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Introduction

• Animals often aggregate in groups

• Biologically, it can provide protection from predators; conserve heat, act without an
apparent leader, enable collective behaviour

• Examples include bacteria, ants, fish, birds, bees....
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Aggregation model

We consider a simple model of particle interaction,

dxj
dt

=
1

N

∑

k=1...N
k 6=j

F (|xj − xk|)
xj − xk
|xj − xk|

, j = 1 . . . N (1)

• Models insect aggregation [Edelstein-Keshet et al, 1998] such as locust swarms
[Topaz et al, 2008]; robotic motion [Gazi, Passino, 2004].

• Interaction force F (r) is of attractive-repelling type: the insects repel each other if
they are too close, but attract each-other at a distance.

• Note that acceleration effects are ignored as a first-order approximation.

• Mathematically F (r) is positive for small r, but negative for large r.
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• Commonly, a Morse interaction force is used:

F (r) = exp(−r)−G exp(−r/L); G < 1, L > 1 (2)

0

0.1
0.2
0.3
0.4

F(r)

1 2 3 4 5 6r

• Under certain conditions on repulsion/attraction, the steady state typically consists
of a bounded “particle cloud” whose diameter and is independent of N in the limit
N → ∞. Then the continuum limit becomes

ρt +∇ · (ρv) = 0; v(x) =

∫

Rn

F (|x− y|) x− y

|x− y|ρ(y)dy.

• Questions

1. Describe the equilibrium cloud shape in the limit t → ∞

2. What about dynamics?
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Morse force, h-stable vs. catastrophic
• If GLn+1 > 1, the system is catastrophic: doubling N doubles the density but cloud

volume is unchanged:

F (r) = e−r − 0.5e−r/2

• If GLn+1 < 1, the system is h-stable: doubling N doubles the cloud volume: but
density is unchanged:

F (r) = e−r − 0.5e−r/1.2
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Tanh-type force: F (r) = tanh ((1− r) a) + b
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Part I: Ring-type steady states

• Seek steady state of the form xj = r (cos (2πj/N) , sin (2πj/N)) , j = 1 . . . N.

• In the limit N → ∞ the radius of the ring must be the root of

I(r) :=

∫ π
2

0

F (2r sin θ) sin θdθ = 0. (3)

• For Morse force F (r) = exp(−r)−G exp(−r/L), such root exists whenever GL2 >
1 [coincides with 1D catastrophic regime]

• For general repulsive-attractive force F (r), a ring steady state exists if F (r) ≤ C < 0
for all large r.

• Even if the ring steady-state exists, the time-dependent problem can be ill-posed!
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Continuum limit for curve solutions
• If particles concentrate on a curve, in the limit N → ∞ we obtain

ρt = ρ
< zα, zαt >

|zα|2
; zt = K ∗ ρ (4)

where z (α; t) is a parametrization of the solution curve; ρ (α; t) is its density and

K ∗ ρ =

∫

F (|z(α′)− z(α)|) z(α′)− z(α)

|z(α′)− z(α)|ρ(α
′, t)dS(α′). (5)

• Depending on F (r) and initial conditions, the curve evolution may be ill-defined!

- For example a circle can degenerate into an annulus, gaining a dimension.

• We used a Lagrange particle-based numerical method to resolve (4).

- Agrees with direct simulation of the ODE system (1):
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Local stability of a ring
• Linearize: xk = r0 exp (2πik/N) (1 + exp(tλ)φk) where φk � 1.

• Ring is stable of Re (λ) ≤ 0 for all pair (λ, φ). There are three zero eigenvalues
corresponding to rotation and translation invariance; all other eigenvalues come in
pairs due to rotational invariance.

• λ is the eigenvalue of

M(m) :=

[

I1(m) I2(m)
I2(m) I1(−m)

]

; m = 2, 3, . . . (6)

I1(m) =
2

π

∫ π
2

0

[

F (2r sin θ)

2r sin θ
+ F ′(2r sin θ)

]

sin2 ((m + 1)θ) dθ; (7a)

I2(m) =
2

π

∫ π
2

0

[

F (2r sin θ)

2r sin θ
− F ′(2r sin θ)

]

[

sin2 (mθ)− sin2(θ)
]

dθ. (7b)

• Eigenfunction is a pure fourier mode when projected to the curvilinear coordinates of
the circle.

m=3, N=50, lambda=0.05 m=25, N=50, lambda=–1.17
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Quadratic force F (r) = r − r2

• Computing explicitly,

tr M (m) = −
(

4m4 −m2 − 9
)

(4m2 − 1)(4m2 − 9)
< 0, m = 2, 3, . . .

detM(m) =
3m2(2m2 + 1)

(4m2 − 9)(4m2 − 1)2
> 0, m = 2, 3, . . .

