Stable traveling spots in a planar three-component FitzHugh-Nagumo system

Peter van Heijster

http://math.bu.edu/people/heijster/
BOSTON UNIVERSITY

## Collaborator:

Björn Sandstede (Brown University)

## Outline

- Introduction
- Stationary spots
- Bifurcation to traveling spots:
- Asymptotic analysis
- Direct solver
- AUTO
- Work in progress


## Model

Generalized FitzHugh-Nagumo Equation:

$$
\begin{array}{rlr}
U_{t} & =\varepsilon^{2} \Delta U+U-U^{3}-\varepsilon(\alpha V+\beta W+\gamma) \\
\tau V_{t} & = & \Delta V+U-V \\
\hline \theta W_{t} & =D^{2} \Delta W+U-W
\end{array}
$$

where $0<\varepsilon \ll I ; D>I ; 0<\tau, \theta ; \alpha, \beta, \gamma$ are constants.

- U: fast component
$\Rightarrow$ bistable: $\mathrm{U}= \pm \mathrm{I}$
$\Rightarrow$ nonlinear: $\mathrm{U}^{3}$
$\Rightarrow$ coupling to the slow components is small
- V,W: slow components
- linear
- only coupled to the fast component


## Gas-discharge experiments

Set up [Purwins et al.]:


U: current density
V : voltage drop
W: surface charge

Observed patterns:
I


II


IV

black: $U=-$ I, white: $U=+$ I

## Inspiration

Courtesy of Y. Nishiura
$U=+1$
$U=-1$

## U-component

$U=+1$

U=-I

## Stationary spot

## U-component

>> FF: IOx

Theorem [ vH , Sandstede 'II]:
Assume that $\mathrm{R}_{\mathrm{l}}>0$ solves:

$$
\alpha v_{0}+\beta w_{0}+\gamma=-\frac{\sqrt{2}}{3 R_{1}}
$$

where $\mathrm{v}_{0}$, $\mathrm{w}_{0}$ are given by

$$
v_{0}=1-2 R_{1} K_{1}\left(R_{1}\right) I_{0}\left(R_{1}\right), \quad w_{0}=1-2 \frac{R_{1}}{D} K_{1}\left(\frac{R_{1}}{D}\right) I_{0}\left(\frac{R_{1}}{D}\right)
$$

Then there exists a stationary radially symmetric spot with radius $\mathrm{R}_{\mathrm{l}}$.

This spot is stable "if and only if" $\lambda(\emptyset)<0$ for all $\ell=0,2,3, \ldots$, where

$$
\begin{aligned}
\lambda(\ell)= & 3 \sqrt{2} \varepsilon^{2} \alpha R_{1}\left(K_{1}\left(R_{1}\right) I_{1}\left(R_{1}\right)-K_{\ell}\left(R_{1}\right) I_{\ell}\left(R_{1}\right)\right)+ \\
& 3 \sqrt{2} \varepsilon^{2} \beta \frac{R_{1}}{D^{2}}\left(K_{1}\left(\frac{R_{1}}{D}\right) I_{1}\left(\frac{R_{1}}{D}\right)-K_{\ell}\left(\frac{R_{1}}{D}\right) I_{\ell}\left(\frac{R_{1}}{D}\right)\right)+\frac{\varepsilon^{2}}{R_{1}^{2}}\left(1-\ell^{2}\right)
\end{aligned}
$$

Theorem [ vH , Sandstede 'II]:
Assume that $\mathrm{R}_{\mathrm{l}}>0$ solves:

$$
\alpha v_{0}+\beta w_{0}+\gamma=-\frac{\sqrt{2}}{3 R_{1}}
$$

where $\mathrm{v}_{0}, \mathrm{w}_{0}$ are given by

$$
v_{0}=1-2 R_{1} K_{1}\left(R_{1}\right) I_{0}\left(R_{1}\right), \quad w_{0}=1-2 \frac{R_{1}}{D} K_{1}\left(\frac{R_{1}}{D}\right) I_{0}\left(\frac{R_{1}}{D}\right)
$$

Then there exists a stationary radially symmetric spot with radius $\mathrm{R}_{\mathrm{l}}$.
This spot is stable "if and only if" $\lambda(\ell)<0$ for all $\ell=0,2,3, \ldots$, where

$$
\begin{aligned}
\lambda(\ell)= & 3 \sqrt{2} \varepsilon^{2} \alpha R_{1}\left(K_{1}\left(R_{1}\right) I_{1}\left(R_{1}\right)-K_{\ell}\left(R_{1}\right) I_{\ell}\left(R_{1}\right)\right)+ \\
& 3 \sqrt{2} \varepsilon^{2} \beta \frac{R_{1}}{D^{2}}\left(K_{1}\left(\frac{R_{1}}{D}\right) I_{1}\left(\frac{R_{1}}{D}\right)-K_{\ell}\left(\frac{R_{1}}{D}\right) I_{\ell}\left(\frac{R_{1}}{D}\right)\right)+\frac{\varepsilon^{2}}{R_{1}^{2}}\left(1-\ell^{2}\right)
\end{aligned}
$$

