# Scaling laws for slanted snaking 

## Jonathan Dawes

## Department of Mathematical Sciences University of Bath



## Outline

- Physical examples
- Dielectric gas discharge / nonlinear optics
- Vertically shaken granular media / viscoelastic fluid
- Magnetoconvection
- Toy model: Swift-Hohenberg + nonlinear diffusion eqn
- 'Slanted snaking'
- Reduction to a nonlocal Ginzburg-Landau equation
- Scaling laws
- Construction of fully nonlinear solutions - to try to understand scaling laws
- 1. Patching
- 2. via the 'Variational Approximation'
- 2 D

Catherine Penington
J.H.P. Dawes, The emergence of a coherent structure for coherent structures: localized states in nonlinear systems. Phil. Trans. Roy. Soc. 368, 3519-3534 (2010)

## Slanted snaking - examples

Semiconductor filaments:


K.M. Mayer, J. Parisi and R.P. Huebner, Z. Phys. B 71, 171-178 (1988)

## Slanted snaking - examples



Dielectric gas discharge H.-G. Purwins et al


Model equation
W.J. Firth et al

$$
u_{t}=\left[r-\left(1+\partial_{x}^{2}\right)^{2}\right] u+b_{2} u^{2}-u^{3}-\gamma\left\langle u^{2}\right\rangle u
$$

E. Ammelt. PhD Thesis, University of Münster (1995)
W.J. Firth, L. Columbo, A.J. Scroggie, Proposed resolution of theory-experiment discrepancy in homoclinic snaking. Phys. Rev. Lett. 99, 104503 (2007)

## Granular Faraday Experiment



Granular 'oscillons'

... are observed below periodic patterns.
P.B. Umbanhowar, F. Melo and H.L. Swinney, Nature 382, 793 (1996)
J.H.P. Dawes \& S. Lilley, SIAM J. Appl. Dyn. Syst. 9, 238-260 (2010)

## Viscoelastic Faraday Experiment

- Regime diagram:

- Side views (over 2 driving periods)


Oscillons are again observed BELOW hysteresis region for patterns
O. Lioubashevski, H. Arbell and J. Fineberg, Phys. Rev. Lett. 76, 3959-3962 (1996)
O. Lioubashevski, Y. Hamiel, A. Agnon, Z. Reches and J. Fineberg, Phys. Rev. Lett. 83, 3190-3193 (1999)

## Thin layer Granular Faraday



Left: Experiment; Right: molecular dynamics simulation


A. Götzendorfer, J. Kreft, C.A. Kruelle and I. Rehberg, Sublimation of a vibrated granular monolayer: coexistence of gas and solid Phys. Rev. Lett. 95, 135704 (2005)

## Magnetoconvection

Numerical simulations: Rayleigh-Bénard convection with a vertical magnetic field
$R=10^{5}, Q=1600$
$\sigma=0.1, \zeta=0.2$
stress-free, $T$ fixed (lower)
radiative b.c. (upper)
$8 \times 8 \times 1$ stratified layer
density contrast approx 11.
blue $=$ strong field
purple $=$ weak field

A.M. Rucklidge, N.O. Weiss, D.P. Brownjohn, P.C. Matthews \& M.R.E. Proctor, J. Fluid Mech. 419, 283-323 (2000)

## Localised magnetoconvection

$$
R=20000, Q=14000, \zeta=0.1, \sigma=1.0, L=6.0
$$

Temperature (deviation) \& velocity: $\quad|\mathbf{B}|^{2}$ :


Subcritical finite-amplitude magnetoconvection noted by several previous authors:

- N.O. Weiss Proc. Roy. Soc. Lond. (1966) - flux expulsion
- F.H. Busse, J. Fluid Mech. 71 193-206 (1975):
"...thus finite amplitude onset of steady convection becomes possible at Rayleigh numbers considerably below the values predicted by linear theory."
- ... and recent work by
D. Lo Jacono, A. Bergeon and E. Knobloch. Preprint. (2011)