• Conclusion: ring pattern corresponding to F (r) = r − r2 is locally stable

• For large m, the two eigenvalues are λ ∼ −1
4 and λ ∼ − 3

8m2 → 0 as m → ∞. The
presence of arbitrary small eigenvalues implies the existence of very slow dynamics
near the ring equilibrium.
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General power force

F (r) = rp − rq, 0 < p < q

• The mode m = ∞ is stable if and only if pq > 1 and p < 1.

• Stability of other modes can be expressed in terms of Gamma functions.

• The dominant unstable mode corresponds to m = 3; the boundary is given by

0 = 723− 594(p+ q)− 27(p2 + q2)− 431pq + 106
(

pq2 + p2q
)

+ 19
(

p3q + pq3
)

+ 10
(

p3q2 + p2q3
)

+ 6
(

p3 + q3
)

+ p3q3;

• Boundaries for m = 4, 5, . . . are similarly expressed in terms of higher order
polynomials in p, q.
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(In)stability of m � 1 modes

• If λ(m) > 0 for all sufficiently large m, then we call the ring solution ill-posed.
Otherwise we call it well-posed .

• For ill-posed problems, the ring can degenerate into either an annulus (eg. F (x) =
0.5 + x− x2) or discrete set of points (eg F (x) = x1.3 − x2)

• , if F (r) is C4 on [0, 2r], then the necessary and sufficient conditions for well-
posedness of a ring are:

F (0) = 0, F ′′(0) < 0 and (8)
∫ π/2

0

(

F (2r sin θ)

2r sin θ
− F ′(2r sin θ)

)

dθ < 0. (9)

• Ring solution for the morse force F (r) = exp(−r) − F exp(−r/L) is always ill-
posed.
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Bifurcation to annulus

• Consider
F (r) = r − r2 + δ, 0 ≤ δ � 1.

A ring is stable of radius R ∼ 3π
16

+ 2
π
δ + O(δ2) if δ > 0 but high modes become

unstable for δ > 0

• The most unstable mode in the discrete system is m = N/2 and can be stable even
if the continuous model is ill-posed!

• Proposition: Let

Nc ∼
π

4
e4−γ exp

(

3π2

64δ

)

.

The ring is stable if N < Nc.

• For N > Nc but N ∼ Nc, solution consists of two radii R± ε where

R =
3π

32

(

1 +

√

1 +
128

3π2
δ

)

; ε ∼ 4Re−2 exp

(

−4R2 +Rπ/2

δ

)
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• Example: δ = 0.35 =⇒ Nc ∼ 90, 2ε ∼ 0.033.Numerically, we obtain 2ε ≈ 0.036.
Good agreement!

• Increasing N further, more rings appear until we get a thin annulus of width O(ε).
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Weakly nonlinear analysis
• Near the instability threshold, higher-order analysis shows a supercritical pitchfork

bifurcation, whereby a ring solution bifurcates into an m−symmetry breaking
solution

• This shows existence of nonlocal solutions.

• Example: F (r) = r1.5 − rq; bifurcation m = 3 occurs at q = qc ≈ 4.9696; nonlinear
analysis predicts

max
i

|xi| −min
i

|xi| =
√

max (0, τ (q − qc)); τ ≈ 0.109.
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3D sphere instabilities
• Radius satisfies:

∫ π

0
F (2r0 sin θ) sin θ sin 2θ = 0

• Instability can be done using spherical harmonics
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Stability of a spherical shell
Define

g(s) :=
F (

√
2s)√
2s

;

The spherical shell has a radius given implicitly by

0 =

∫ 1

−1

g(R2(1− s))(1− s)ds.

Its stability is given by a sequence of 2x2 eigenvalue problems

λ

(

c1
c2

)

=

(

α + λl(g1) l(l + 1)λl(g2)

λl(g2)
l(l+1)
R2 λl(g3)

)(

c1
c2

)

, l = 2, 3, 4, . . .

where

λl(f) := 2π

∫ 1

−1

f(s)Pl(s) ds;

with Pl(s) the Legendre polynomial and

α := 8πg(2R2) + λ0(g(R
2(1− s2))

g1(s) := R2g′(R2(1− s))(1− s)2 − g(R2(1− s))s

g2(s) := g(R2(1− s))(1− s); g3(s) :=

∫ R2(1−s)

0

g(z)dz.
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Well-posedness in 3D

Suppose that g(s) can be written in terms of the generalized power series as

g(s) =

∞
∑

i=1

cis
pi, p1 < p2 < · · · with c1 > 0.

