Scaling laws for slanted snaking

Jonathan Dawes

Department of Mathematical Sciences University of Bath

BIRS, July 2011 – p. 1/4

Outline

- Physical examples
 - Dielectric gas discharge / nonlinear optics
 - Vertically shaken granular media / viscoelastic fluid
 - Magnetoconvection
- Toy model: Swift–Hohenberg + nonlinear diffusion eqn
 - Slanted snaking'
 - Reduction to a nonlocal Ginzburg–Landau equation
 - Scaling laws
- Construction of fully nonlinear solutions to try to understand scaling laws
 - 1. Patching
 - 2. via the 'Variational Approximation'
- 🍠 2D

Catherine Penington

J.H.P. Dawes, The emergence of a coherent structure for coherent structures: localized states in nonlinear systems. *Phil. Trans. Roy. Soc.* **368**, 3519–3534 (2010)

Slanted snaking - examples

Slanted snaking – examples

E. Ammelt. PhD Thesis, University of Münster (1995)

W.J. Firth, L. Columbo, A.J. Scroggie, *Proposed resolution of theory–experiment discrepancy in homoclinic snaking. Phys. Rev. Lett.* **99**, 104503 (2007)

Granular Faraday Experiment

Granular 'oscillons'

... are observed below periodic patterns.

P.B. Umbanhowar, F. Melo and H.L. Swinney, *Nature* **382**, 793 (1996) J.H.P. Dawes & S. Lilley, *SIAM J. Appl. Dyn. Syst.* **9**, 238–260 (2010)

Viscoelastic Faraday Experiment

Regime diagram:

Side views (over 2 driving periods)

Oscillons are again observed BELOW hysteresis region for patterns

O. Lioubashevski, H. Arbell and J. Fineberg, *Phys. Rev. Lett.* **76**, 3959–3962 (1996)

O. Lioubashevski, Y. Hamiel, A. Agnon, Z. Reches and J. Fineberg, *Phys. Rev. Lett.* 83, 3190–3193 (1999)

Thin layer Granular Faraday

Left: Experiment; Right: molecular dynamics simulation

A. Götzendorfer, J. Kreft, C.A. Kruelle and I. Rehberg, Sublimation of a vibrated granular monolayer: coexistence of gas and solid *Phys. Rev. Lett.* **95**, 135704 (2005)

Magnetoconvection

Numerical simulations: Rayleigh–Bénard convection with a vertical magnetic field

 $R = 10^5$, Q = 1600

 $\sigma = 0.1, \, \zeta = 0.2$

stress-free, T fixed (lower)

radiative b.c. (upper)

 $8 \times 8 \times 1$ stratified layer

density contrast approx 11.

blue = strong field

purple = weak field

A.M. Rucklidge, N.O. Weiss, D.P. Brownjohn, P.C. Matthews & M.R.E. Proctor, J. Fluid Mech. 419, 283–323 (2000)

Localised magnetoconvection

 $R=20\,000,\,Q=14\,000,\,\zeta=0.1,\,\sigma=1.0,\,L=6.0$

 Temperature (deviation) & velocity:
 $|\mathbf{B}|^2$:

 Image: transformation of the second second

Subcritical finite-amplitude magnetoconvection noted by several previous authors:

- N.O. Weiss Proc. Roy. Soc. Lond. (1966) flux expulsion
- **F.H.** Busse, *J. Fluid Mech.* **71** 193–206 (1975):

"...thus finite amplitude onset of steady convection becomes possible at Rayleigh numbers considerably below the values predicted by linear theory."

... and recent work by
 D. Lo Jacono, A. Bergeon and E. Knobloch. Preprint. (2011)

Localised magnetoconvection

- Strongly nonlinear localised states ('convectons') persist for strong fields.
- $\frac{dT}{dz}|_{top}$ for increasing Q at fixed R:

S.M. Blanchflower, *Phys. Lett.* A **261**, 74–81 (1999); PhD thesis, University of Cambridge (1999)

J.H.P. Dawes, Localised convection cells in the presence of a vertical magnetic field. J. Fluid Mech. 570, 385-406 (2007)