- Spot corresponding to the smallest zero of existence condition is unstable with respect to $\ell=0$ (radial perturbations)
- $\alpha, \beta \leq 0$ : Spot is unstable with respect to $\ell=0$ (radial perturbations)

Cartoon:
stable stationary spot

physical space Fourier space


Cartoon:
stable stationary spot

physical space Fourier space


## Drift: asymptotics

Goal: Determine for arbitrary small $\varepsilon$ the points $(\mathrm{T}, \theta)$ at which the stationary spot bifurcates to a traveling spot

Method:Weakly nonlinear analysis

Cartoon:


- Speed is small (second small parameter):

$$
c=\delta, \quad 0<\varepsilon \ll \delta \ll 1
$$

- Traveling spot retains to leading order the shape of the stationary spot:

$$
\left(U^{T}, V^{T}, W^{T}\right)=\left(U^{s}, V^{s}, W^{s}\right)+\delta(u, v, w)
$$

- Determine eqns for ( $u, v, w$ ) and use singular perturbation techniques to derive the drift line

Result:The drift line is given by

$$
\frac{\sqrt{2}}{3 R_{1}^{2}}=\alpha \hat{\tau}\left(I_{1}\left(R_{1}\right) K_{2}\left(R_{1}\right)-I_{0}\left(R_{1}\right) K_{1}\left(R_{1}\right)\right)+\frac{\beta \hat{\theta}}{D^{3}}\left(I_{1}\left(\frac{R_{1}}{D}\right) K_{2}\left(\frac{R_{1}}{D}\right)-I_{0}\left(\frac{R_{1}}{D}\right) K_{1}\left(\frac{R_{1}}{D}\right)\right)
$$

## Drift: asymptotics

Goal: Determine for arbitrary small $\varepsilon$ the points $(\mathrm{T}, \theta)$ at which the stationary spot bifurcates to a traveling spot

Method:Weakly nonlinear analysis

Cartoon:


- Speed is small (second small parameter):

$$
c=\delta, \quad 0<\varepsilon \ll \delta \ll 1
$$

- Traveling spot retains to leading order the shape of the stationary spot:

$$
\left(U^{T}, V^{T}, W^{T}\right)=\left(U^{s}, V^{s}, W^{s}\right)+\delta(u, v, w)
$$

- Determine eqns for ( $u, v, w$ ) and use singular perturbation techniques to derive the drift line

Result:The drift line is given by

$$
(\hat{\tau}, \hat{\theta})=\varepsilon^{2}(\tau, \theta)
$$

$$
\frac{\sqrt{2}}{3 R_{1}^{2}}=\alpha \hat{\tau}\left(I_{1}\left(R_{1}\right) K_{2}\left(R_{1}\right)-I_{0}\left(R_{1}\right) K_{1}\left(R_{1}\right)\right)+\frac{\beta \hat{\theta}}{D^{3}}\left(I_{1}\left(\frac{R_{1}}{D}\right) K_{2}\left(\frac{R_{1}}{D}\right)-I_{0}\left(\frac{R_{1}}{D}\right) K_{1}\left(\frac{R_{1}}{D}\right)\right)
$$

## Other bifurcations


$\ell=2$ :


-     -         - 

The other bifurcations ( $\ell=0,2,3, .$. ), if present, will be Hopf bifurcations. These Hopf lines are implicitly given by:

$$
\begin{aligned}
0= & \frac{1}{R_{1}^{2}}\left(1-\ell^{2}\right)+3 \sqrt{2} \alpha R_{1}\left(I_{1}\left(R_{1}\right) K_{1}\left(R_{1}\right)-\Re\left[I_{\ell}\left(\sqrt{1+i \hat{\tau} \mid \hat{\lambda}(\ell)} \mid R_{1}\right) K_{\ell}\left(\sqrt{1+i \hat{\tau}|\hat{\lambda}(\ell)|} R_{1}\right)\right]\right) \\
& +3 \sqrt{2} \frac{\beta}{D^{2}} R_{1}\left(I_{1}\left(\frac{R_{1}}{D}\right) K_{1}\left(\frac{R_{1}}{D}\right)-\Re\left[I_{\ell}\left(\sqrt{1+i \hat{\theta} \mid \hat{\lambda}(\ell)} \left\lvert\, \frac{R_{1}}{D}\right.\right) K_{\ell}\left(\sqrt{1+i \hat{\theta} \mid \hat{\lambda}(\ell)} \frac{R_{1}}{D}\right)\right]\right) \\
|\hat{\lambda}(\ell)|= & -3 \sqrt{2} \alpha R_{1}\left(\Im\left[I_{\ell}\left(\sqrt{1+i \hat{\tau}|\hat{\lambda}(\ell)|} R_{1}\right) K_{\ell}\left(\sqrt{1+i \hat{\tau}|\hat{\lambda}(\ell)| R_{1}}\right)\right]\right) \\
& -3 \sqrt{2} \frac{\beta}{D^{2}} R_{1}\left(\Im\left[I_{\ell}\left(\sqrt{1+i \hat{\theta} \mid \hat{\lambda}(\ell)} \frac{R_{1}}{D}\right) K_{\ell}\left(\sqrt{1+i \hat{\theta} \mid \hat{\lambda}(\ell)} \frac{R_{1}}{D}\right)\right]\right) .
\end{aligned}
$$

Choose the following set of parameters (for the remainder of presentation):

$$
\alpha=0.5, \beta=2, \gamma=I, D=2
$$

Then, there exists a stationary stable spot solution with (leading order) width

$$
R_{I}=1.86
$$

The bifurcation diagram of this stationary spot looks like:

$U_{t}=\varepsilon^{2} \Delta U+U-U^{3}-\varepsilon(\alpha V+\beta W+\gamma)$
$\begin{array}{r}\tau V_{t}=\begin{array}{r}\Delta \\ \theta W_{t}\end{array}=D^{2} \Delta W+U-V \\ \hline\end{array} \quad$ Specific parameters
Choose the following set of parameters (for the remainder of presentation):

$$
\alpha=0.5, \beta=2, \gamma=I, D=2
$$

Then, there exists a stationary stable spot solution with (leading order) width

$$
R_{I}=1.86
$$

The bifurcation diagram of this stationary spot looks like:


> Note: We found bifurcations of stable stationary spots to traveling spots only when both $\alpha$ and $\beta$ are positive. In all the other cases the $\ell=0$-line is
> always below the $\ell=I$-line.
$U_{t}=\varepsilon^{2} \Delta U+U-U^{3}-\varepsilon(\alpha V+\beta W+\gamma)$
$\begin{array}{r}\tau V_{t}=\begin{array}{r}\Delta \\ \theta W_{t}\end{array}=D^{2} \Delta W+U-V \\ \hline\end{array} \quad$ Specific parameters
Choose the following set of parameters (for the remainder of presentation):

$$
\alpha=0.5, \beta=2, \gamma=I, D=2
$$

Then, there exists a stationary stable spot solution with (leading order) width

$$
R_{I}=1.86
$$

The bifurcation diagram of this stationary spot looks like:


> Note: We found bifurcations of stable stationary spots to traveling spots only when both $\alpha$ and $\beta$ are positive. In all the other cases the $\ell=0$-line is
> always below the $\ell=I$-line.

## Direct PDE solver

- Code written by K.-I. Ueda:
$\Rightarrow 5$-point discretization of the Laplacian on a 20 by 20 square with 200 equidistance mesh points
$\Rightarrow$ Semi-implicit time scheme: conjugate gradients with incomplete Cholesky
- Parameter values:

$$
\alpha=0.5, \beta=2, \gamma=1, D=2, \varepsilon=0.1, \hat{\tau}=6, \hat{\theta}=0.01
$$

U-component
V -component
blue: - I yellow: + I

## Why AUTO?

- Direct simulations with the PDE solver are slow and costly since the speed of a traveling spot is slow, especially for small $\varepsilon$.
- For example, simulation shown was done far away from the drift bifurcation line, with relatively large $\varepsilon$ :


Want: better numerical evidence for the drift bifurcation line and more flexibility.
Tool: AUTO

## AUTO

Rescale and co-moving frame:

$$
(\hat{\tau}, \hat{\theta})=\varepsilon^{2}(\tau, \theta), \quad\left(x_{1}, x_{2}, t\right) \rightarrow\left(x_{1}-\varepsilon^{2} c t, x_{2}, t\right)
$$