Then the ring is well-posed [i.e. λ < 0 for all sufficiently large l] if

(i) α < 0 and (ii) p1 ∈ (−1, 0)
⋃

(1, 2)
⋃

(3, 4) . . .

The ring is ill-posed [ i.e. λ > 0 for all sufficiently large l] if either α > 0 or p1 /∈
[−1, 0]

⋃

[1, 2]
⋃

[3, 4] . . .
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Key identity to prove well-posedness:

∫ 1

−1

(1− s)pPl(s) ds =
2p+1

p + 1

Γ(l − p)Γ(p+ 2)

Γ(l + p + 2)Γ(−p)

∼ −1

π
sin (πp) Γ2(p + 1)2p+1l−2p−2 as l → ∞.

Proof:

• Use hypergeometric representation: Pl(s) = 2F1

(

l + 1,−l
1

; 1−s
2

)

.

• Use generalized Euler transform :

A+1FB+1

(

a1, . . . , aA, c
b1, . . . , bB, d

; z

)

=
Γ(d)

Γ(c)Γ(d− c)

∫ 1

0

tc−1(1−t)d−c−1
AFB

(

a1, . . . , aA, c
b1, . . . , bB, d

to get
∫ 1

−1
(1− s)pPl(s) ds =

2π2p+1

p+1 3F2

(

p + 1, l + 1,−l
p + 2, 1

; 1

)

.

• Apply the Saalschütz Theorem to simplify

3F2

(

p + 1, l + 1,−l
p + 2, 1

; 1

)

=
Γ(l − p)Γ(p+ 2)

Γ(l + p + 2)Γ(−p)
.
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Generalized Lennard-Jones interaction

g(s) = s−p − s−q; 0 < p, q < 1; p > q

• Well posed if q < 2p−1
2p−2

; ill-posed if q > 2p−1
2p−2

.

Example: steady state with N = 1000 particles. (a) (p, q) = (1/3, 1/6). Particles
concentrate uniformly on a surface of the sphere, with no particles in the interior. (b)
(p, q) = (1/2, 1/4). Particles fill the interior of a ball. The particles are color-coded
according to their distance from the center of mass.
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Custom-designed kernels
• In 3D, we can design force F (r) which is stable for all modes except specified mode.

• EXAMPLE: Suppose we want only mode m = 5 to be unstable. Using our algorithm,
we get

F (r) =

{

3

(

1− r2

2

)2

+ 4

(

1− r2

2

)3

−
(

1− r2

2

)4
}

r + ε; ε = 0.1.
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Part II: Constant-density swarms

• Biological swarms have sharp boundaries, relatively constant internal population.

• Question: What interaction force leads to such swarms?

• More generally, can we deduce an interaction force from the swarm density?
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Bounded states of constant density
Claim. Suppose that

F (r) =
1

rn−1
− r, where n ≡ dimension

Then the aggregation model

ρt +∇ · (ρv) = 0; v(x) =

∫

Rn

F (|x− y|) x− y

|x− y|ρ(y)dy.

admits a steady state of the form

ρ(x) =

{

1, |x| < R
0, |x| > R

; v(x) =

{

0, |x| < 1
−ax, |x| > 1

.

where R = 1 for n = 1, 2 and a = 2 in one dimension and a = 2π in two dimensions.
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Proof for two dimensions

Define

G(x) := ln |x| − |x|2
2

; M =

∫

Rn

ρ(y)dy

Then we have:
∇G = F (|x|) x|x| and ∆G(x) = 2πδ(x)− 2.

so that

v(x) =

∫

Rn

∇xG(x− y)ρ(y)dy.

Thus we get:

∇ · v =

∫

Rn

(2πδ(x− y)− 2)ρ(y)dy

= 2πρ(x)− 2M

=

{

0, |x| < R
−2M, |x| > R

The steady state satisfies ∇ · v = 0 inside some ball of radius R with ρ = 0 outside such
a ball but then ρ = M/π inside this ball and M =

∫

Rn ρ(y)dy = MR2 =⇒ R = 1.
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Dynamics in 1D with F (r) = 1− r

Assume WLOG that
∫ ∞

−∞
xρ(x) = 0; M :=

∫ ∞

−∞
ρ (x) dx

Then

v(x) =

∫ ∞

−∞
F (|x− y|) x− y

|x− y|ρ(y)dy

=

∫ ∞

−∞
(1− |x− y|) sign(x− y)ρ(y)

= 2

∫ x

−∞
ρ(y)dy −M(x + 1).