Magnetoconvection

Boussinesq equations for 2D thermal convection, vertical magnetic field:

$$\partial_t \omega + J[\psi, \omega] = -\sigma R \partial_x \theta - \sigma \zeta Q(J[A, \nabla^2 A] + \partial_z \nabla^2 A) + \sigma \nabla^2 \omega$$

$$\partial_t \theta + J[\psi, \theta] = \nabla^2 \theta + \partial_x \psi$$

$$\partial_t A + J[\psi, A] = \partial_z \psi + \zeta \nabla^2 A$$

Jacobian:
$$J[f,g] \equiv \partial_x f \partial_z g - \partial_z f \partial_x g$$

$$\theta(x, z, t)$$
 – perturbation to the conduction profile $T = 1 - z$

 $\oint \psi(x, z, t) - \text{streamfunction.}$

$${old 9} ~~ {f u} =
abla imes (\psi(x,z,t) {f \hat y})$$
, so $\omega = -
abla^2 \psi$

 $\textbf{Magnetic field } \mathbf{B} = \mathbf{B}_0 + \nabla \times (A(x, z, t) \mathbf{\hat{y}}) = (-\partial_z A, 0, 1 + \partial_x A)$

Nondimensionalised so that $\mathbf{B}_0 = (0, 0, 1)$

Magnetoconvection

Take analytically simple boundary conditions:

- Stress-free + fixed temperature + vertical field $\psi = \omega = \theta = \partial_z A = 0$ on z = 0, 1
- Periodic in horizontal direction: $0 \le x \le L$

Four dimensionless parameters:

- Ithermal Prandtl number: $\sigma = \nu/\kappa$
- magnetic Prandtl number: $\zeta = \eta/\kappa$
- Rayleigh number: $R = \frac{\hat{\alpha}g\Delta Td^3}{\kappa\nu}$

• Chandrasekhar number:
$$Q = \frac{|\mathbf{B}_0|^2 d^2}{\mu_0 \rho_0 \nu \eta}$$

S. Chandrasekhar, *Hydrodynamic and Hydromagnetic Stability*. OUP (1961) M.R.E. Proctor and N.O. Weiss, *Rep. Prog. Phys.* **45**, 1317–1379 (1982)

Weakly nonlinear theory

- Introduce long length and time scales $X = \varepsilon x$, $T = \varepsilon^2 t$.
- Matthews and Cox pointed out the need to include a large-scale mode $A_0(X,T)$ for the magnetic field:

$$\psi = \varepsilon a(X,T) e^{ikx} \sin \pi z + c.c. + O(\varepsilon^2)$$

$$\theta = \varepsilon c_1 a(X,T) e^{ikx} \sin \pi z + c.c. + O(\varepsilon^2)$$

$$A = \varepsilon c_2 a(X,T) e^{ikx} \cos \pi z + \varepsilon c_2 A_0(X,T) + c.c. + O(\varepsilon^2)$$

▶ At $O(\varepsilon^3)$ and $O(\varepsilon^4)$ we derive amplitude equations:

$$a_{T} = \mu a + a_{XX} - a|a|^{2} - aA_{0X}$$
$$A_{0T} = \zeta A_{0XX} + \pi (|a|^{2})_{X}$$

Coupling terms represent suppression by the magnetic field and flux expulsion by the fluid flow

Weakly nonlinear theory

Constant-amplitude, steady rolls:

 $a = \text{const}, A_{0X} = 0$

are unstable (at onset) to modulational disturbances if:

$$\zeta^2 k^4 (\pi^2 + k^2) < \pi^2 (2k^2 - \pi^2)(k^2 + 3\pi^2)$$

i.e. if ζ is sufficiently small, for fixed Q.

P.C. Matthews and S.M. Cox, Nonlinearity 13, 1293–1320 (2000)

Weakly nonlinear theory - restrictions

- Convection amplitude is assumed small
- Deviation from uniform field strength is assumed small

Solutions look much more 'fully nonlinear'

Temperature (deviation) & velocity:

Can we employ a different asymptotic limit to investigate more strongly nonlinear solutions?