## Localised magnetoconvection

- Strongly nonlinear localised states ('convectons') persist for strong fields.
- $\left.\frac{d T}{d z}\right|_{\text {top }}$ for increasing $Q$ at fixed $R$ :

S.M. Blanchflower, Phys. Lett. A 261, 74-81 (1999); PhD thesis, University of Cambridge (1999)
J.H.P. Dawes, Localised convection cells in the presence of a vertical magnetic field. J. Fluid Mech. 570, 385-406 (2007)


## Magnetoconvection

Boussinesq equations for 2D thermal convection, vertical magnetic field:

$$
\begin{aligned}
\partial_{t} \omega+J[\psi, \omega] & =-\sigma R \partial_{x} \theta-\sigma \zeta Q\left(J\left[A, \nabla^{2} A\right]+\partial_{z} \nabla^{2} A\right)+\sigma \nabla^{2} \omega \\
\partial_{t} \theta+J[\psi, \theta] & =\nabla^{2} \theta+\partial_{x} \psi \\
\partial_{t} A+J[\psi, A] & =\partial_{z} \psi+\zeta \nabla^{2} A
\end{aligned}
$$

- Jacobian: $J[f, g] \equiv \partial_{x} f \partial_{z} g-\partial_{z} f \partial_{x} g$
- $\theta(x, z, t)$ - perturbation to the conduction profile $T=1-z$
- $\psi(x, z, t)$ - streamfunction.
- $\mathbf{u}=\nabla \times(\psi(x, z, t) \hat{\mathbf{y}})$, so $\omega=-\nabla^{2} \psi$
- Magnetic field $\mathbf{B}=\mathbf{B}_{0}+\nabla \times(A(x, z, t) \hat{\mathbf{y}})=\left(-\partial_{z} A, 0,1+\partial_{x} A\right)$
- Nondimensionalised so that $\mathbf{B}_{0}=(0,0,1)$


## Magnetoconvection

Take analytically simple boundary conditions:

- Stress-free + fixed temperature + vertical field $\psi=\omega=\theta=\partial_{z} A=0$ on $z=0,1$
- Periodic in horizontal direction: $0 \leq x \leq L$

Four dimensionless parameters:

- thermal Prandtl number: $\sigma=\nu / \kappa$
- magnetic Prandtl number: $\zeta=\eta / \kappa$
- Rayleigh number: $R=\frac{\hat{\alpha} g \Delta T d^{3}}{\kappa \nu}$
- Chandrasekhar number: $Q=\frac{\left|\mathbf{B}_{0}\right|^{2} d^{2}}{\mu_{0} \rho_{0} \nu \eta}$


## Wegrivinoniliegr theory

- Introduce long length and time scales $X=\varepsilon x, T=\varepsilon^{2} t$.
- Matthews and Cox pointed out the need to include a large-scale mode $A_{0}(X, T)$ for the magnetic field:

$$
\begin{aligned}
\psi & =\varepsilon a(X, T) \mathrm{e}^{\mathrm{i} k x} \sin \pi z+c . c .+O\left(\varepsilon^{2}\right) \\
\theta & =\varepsilon c_{1} a(X, T) \mathrm{e}^{\mathrm{i} k x} \sin \pi z+c . c .+O\left(\varepsilon^{2}\right) \\
A & =\varepsilon c_{2} a(X, T) \mathrm{e}^{\mathrm{i} k x} \cos \pi z+\varepsilon c_{2} A_{0}(X, T)+c . c .+O\left(\varepsilon^{2}\right)
\end{aligned}
$$

- At $O\left(\varepsilon^{3}\right)$ and $O\left(\varepsilon^{4}\right)$ we derive amplitude equations:

$$
\begin{aligned}
a_{T} & =\mu a+a_{X X}-a|a|^{2}-a A_{0 X} \\
A_{0 T} & =\zeta A_{0 X X}+\pi\left(|a|^{2}\right)_{X}
\end{aligned}
$$

- Coupling terms represent suppression by the magnetic field and flux expulsion by the fluid flow


