditions. On the left, symmetric initial conditions
result in an intricate a time-periodic solution. On the right, the
initial condition is the same as on the left, except for a shift of 0.1
units to the right. dynamics eventually settle to a 5-spike stable
pattern.



ρ = 50, (a1, b1, c1) = (5, 1, 1), (a2, b2, c2) = (5, 1, 5)

Row 1: ρ = 2. Spot splits into three spots. Row 2: ρ = 4. Initially,
spot splits into two, final steady state consists of two boundary
and one center spot. Row 3: ρ = 6. Row 4: ρ = 500. The interior
spike is unstable and slowly drifts to the boundary. Once it reaches
the boundary, it starts to oscillate indefinitely.



Part II: Localized Solutions in Crime Hotspot Model



UCLA Model of hot-spots in crime
I Recently proposed by Short Brantingham, Bertozzi et.al

[PNAS, 2008].
I Very hot math: e.g. The New York Times, Dec 2010
I Crime is ubiquious but not uniformly distributed

I some neigbourhoods are worse than others, leading to crime
”hot spots”

I Crime hotspots can persist for long time.

Figure taken from Short et.al., A statistical model of criminal behaviour, 2008.



I Crime is temporally correlated:

I Criminals often return to the spot of previous crime

I If a home was broken into in the past, the likelyhood of
subsequent breaking increases

I Example: graffitti ”tagging”

I the motion of criminals towards higher attractiveness areas can
be modeled by chemotaxis



I Two-component model

At = ε2Axx −A + ρA + A0

τρt = D
(
ρx − 2

ρ

A
Ax

)
x
− ρA + Ā−A0.

I ρ(x, t) ≡ density of criminals;
I A(x, t) ≡ ”attractiveness” of area to crime
I A0 = O(1) ≡ ”baseline attractiveness ”
I D(−2 ρ

AAx)x models the motion of criminals towards higher
attractiveness areas

I Ā−A0 > 0 is the baseline criminal feed rate
I We assume here:

ε2 ¿ 1, D À 1.



Hot-spot steady state

0 = ε2Axx −A + ρA + A0; 0 = D
(
ρx − 2

ρ

A
Ax

)
x
− ρA + Ā−A0

I Key trick: ρx − 2 ρ
AAx = A2

(
ρA−2

)
x
. This suggests the

change of variables:

v =
ρ

A2
;

so that

0 = ε2Axx −A + vA3 + A0; 0 = D
(
A2vx

)
x
− vA3 + Ā−A0.



I “Shadow limit” Large D : v(x) ∼ v0;

ε2Axx −A + vA3 + A0 = 0; v0

∫ L

0
A3dx =

(
Ā−A0

)
L.

I Anzatz: v0 ¿ 1, A ∼ v
−1/2
0 w(y), y = x/ε where w is the

ground state,

wyy − w + w3 = 0, w′(0) = 0, w → 0 as |y| → ∞;

then

v0 ∼

(∫∞
−∞w3dy

)2

4L2
(
Ā−A0

)2 ε2;

A(x) ∼




2L(Ā−A0)
ε
∫

w3
w(x/ε), x = O (ε)

A0, x À O(ε).



Critical Scaling

Based on previous computations, we now set

Ω = (−1, 1),

A = A0 +
1
ε
Â, v = ε2v̂

D =
D̂

ε

Then the steady-state problem becomes

0 = ε2Âxx − Â + v̂(εA0 + Â)3 (15)

0 = D̂

(
(A0 +

1
ε
Â)2v̂x

)

x

− 1
ε
v̂(εA0 + Â)3 + Ā−A0. (16)



Relation with A Schnakenberg Model

I The steady state problem in 1D is very close to the so-called
Schnakenberg model

0 = ε2uxx − u + vup

0 = Dvxx + 1− 1
ε
vup

with p = 3

0 = ε2Âxx − Â + v̂Â3 (17)

0 = D̂
(
A2

0v̂x

)
x
− 1

ε
v̂Â3 + Ā−A0. (18)