Magnetoconvection: model problem

$$w_{t} = [r - (1 + \partial_{x}^{2})^{2}]w - w^{3} - QB^{2}w$$
(1)
$$B_{t} = \zeta B_{xx} + \frac{c}{\zeta} (w^{2}B)_{xx}$$
(2)

Symmetries:

- $\oint w \rightarrow -w$ (Boussinesq problem)

Parameters:

- \checkmark r reduced Rayleigh number $r = R/R_c$
- $\checkmark \qquad Q$ Chandrasekhar number $\propto |B_0|^2$
- $B \rangle = 1$ after nondimensionalising
- ζ magnetic/thermal diffusivity ratio $\zeta = \eta/\kappa$

Remark: Traditional weakly nonlinear analysis would be $w = \varepsilon w_1 + \cdots, \qquad B = 1 + \varepsilon^2 B_2 + \cdots, \qquad X = \varepsilon x, \qquad T = \varepsilon^2 t$

P.C. Matthews & S.M. Cox Nonlinearity 13, 1293-1320 (2000)

Magnetoconvection: model problem

Set $\partial_t \equiv 0$. Integrate (2) twice:

$$\zeta P = B\left(\zeta + \frac{cw^2}{\zeta}\right)$$

where P is a constant of integration.

Re-arrange and integrate over the domain [0, L]: $\left\langle \frac{P}{1+cw^2/\zeta^2} \right\rangle = \langle B \rangle \stackrel{\text{def}}{=} 1$ Hence

$$\frac{1}{P} = \left\langle \frac{1}{1 + cw^2/\zeta^2} \right\rangle$$

So P[w] measures the higher concentration of the large-scale mode in the region *outside* the localised pattern. Substituting, we obtain

$$0 = [r - (1 + \partial_x^2)^2]w - w^3 - \frac{QP^2w}{(1 + cw^2/\zeta^2)^2}$$

Nonlocal Ginzburg-Landau eqn

$$0 = [r - (1 + \partial_{xx}^2)^2]w - w^3 - \frac{QP^2w}{(1 + cw^2/\zeta^2)^2}$$

Introduce the long scales
$$X = \zeta x$$
, $T = \zeta^2 t$.

Rescale:
$$Q = \zeta^2 q$$
 and $r = \zeta^2 \mu$.

Solution Expand:
$$w(x,t) = \zeta A(X,T) \sin x + O(\zeta^2)$$
, assuming $A(X,T)$ real.

Interpret spatial average as over both $x \in [0, 2\pi]$ and X:

$$\frac{1}{P} = \left\langle \left\langle \frac{1}{1 + A^2 \sin^2 x} \right\rangle_x \right\rangle_X = \left\langle \frac{1}{\sqrt{1 + A^2}} \right\rangle_X$$

Extract solvability condition by multiplying by $\sin x$ and integrating over x:

$$0 = \mu A + 4A_{XX} - \frac{3}{4}A^3 - \frac{qP^2A}{(1+cA^2)^{3/2}}$$

Nonlocal Ginzburg–Landau reduction

For large q:

Iocalised branch has saddle-node far below uniform branch

and second saddle-node bifurcation before it rejoins uniform branch

 $c = 0.25, \, \varepsilon L = 10\pi.$

Nonlocal Ginzburg–Landau reduction

 $q = 10, c = 0.25, \varepsilon L = 10\pi.$

Maxwell point → **'Maxwell curve'**

Nonlocal Ginzburg–Landau equation (3) has a first integral:

$$E = \frac{\mu}{2}A^2 + 2A_X^2 - \frac{3}{16}A^4 + \frac{qP^2}{c}\frac{1}{\sqrt{1+cA^2}}$$

Condition $E|_{A=0} = E|_{A=A_0}$, assuming that nontrivial state occupies a fraction ℓ_c/L of the domain, yields an analytic prediction for the 'Maxwell curve':

 $144c^{2}A_{0}^{6} + (207 - 384c\mu)cA_{0}^{4} + (72 - 432c\mu + 256c^{2}\mu^{2})A_{0}^{2} + 96\mu(2c\mu - 1) = 0$

Nonlocal Ginzburg–Landau reduction

Bifurcation curves in the (μ, q) plane:

• $t - bifurcation from trivial state, at <math>\mu = q$.

Solid lines: sn_1 , sn_3 – saddle-nodes on the localised branch. Modulated states exist between sn_1 and sn_3 . Scalings: $q \approx 0.0927(\mu + 3.55)^{1.987}$, $q \approx 0.298(\mu + 27.9)^{0.986}$. Different!

Return to (w, B) equations

$$w_{t} = [r - (1 + \partial_{xx}^{2})^{2}]w - w^{3} - QB^{2}w$$
(1)
$$B_{t} = \zeta B_{xx} + \frac{c}{\zeta} (w^{2}B)_{xx}$$
(2)

J.H.P. Dawes, Localised pattern formation with a large-scale mode: slanted snaking. *SIAM J. App. Dyn. Syst.* 7, 186–206 (2008)

Slanted snaking - details

Full magnetoconvection equations:

Toy model:

BIRS, July 2011 - p. 24/4

Scaling laws for (w, B) equations

Solid lines contain the most subcritical part of snake. Dashed line = limit of subcriticality of periodic pattern.