## Weakly nonlinear theory

Constant-amplitude, steady rolls:
$a=\mathrm{const}, A_{0 X}=0$
are unstable (at onset) to modulational disturbances if:
$\zeta^{2} k^{4}\left(\pi^{2}+k^{2}\right)<\pi^{2}\left(2 k^{2}-\pi^{2}\right)\left(k^{2}+3 \pi^{2}\right)$
i.e. if $\zeta$ is sufficiently small, for fixed $Q$.
(a)
(b)


(c)

(d)

P.C. Matthews and S.M. Cox, Nonlinearity 13, 1293-1320 (2000)

## Weakly nonlinear theory - restrictions

- Convection amplitude is assumed small
- Deviation from uniform field strength is assumed small


## Solutions look much more 'fully nonlinear'

Temperature (deviation) \& velocity:

$|B|^{2}:$


- Can we employ a different asymptotic limit to investigate more strongly nonlinear solutions?


## Magnetoconvection: model problem

$$
\begin{align*}
w_{t} & =\left[r-\left(1+\partial_{x}^{2}\right)^{2}\right] w-w^{3}-Q B^{2} w  \tag{1}\\
B_{t} & =\zeta B_{x x}+\frac{c}{\zeta}\left(w^{2} B\right)_{x x} \tag{2}
\end{align*}
$$

Symmetries:

- $w \rightarrow-w \quad$ (Boussinesq problem)
- $B \rightarrow-B$ (direction of magnetic field)


## Parameters:

- $r$ - reduced Rayleigh number $r=R / R_{c}$
- $Q$ - Chandrasekhar number $\propto\left|B_{0}\right|^{2}$
- $\langle B\rangle=1$ after nondimensionalising
- $\zeta$ - magnetic/thermal diffusivity ratio $\zeta=\eta / \kappa$

Remark: Traditional weakly nonlinear analysis would be

$$
w=\varepsilon w_{1}+\cdots, \quad B=1+\varepsilon^{2} B_{2}+\cdots, \quad X=\varepsilon x, \quad T=\varepsilon^{2} t
$$

P.C. Matthews \& S.M. Cox Nonlinearity 13, 1293-1320 (2000)

## Magnetoconvection: model problem

Set $\partial_{t} \equiv 0$. Integrate (2) twice:

$$
\zeta P=B\left(\zeta+\frac{c w^{2}}{\zeta}\right)
$$

where $P$ is a constant of integration.
$\operatorname{Re}$-arrange and integrate over the domain $[0, L]: \quad\left\langle\frac{P}{1+c w^{2} / \zeta^{2}}\right\rangle=\langle B\rangle \stackrel{\text { def }}{=} 1$ Hence

$$
\frac{1}{P}=\left\langle\frac{1}{1+c w^{2} / \zeta^{2}}\right\rangle
$$

So $P[w]$ measures the higher concentration of the large-scale mode in the region outside the localised pattern. Substituting, we obtain

$$
0=\left[r-\left(1+\partial_{x}^{2}\right)^{2}\right] w-w^{3}-\frac{Q P^{2} w}{\left(1+c w^{2} / \zeta^{2}\right)^{2}}
$$

## Nonlocal Ginzburg-Landau eqn

$$
0=\left[r-\left(1+\partial_{x x}^{2}\right)^{2}\right] w-w^{3}-\frac{Q P^{2} w}{\left(1+c w^{2} / \zeta^{2}\right)^{2}}
$$

- Suppose $\zeta \ll 1$
- Introduce the long scales $X=\zeta x, T=\zeta^{2} t$.
- Rescale: $Q=\zeta^{2} q$ and $r=\zeta^{2} \mu$.
- Expand: $w(x, t)=\zeta A(X, T) \sin x+O\left(\zeta^{2}\right)$, assuming $A(X, T)$ real.