and continuity equations become

ρt + vρx = −vxρ

= (M − 2ρ) ρ

Define the characteristic curves X(t, x0) by

d

dt
X(t; x0) = v; X(0, x0) = x0
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Then along the characteristics, we have ρ = ρ(X, t);

d

dt
ρ = ρ(M − 2ρ)

Solving we get:

ρ(X(t, x0), t) =
M

2 + e−Mt(M/ρ0 − 2)
; ρ(X(t, x0), t) → M/2 as t → ∞
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Solving for characteristic curves

Let

w :=

∫ x

−∞
ρ(y)dy

then
v = 2w −M(x + 1); vx = 2ρ−M

and integrating ρt + (ρv)x = 0 we get:

wt + vwx = 0

Thus w is constant along the characteristics X of ρ, so that characteristics d
dt
X = v

become
d

dt
X = 2w0 −M(X + 1); X(0; x0) = x0
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Summary for F (r) = 1− r in 1D:

X =
2w0(x0)

M
− 1 + e−Mt

(

x0 + 1− 2w0(x0)

M

)

w0(x0) =

∫ x0

−∞
ρ0(z)dz; M =

∫ ∞

−∞
ρ0(z)dz

ρ(X, t) =
M

2 + e−tM (M/ρ0(x0)− 2)

Example: ρ0(x) = exp
(

−x2
)

/
√
π; M = 1 :

rho for t=0..5, dt=0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

–3 –2 –1 1 2 3
x

X vs. t

0

1

2

3

4

t

–3 –2 –1 1 2 3
x
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Global stability

In limit t → ∞ we get:

X =
2w0

M
− 1; w0 = 0 . . .M ; ρ(X,∞) =

M

2

We have shown that as t → ∞, the steady state is

ρ(x,∞) =

{

M/2, |x| < 1
0, |x| > 1

(10)

• This proves the global stability of ( 10)!

• Characteristics intersect at t = ∞; solution forms a shock at x = ±1 at t = ∞.

33



Dynamics in 2D, F (r) = 1
r − r

• Similar to 1D,
∇ · v = 2πρ(x)− 4πM ;

ρt + v · ∇ρ = −ρ∇ · v
= −ρ (ρ− 2M) 2π

• Along the characterisitics:

d

dt
X(t; x0) = v; X(0, x0) = x0

we still get
d

dt
ρ = 2πρ(2M − ρ);

ρ(X(t; x0), t) =
2M

1 +
(

2M
ρ(x0)

− 1
)

exp (−4πMt)
(11)

• Continuity equations yield:

ρ(X(t; x0), t) det∇x0X(t; x0) = ρ0(x0)
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• Using (11) we get

det∇x0X(t; x0) =
ρ0(x0)

2M
+

(

1− ρ0(x0)

2M

)

exp (−4πMt) .

• If ρ is radially symmetric , characteristics are also radially symmetric, i.e.

X(t; x0) = λ (|x0| , t) x0
then

det∇x0X(t; x0) = λ(t; r) (λ(t; r) + λr(t; r)r) , r = |x0|
so that

λ2 + λrλr =
ρ0(x0)

2M
+

(

1− ρ0(x0)

2M

)

exp (−4πMt)

λ2r2 =
1

M

∫ r

0

sρ0(s)ds + 2 exp (−4πMt)

∫ r

0

s

(

1− ρ (s)

2M

)

ds

So characteristics are fully solvable !!

• This proves global stability in the space of radial initial conditions ρ0(x) =
ρ0(|x|).

• More general global stability is still open.
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The force F (r) = 1
r − rq−1 in 2D

• If q = 2, we have explicit ode and solution for characteristics.

• For other q, no explicit solution is available but we have differential inequalities:

Define
ρmax := sup

x
ρ(x, t); R(t) := radius of support of ρ(x, t)

Then

dρmax

dt
≤ (aRq−2 − bρmax)ρmax

dR

dt
≤ c

√
ρmax − dRq−1;

where a, b, c, d are some [known] positive constants.

• It follows that if R(0) is sufficiently big, then R(t), ρmax(t) remain bounded for all t.
[using bounding box argument]

• Theorem: For q ≥ 2, there exists a bounded steady state [uniqueness??]
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Inverse problem: Custom-designer
kernels: 1D

Theorem. In one dimension, conisder a radially symmetric density of the form

ρ(x) =

{

b0 + b2x
2 + b4x

4 + . . . + b2nx
2n, |x| < R

0, |x| ≥ R
(12)

Define the following quantities,

m2q :=

∫ R

0

ρ(r)r2qdr. (13)

Then ρ(r) is the steady state corresponding to the kernel

F (r) = 1− a0r −
a2
3
r3 − a4

5
r5 − . . .− a2n

2n + 1
r2n+1 (14)

where the constants a0, a2, . . . , a2n, are computed from the constants b0, b2, . . . , b2n by
solving the following linear problem:

b2k =

n
∑

j=k

a2j

(

2j
2k

)

m2(j−k), k = 0 . . . n. (15)
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Example: custom kernels 1D

Example 1 : ρ = 1− x2, R = 1, then F (r) = 1− 9/5r + 1/2r3.