For sn_1 (lower limit of snake): $\varepsilon \sim Q^{-1/2}$ which agrees with nonlocal GL equation.

Next twist above sn_1 scales as $\varepsilon \sim Q^{-3/4}$ - this scaling is not obvious.

Fully nonlinear solutions

Suggestive rescalings

Parameters: c = 0.25, $L = 10\pi$.

Asymptotic regimes

$$0 = \mu A + 4A_{XX} - \frac{3}{4}A^3 - \frac{qP^2A}{(1+cA^2)^{3/2}}$$

- Consider the general rescaling A(X) = q^{\alpha}B(\xi)
 \xi = q^{\beta}X.
 Four regimes:
 - 1. $\alpha < 0$ $\Rightarrow 4q^{2\beta}B_{\xi\xi} \sim qP^2B$ and $\beta = 1/2$. Linear
 - 2. $\alpha = 0$ $\Rightarrow 4B_{\xi\xi} \sim \frac{P^2 B}{(1+cB^2)^{3/2}}$ and $\beta = 1/2$. Difficult
 - 3. $\alpha = \beta = 1/5$ $\Rightarrow 4B_{\xi\xi} \sim \frac{3}{4}B^3 \sim \frac{P^2}{c^{3/2}B^2}$. Difficult
 - 4. $\alpha > 1/5$ $\Rightarrow \alpha = \beta$ and so $4B_{\xi\xi} \sim \frac{3}{4}B^3$. Large amplitude
- Focus on regimes 1 and 4: 'outer' and 'inner'.

Patching

Construct even-symmetric solutions in $-L/2 \le X \le L/2$:

- **•** Outer solution $A_{out}(X)$ in $X^* < |X| < L/2$ regime 1.
- Inner solution $A_{in}(X)$ in $-X^* < X < X^*$ regime 4.

Outer solution: $0 = \mu A + 4A_{XX} - qP^2A$

$$A_{out}(X) = \tilde{A}_1 \cosh((X - L/2)\sqrt{qP^2 - \mu}/2)$$

$$\Rightarrow A_{out}(X) \approx \frac{A_1}{2} \exp\left(-X\sqrt{qP^2 - \mu}/2\right)$$

1 unknown constant: A_1 .

Inner solution: let $\lambda = q^{-2\alpha}\mu$, $\xi = q^{-\alpha}X$, $B(\xi) = q^{-\alpha}A(X)$ for some $\alpha > 1/5$. Then

$$0 = \lambda B + 4B_{\xi\xi} - \frac{3}{4}B^3$$

Patching

Inner solution:

$$0 = \lambda B + 4B_{\xi\xi} - \frac{3}{4}B^3$$

has the solution

$$B(\xi) = B_0 \operatorname{sn} (\eta \,|\, m)$$

where

$$\eta := \xi \left(\frac{\lambda}{4} - \frac{3B_0^2}{32}\right)^{1/2} + K(m) \qquad m := \frac{3B_0^2/32}{\lambda/4 - 3B_0^2/32}$$

and

$$K(m) = \int_0^{\pi/2} \frac{d\theta}{(1 - m\sin^2\theta)^{1/2}}.$$

K(m) is a quarter-period of sn, i.e. $sn(\eta + 4K|m) = sn(\eta|m)$.

Patching

$$\ln 0 < X < X^*: A_{in}(X) = A_0 \operatorname{sn} \left(\left(\frac{\mu}{4} - \frac{3A_0^2}{32} \right)^{1/2} X + K(m) \middle| m \right)$$
$$\ln X^* < X < L/2: A_{out}(X) = \frac{A_1}{2} \exp \left(-X\sqrt{qP^2 - \mu}/2 \right)$$

There are 2 unknown constants: A₀ and A₁, plus the patch point X*.
 Requires 3 equations:

$$a = A_{in}(X^*)$$
$$a = A_{out}(X^*)$$
$$A'_{in}(X^*) = A'_{out}(X^*)$$

where we fix the constant a = 0.1 (fit parameter);

In addition we have to solve for P:

$$\frac{1}{P} = \frac{2}{L} \left(\int_0^{X^*} \frac{1}{\sqrt{1 + cA_{in}(X)^2}} \, dX + \int_{X^*}^{L/2} \frac{1}{\sqrt{1 + cA_{out}(X)^2}} \, dX \right)$$

Patching - results

Remarks:

- **Blue line indicates** $\mu \sim q^{1/2}$ scaling
 - At fixed L, values of 0 < m < 1 tend (slowly) to 1 as $q \to \infty$.