Stationary solution in moving frame:

$$
\begin{array}{rlr}
-\varepsilon^{2} c U_{x_{1}} & = & \varepsilon^{2} \Delta U+U-U^{3}-\varepsilon(\alpha V+\beta W+\gamma) \\
-c \hat{\tau} V_{x_{1}} & = & \Delta V+U-V \\
-c \hat{\theta} W_{x_{1}} & =D^{2} \Delta W+U-W
\end{array}
$$

Polar coordinates: $\quad x_{1}=r \cos \phi, x_{2}=r \sin \phi$

$$
\left(\begin{array}{rrrl}
-\varepsilon^{2} c\left(\cos \phi U_{r}-\frac{\sin \phi}{r} U_{\phi}\right) & = & \varepsilon^{2}\left(U_{r r}+\frac{1}{r} U_{r}+\frac{1}{r^{2}} U_{\phi \phi}\right) & +U-U^{3}-\varepsilon(\alpha V+\beta W+\gamma) \\
-c \hat{\tau}\left(\cos \phi V_{r}-\frac{\sin \phi}{r} V_{\phi}\right) & = & \left(V_{r r}+\frac{1}{r} V_{r}+\frac{1}{r^{2}} V_{\phi \phi}\right)+U-V \\
-c \hat{\theta}\left(\cos \phi W_{r}-\frac{\sin \phi}{r} W_{\phi}\right) & = & D^{2}\left(W_{r r}+\frac{1}{r} W_{r}+\frac{1}{r^{2}} W_{\phi \phi}\right)+U-W
\end{array}\right)
$$

## AUTO (cont.)

Write as a first order system (in the radial variable)

$$
\begin{aligned}
u_{r} & =\frac{p}{\varepsilon} \\
p_{r} & =-\frac{p}{r}-\frac{\varepsilon}{r^{2}} u_{\phi \phi}-\frac{u}{\varepsilon}-\frac{u^{3}}{\varepsilon}+(\alpha v+\beta w+\gamma)-c p \cos \phi+\varepsilon c \frac{\sin \phi}{r} u_{\phi} \\
v_{r} & =q \\
q_{r} & =-\frac{q}{r}-\frac{1}{r^{2}} v_{\phi \phi}-u+v-\hat{\tau} c q \cos \phi+\hat{\tau} c \frac{\sin \phi}{r} v_{\phi} \\
w_{r} & =z \\
z_{r} & =-\frac{z}{r}-\frac{1}{r^{2}} w_{\phi \phi}-\frac{u}{D^{2}}+\frac{w}{D^{2}}-\frac{\hat{\theta} c z}{D^{2}} \cos \phi+\frac{\hat{\theta} c}{D^{2}} \frac{\sin \phi}{r} w_{\phi}
\end{aligned}
$$

Fourier in $\phi$ :

$$
\bar{U}(r, \phi)=\sum_{\ell=-\infty}^{\ell=\infty} \bar{U}^{\ell}(r) e^{i \ell \phi}
$$

recall:

$$
\cos \phi=\frac{1}{2}\left(e^{i \phi}+e^{-i \phi}\right), \sin \phi=\frac{1}{2 i}\left(e^{i \phi}-e^{-i \phi}\right), \frac{\partial \bar{U}}{\partial \phi}=i \sum_{\ell=-\infty}^{\infty} \ell u^{\ell} e^{i \ell \phi} \frac{\partial^{2} \bar{U}}{\partial \phi^{2}}=-\sum_{\ell=-\infty}^{\infty} \ell^{2} u^{\ell} e^{i \ell \phi}
$$

## AUTO (cont.)

So, we get:

$$
\begin{aligned}
u_{r}^{\ell}= & \frac{p^{\ell}}{\varepsilon} \\
p_{r}^{\ell}= & -\frac{p^{\ell}}{r}+\frac{\varepsilon \ell^{2}}{r^{2}} u^{\ell}-\frac{u^{\ell}}{\varepsilon}-\frac{n o n l}{\varepsilon}+\left(\alpha v^{\ell}+\beta w^{\ell}+\gamma\right) \\
& -\frac{c}{2}\left(p^{\ell-1}+p^{\ell+1}\right)+\frac{\varepsilon c}{2 r}\left((\ell-1) u^{\ell-1}-(\ell+1) u^{\ell+1}\right) \\
v_{r}^{\ell}= & q^{\ell} \\
q_{r}^{\ell}= & -\frac{q^{\ell}}{r}+\frac{\ell^{2}}{r^{2}} v^{\ell}-u^{\ell}+v^{\ell}-\frac{\hat{\tau} c}{2}\left(q^{\ell-1}+q^{\ell+1}\right) \\
& +\frac{\hat{\tau} c}{2 r}\left((\ell-1) v^{\ell-1}-(\ell+1) v^{\ell+1}\right) \\
w_{r}^{\ell}= & z^{\ell} \\
z_{r}^{\ell}= & -\frac{z^{\ell}}{r}+\frac{\ell^{2}}{r^{2}} w^{\ell}-\frac{u^{\ell}}{D^{2}}+\frac{w^{\ell}}{D^{2}}-\frac{\hat{\theta} c}{2 D^{2}}\left(z^{\ell-1}+z^{\ell+1}\right) \\
& +\frac{\hat{\theta} c}{2 D^{2} r}\left((\ell-1) w^{\ell-1}-(\ell+1) w^{\ell+1}\right)
\end{aligned}
$$