Example 2 : ρ = x2, R = 1, then F (r) = 1 + 9/5r − r3.

Example 3: ρ = 1/2 + x2 − x4, R = 1; then F (r) = 1 + 209425
336091

r − 4150
2527

r3 + 6
19
r5.

−1 0 1
0

0.2
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0.8

1
ρ(x)= 1−x2

−1 0 1
0

0.2

0.4

0.6

0.8

1
ρ(x)= x2

(b) −1 0 1
0

0.2

0.4

0.6

0.8

1
ρ(x)= 4/3 (0.5+x2−x4)

Ex.1 Ex.2 Ex.3
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Inverse problem: Custom-designer
kernels: 2D
Theorem. In two dimensions , conisder a radially symmetric density ρ(x) = ρ (|x|) of
the form

ρ(r) =

{

b0 + b2r
2 + b4r

4 + . . . + b2nr
2n, r < R

0, r ≥ R
(16)

Define the following quantities,

m2q :=

∫ R

0

ρ(r)r2qdr. (17)

Then ρ(r) is the steady state corresponding to the kernel

F (r) =
1

r
− a0

2
r − a2

4
r3 − . . .− a2n

2n + 2
r2n+1 (18)

where the constants a0, a2, . . . , a2n, are computed from the constants b0, b2, . . . , b2n by
solving the following linear problem:

b2k =

n
∑

j=k

a2j

(

j
k

)2

m2(j−k)+1; k = 0 . . . n. (19)

This system always has a unique solution for provided that m0 6= 0.
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Numerical simulations, 1D
• First, use standard ODE solver to integrate the corresponding discrete particle model,

dxj
dt

=
1

N

∑

k=1...N
k 6=j

F (|xj − xk|)
xj − xk
|xj − xk|

, j = 1 . . . N.

• How to compute ρ(x) from xi? [Topaz-Bernoff, 2010]

- Use xi to approximate the cumulitive distribution, w(x) =
∫ x

−∞ ρ(z)dz.

- Next take derivative to get ρ(x) = w′(x)

[Figure taken from Topaz+Bernoff, 2010 preprint]
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Numerical simulations, 2D

• Solve for xi using ODE particle model as before [2N variables]

• Use xi to compute Voronoi diagram ;

• Estimate ρ(xj) = 1/aj where aj is the area of the voronoi cell around xj.

• Use Delanay triangulation to generate smooth mesh.

• Example: Take

ρ(r) =

{

1 + r2, r < 1
0, r > 0

Then by Custom-designed kernel in 2D is:

F (r) =
1

r
− 8

27
r − r3

3
.

Running the particle method yeids...
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Numerical solutions for radial steady
states for F (r) = 1

r − rq−1

• Radial steady states of radius R satisfy ρ(r) = 2q

∫ R

0

(r′ρ(r′)I(r, r′)dr′

where c(q) is some constant and I(r, r′) =
∫ π

0
(r2 + r′2 − 2rr′ sin θ)q/2−1dθ.

• To find ρ and R, we adjust R until the operator ρ → c(q)
∫ R

0
(r′ρ(r′)K(r, r′)dr′ has

eigenvalue 1; then ρ is the corresponding eigenfunction.

0 0.2 0.4 0.6
0

5

10

15

20

r

ρ

 

 

q=2
q=10
q=20
q=30
q=40
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Discussions/open problems
• Constant density states with F (r) = r1−n− r. What is the biological mechanism

to minimizes overcrowding?

• Open question: global stability for F (r) = r1−n − r? [can show for n = 1 or for
radial initial conditions if n ≥ 2.]

• Connection to Thompson problem and ball-packing problems:

- Equilibrium is a hexagonal lattice with “defects”. Can we study these??

• Forces with sharp transition can produce exotic patterns; examples:

- Flower: F(x) = max(min(1.6,(1-x)*4),-0.1)

- Exotic fish: F(x) = max(min(1.6,(1-x)*6),-0.3)

- Fuzzball: F(x) = max(min(1.6,(1-x)*10),-0.05)

• This talk and related papers are downloadable from my website
http://www.mathstat.dal.ca/˜tkolokol/papers

Thank you!
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