I To see this, we consider the following problem

D̂(a(x)vx)x = f(x), v
′
(0) = 0 (19)

we have

v(x)− v(0) =
1
D̂

∫ x

0
Ka(x, s)f(s)ds (20)

where

Ka(x, s) =
∫ x

s

1
a(x)

dx

I Let us now consider a(x) = (A0 + γ
ε w(x

ε ))2, where w > 0 and

w ∼ e−|y|. Then

Ka(x, s) = KA2
0
(x, s) + O(ε|s− x|) + O(|[s, x] ∩ (0, 2εln

1
ε
)|)

(21)



Main stability result (1D)

I Main result: Consider K spikes on the domain of size 2KL.
Then small eigenvalues become unstable if D > Dc,small;
large eigenvalues become unstable if D > Dc,small where

Dc,small ∼ L4

ε2

(
Ā−A0

)3

A2
0π

2

Dc,large ∼ Dc,small

(
2

1− cos π
K

)
> Dc,small

I Small eigenvalues become unstable before the large
eigenvalues.



I Example: Take L = 1, Ā = 2, A0 = 1, K = 2, ε = 0.07. Then
Dc,small = 20.67, Dc,large = 41.33.

I if D = 15 =⇒ two spikes are stable
I if D = 30 =⇒ two spikes have very slow developing instability
I if D = 50 =⇒ two spikes have very fast developing instability

I very similar behavior to Schnakenberg model

0 = ε2uxx − u + vu3

0 = Dvxx + 1− 1
ε
vu3.

Iron-Wei-Winter, J.Math.Biol. 2003



Stability: large eigenvalues

I Step 1: Reduces to the nonlocal eigenvalue problem (NLEP):

λφ = φ′′−φ+3w2φ−χ

(∫
w2φ

)
w3 where w′′−w+w3 = 0

(22)
with

χ ∼ 3∫∞
−∞w3dy

(
1 + ε2D(1− cos

πk

K
)

A2
0π

2

4L4
(
Ā−A0

)3

)−1

I This is an oversimplified problem but captures the main
characteristics



I Step 2: Key identity: L0w
2 = 3w2, where

L0φ := φ′′ − φ + 3w2φ. Multiply

λφ = φ′′ − φ + 3w2φ− χ

(∫
w2φ

)
w3

by w2 and integrate to get

λ = 3− χ

∫
w5 = 3− χ

3
2

∫
w3

Conclusion: (22) is stable iff χ > 2∫
w3 ⇐⇒ D > Dc,large.

I This NLEP in 1D can be fully solved!!



Stability: small eigenvalues

I Compute asymmetric spikes

I They bifurcate from symmetric branch

I The bifurcation point is precisely when D = Dc,small.

I This is “cheating”... but it gets the correct threshold!!

I similar computations to
Iron-Ward-Wei 2001 (for Gierer-Meinhardt system)
Iron-Wei-Winter 2003 (for Schnakenberg model)



Two dimensions




At = ε2∆A−A + v̂A3 + A0

τ(Av̂)t = D∇ · (A2∇v̂
)− v̂A3 + Ā−A0

, x ∈ Ω

Neumann BC

I Steady-state: construction is similar to 1D, but no reduction
to Schnakenberg model

I Stability: of K hot-spots:

I I If K = 1, then a single hot-spot is stable with respect to large
eigenvalues, as long as D is not exponentially large in 1/ε.

I If K ≥ 2, then the steady state is stable with respect to large
eigenvalues if

D <
1
ε4

ln
1
ε

(
Ā−A0

)3 |Ω|3 A−2
0

4πK3
(∫
R 2 w3dy

)2 ; (23)

and it is unstable otherwise.

I Instability thresholds occur when D = O

(
ln ε−1

ε4K3

)
À 1.



Concluding Summary

I In both models, the instability thresholds occur close to the
”shadow limit”, i.e. the cross-diffusion term is very large.

I Steady-state computation is essentially a shadow system, but
stability computations require more.

I Cross-diffusion (directed movement) can create stable
multi-spike solutions even in the absence of spatial
heterogenuity.

I Chemotaxis system (crime models) can also produce multiple
stable patterns

I Stability analysis leads to novel, interesting and new
eigenvalue problems