Derivation of $\mu_{sn} \sim q^{1/2}$

- ▶ As $q \to \infty$, μ_{sn} increases, hence so does the constant $A_0 (= A(X = 0))$.
- So $sn(\cdot|m)$ must tend to zero, and so can be approximated by Taylor series.
- The patching conditions can be combined into the form

$$\frac{A'_{in}(X^*)}{A_{in}(X^*)} = \frac{A'_{out}(X^*)}{A_{out}(X^*)},$$

which is useful since the $\exp(\cdot)$ factors on the RHS cancel, leaving

$$\frac{(\mu/4 - 3A_0^2/32)^{1/2}}{K - (\mu/4 - 3A_0^2/32)^{1/2}X^*} = -q^{1/2}\frac{P}{2}.$$

Further simplification of the denominator of the LHS leads to

$$a \sim \left(\frac{4\lambda}{3}\right)^{1/2} q^{\alpha/2} \frac{2}{Pq^{1/2}} \left(\frac{\lambda}{8}q^{\alpha}\right)^{1/2}$$

which implies $\alpha = 1/2$.

Variational Approximation (VA)

Idea:

For equations whose steady solutions extremise a Lagrangian

$$\mathcal{L} = \int_0^\infty F(w, w_x, w_{xx}, \ldots) \, dx$$

choose a parameterised family for w(x), say $w(x) = f(x; a_1, ..., a_k)$. Then compute \mathcal{L} by direct integration to give an 'effective Lagrangian' restricted to the family f:

$$\mathcal{L}_{\text{eff}}(a_1,\ldots,a_k) = \int_0^\infty F(f,f_x,f_{xx},\ldots) dx$$

- If then, functions that extremise \mathcal{L} can be approximately found by extremising \mathcal{L}_{eff} with respect to the parameters a_1, \ldots, a_k .
- So we are left with the simpler problem of solving the k (nonlinear algebraic) equations

$$\frac{\partial \mathcal{L}_{\text{eff}}}{\partial a_1} = \frac{\partial \mathcal{L}_{\text{eff}}}{\partial a_2} = \dots = \frac{\partial \mathcal{L}_{\text{eff}}}{\partial a_k} = 0.$$

H. Susanto & P.C. Matthews PRE 83 035201(R) (2011); Chong, Pelinovsky, Malomed ...

VA for modulation equation

The nonlocal Ginzburg–Landau equation

$$0 = \mu A + 4A_{XX} - \frac{3}{4}A^3 - \frac{qP^2A}{(1+cA^2)^{3/2}}$$

has the (surprisingly simple) Lagrangian

$$\mathcal{L} = \int_0^L \left(-\frac{\mu}{2} A^2 + 2(A_X)^2 + \frac{3}{16} A^4 \right) \, dX + \frac{qL}{c} P$$

where, as before,

$$\frac{1}{P} = \frac{1}{L} \int_0^L \frac{1}{\sqrt{1+cA^2}} \, dX$$

Choose a very simple family of solutions to extremise over – step functions:

$$A(X) = \begin{cases} a \text{ in } 0 < X < \ell \\ 0 \text{ in } \ell < X < L \end{cases}$$

2 parameters: a, ℓ .

VA calculations

We obtain:

$$\mathcal{L}_{\text{eff}} = -\frac{\mu}{2}a^2\ell + \frac{3a^4}{16}\ell + \frac{qL^2}{c}\frac{\sqrt{1+ca^2}}{\ell + (L-\ell)\sqrt{1+ca^2}}$$

Solution Now compute $\partial \mathcal{L}_{eff} / \partial a$ and $\partial \mathcal{L}_{eff} / \partial \ell$, and solve.

 \blacksquare ... at least, solve in the limit of large amplitude, $a \gg 1$.