- Solutions need to be even: restrict ourself to $\ell \geq 0$
- $\gamma$ only appears in the $\ell=0$-term!
- nonl-term contains infinitely many coupled terms

AUTO:We have to truncate to a finite number of Fourier modes

## AUTO: Difficulties

Implement model in AUTO for a finite number of Fourier modes and on a finite domain $[0, L]$ with appropriate boundary conditions.

## 2 Major difficulties:

- AUTO does not switch onto the traveling branch for increasing $\hat{\boldsymbol{T}}$ $\Rightarrow$ Add a small symmetry breaking term:

$$
p_{r}^{1}=p_{r}^{1}-\delta \frac{r^{2}}{L^{2}}
$$

$\Rightarrow$ Continue in $\hat{\tau}$ beyond bifurcation point (speed becomes non-zero)
$\Rightarrow$ Continue $\delta$ down to 0 (check that speed stays nonzero)


## Second major difficulty:

- AUTO detects many branch points, so it is not possible to detect the correct drift point and continue the drift line in the ( $\hat{\tau}, \hat{\theta}$ )-plane.
$\Rightarrow$ Detect drift bifurcation as points where the linearization $L_{I}$ has a generalized eigenfunction $\psi$ :

$$
L_{1} \psi=M \bar{U}_{r}^{s}
$$

$\Rightarrow M$ is a diagonal matrix with $I, I / \hat{\mathrm{T}}, \mathrm{D}^{2} / \hat{\theta}$ on its diagonal and $\bar{U}_{r}^{s}$ is the radial derivative of stationary spot and thus lies in the null space of $L_{1}$
$\Rightarrow$ Add small term $\delta \bar{U}_{r}^{s}$ to the eq (makes the system onto)

$$
L_{1} \psi+\delta \bar{U}_{r}^{s}=M \bar{U}_{r}^{s}
$$

$\Rightarrow$ Add integral condition to ensure that the kernel is 0 (solvability condition):

$$
\left\langle\psi, \bar{U}_{r}^{s}\right\rangle=0
$$

$\Rightarrow$ Unique solution $(\Psi, \delta)$
$\Rightarrow$ We are at a drift bifurcation iff $\delta=0$, so we continue $\delta$ down to 0
$\Rightarrow$ Remove the $\delta$-term, and continue in $\hat{\uparrow}$ or $\hat{\theta}$

## AUTO: Results

Results:

- standard parameter values: $\alpha=0.5, \beta=2, \gamma=I, D=2, \hat{\theta}=0.5$
- 15 fourier modes, domain size $=12$



## Results (cont.)

Results:

- standard parameter values:

$$
\alpha=0.5, \beta=2, \gamma=I, D=2
$$

- 15 fourier modes, domain size $=12$


(\# Fourier modes) ${ }^{2}$


## Compare: profile

- Parameter values:

$$
\alpha=0.5, \beta=2, \gamma=I, D=2, \varepsilon=0 . I, \hat{\uparrow}=6, \hat{\theta}=0.0 I
$$

AUTO


PDE solver at $\mathrm{t}=8500$


## Compare: speed

- PDE solver:

Snapshots of U-component at $\mathrm{t}=7500$ and $\mathrm{t}=9500$


- AUTO: predicted speed $=0.38$


## Hopf

- Different set of parameter values!


> U-component
> blue: - I yellow: +
$\hat{\mathbf{T}}=0.3 \mathrm{I}$ : below the Hopf line
$\hat{\mathbf{t}}=0.32$ : above the Hopf line

## Work in progress I

- Super vs subcritical? [Ei, Mimura, Nagayama 2006]

- Compare AUTO with PDE solver



## Work in progress I

- Super vs subcritical? [Ei, Mimura, Nagayama 2006]

- Compare AUTO with PDE solver



## Work in progress II

- Interaction of traveling spots (cartoon)


Questions??