The limit of large *a*:

J First compute P:

$$P = \frac{L\sqrt{ca}}{\ell + (L-\ell)\sqrt{ca}}$$

- if $L \ell = O(1)$ then $P \sim L/(L \ell) = O(1)$
- if $L \ell = u/a \ll 1$ where $u \sim 1$ then $P \sim aL\sqrt{c}/(\ell + u\sqrt{c}) = O(a) \gg 1$

VA calculations

Case 1: $a \gg 1$, $L - \ell = O(1)$.

We find that $\mu = O(a^2)$, so, expanding in powers of a, we obtain

$$\mu = \frac{3a^2}{4} + \frac{3}{16\sqrt{c}}a + O(1)$$

and so

$$q = \left(\frac{L-\ell}{L}\right)^2 \frac{3c}{16}a^4 + \dots \sim \left(\frac{L-\ell}{L}\right)^2 \frac{c}{3}\mu^2$$

- **D** Lower limit (i.e. saddle-node) of this is then at $\ell = 0$.
- This prediction for the location of sn_1 is broadly in agreement with numerics in the case c = 0.25:

numerics :
$$q \sim 0.0927 \mu^{1.987}$$

theory : $q \sim 0.0833 \mu^2$

VA results for sn_1

 $c = 0.25, L = 10\pi$:

Recall that patching method has a free parameter.

VA using a step function performs as well as using a smooth ansatz in the form

$$A(X) = \frac{a}{\sqrt{1 + \exp(b(|X| - \ell))}}$$

VA calculations

Case 2: $a \gg 1$, $L - \ell = \frac{u}{a} \ll 1$.

As in case 1, $\mu = O(a^2)$, so, expanding in powers of a, we obtain

$$\mu = \frac{3a^2}{4} + \frac{3}{16\sqrt{c}}a + O(1)$$

but now

$$q = \left(\frac{L+u\sqrt{c}}{L}\right)^2 \frac{3}{16}a^2 + \dots \sim \left(\frac{L+u\sqrt{c}}{L}\right)^2 \frac{\mu}{4}$$

- Upper limit (i.e. saddle-node) of this is then at u = 0, and is independent of c (at leading order).
- This prediction for the location of sn_3 is broadly in agreement with numerics in the case c = 0.25:

numerics :	$q \sim 0.298 \mu^{0.986}$
theory :	$q\sim 0.25\mu$

Axisymmetric solutions

Steady, axisymmetric solutions to the system

$$w_t = rw - (1 + \nabla^2)^2 w - w^3 - QB^2 w$$
$$B_t = \varepsilon \nabla^2 B + \frac{c}{\varepsilon} \nabla^2 (w^2 B)$$

in \mathbb{R}^n satisfy the nonlocal ODE

$$w_{rrrr} = (\mu - 1)w - 2w_{rr} - \frac{2(n-1)}{r}w_r + \frac{(n-1)(n-3)}{r^3}w_r$$
$$-\frac{(n-1)(n-3)}{r^2}w_{rr} - \frac{2(n-1)}{r}w_{rrr} - w^3 - \frac{QP^2w}{(1+cw^2/\varepsilon^2)^2}$$

which contains the integral contribution

$$P^{-1} = \langle (1 + cw^2 / \varepsilon^2)^{-1} \rangle \quad \text{where} \quad \langle f \rangle := \frac{n}{L^n} \int_0^L f(r) r^{n-1} dr$$

2D – Spot AB

BIRS, July 2011 – p. 41/4

2D – Spot AB

Existence region (limits of snaking curve) opens out with same scalings as in 1D:

Upper line: $\varepsilon \sim Q^{-1/2}$; lower line: $\varepsilon \sim Q^{-3/4}$.

2D - varying c

The scaling law for sn1 from the
 1D nonlocal GL equation predicts

$$\varepsilon \sim \left(\frac{cr^2}{3}\right)^{1/2} Q^{-1/2}$$

- This appears to hold in 2D as well, for both the Q and c dependencies.
- c = 10 (upper) and c = 0.1 (lower).
- \checkmark r = 1 (i.e. not 'large')

Nonlocal terms arise naturally from conservation laws.

- Such terms strongly distort standard snaking into slanted snaking.
- This distortion means localised states exist over a wider region of parameter space and perhaps are physically more robust
- Reduction to nonlocal GL equation and construction of approximate solutions helps reveal the origin of scaling laws, and hence prediction of (wider) parameter regime over which localised states exist.
- Region of existence is reduced, but not in fact by much, as domain size L decreases.
- Parameter c affects prefactors but not exponents in scaling laws.
- ... and the 1D scaling laws appear to carry over into 2D (for spots).