Interpret spatial average as over both $x \in[0,2 \pi]$ and $X$ :

$$
\frac{1}{P}=\left\langle\left\langle\frac{1}{1+A^{2} \sin ^{2} x}\right\rangle_{x}\right\rangle_{X}=\left\langle\frac{1}{\sqrt{1+A^{2}}}\right\rangle_{X}
$$

Extract solvability condition by multiplying by $\sin x$ and integrating over $x$ :

$$
0=\mu A+4 A_{X X}-\frac{3}{4} A^{3}-\frac{q P^{2} A}{\left(1+c A^{2}\right)^{3 / 2}}
$$

## Nonlocal Ginzburg-Landau reduction




For large $q$ :

- localised branch has saddle-node far below uniform branch
- and second saddle-node bifurcation before it rejoins uniform branch

$$
c=0.25, \varepsilon L=10 \pi
$$

## Nonlocal Ginzburg-Landau reduction

$q=10, c=0.25, \varepsilon L=10 \pi$.


(a)

(b)

(c)

(d)

## Maxwell point $\rightarrow$ 'Maxwell curve'

Nonlocal Ginzburg-Landau equation (3) has a first integral:

$$
E=\frac{\mu}{2} A^{2}+2 A_{X}^{2}-\frac{3}{16} A^{4}+\frac{q P^{2}}{c} \frac{1}{\sqrt{1+c A^{2}}}
$$

Condition $\left.E\right|_{A=0}=\left.E\right|_{A=A_{0}}$, assuming that nontrivial state occupies a fraction $\ell_{c} / L$ of the domain, yields an analytic prediction for the 'Maxwell curve':
$144 c^{2} A_{0}^{6}+(207-384 c \mu) c A_{0}^{4}+\left(72-432 c \mu+256 c^{2} \mu^{2}\right) A_{0}^{2}+96 \mu(2 c \mu-1)=0$


## Nonlocal Ginzburg-Landau reduction

Bifurcation curves in the $(\mu, q)$ plane:



- $t$ - bifurcation from trivial state, at $\mu=q$.
- Solid lines: $s n_{1}, s n_{3}$ - saddle-nodes on the localised branch.

Modulated states exist between $s n_{1}$ and $s n_{3}$.
Scalings: $q \approx 0.0927(\mu+3.55)^{1.987}, \quad q \approx 0.298(\mu+27.9)^{0.986}$. Different!

## Return to $(w, B)$ equations

$$
\begin{align*}
& w_{t}=\left[r-\left(1+\partial_{x x}^{2}\right)^{2}\right] w-w^{3}-Q B^{2} w  \tag{1}\\
& B_{t}=\zeta B_{x x}+\frac{c}{\zeta}\left(w^{2} B\right)_{x x} \tag{2}
\end{align*}
$$



## Slanted snaking

J.H.P. Dawes, Localised pattern formation with a large-scale mode: slanted snaking. SIAM J. App. Dyn. Syst. 7, 186-206 (2008)

## Slanted snaking - details

Full magnetoconvection equations:


Toy model:


(a)

(b)

(c)

(d)

## Scaling laws for $(w, B)$ equations



Solid lines contain the most subcritical part of snake. Dashed line = limit of subcriticality of periodic pattern.

- For $s n_{1}$ (lower limit of snake): $\varepsilon \sim Q^{-1 / 2}$ which agrees with nonlocal GL equation.
- Next twist above $s n_{1}$ scales as $\varepsilon \sim Q^{-3 / 4}$ - this scaling is not obvious.


## Fully nonlinear solutions

Nonlocal G-L equation:
$0=\mu A+4 A_{X X}-\frac{3}{4} A^{3}-\frac{q P^{2} A}{\left(1+c A^{2}\right)^{3 / 2}} \quad$ where $\quad \frac{1}{P}=\frac{1}{L} \int_{0}^{L} \frac{1}{\sqrt{1+c A^{2}}} d X$

$s n_{1}$ - minimum $\mu_{s n}(q)$ at which localised states exist.


Profiles along $s n_{1}: c=0.25, L=10 \pi$.

## Suggestive rescalings

Centre:



Parameters: $c=0.25, L=10 \pi$.

## Asymptotic regimes

$$
0=\mu A+4 A_{X X}-\frac{3}{4} A^{3}-\frac{q P^{2} A}{\left(1+c A^{2}\right)^{3 / 2}}
$$

- Consider the general rescaling $A(X)=q^{\alpha} B(\xi) \quad \xi=q^{\beta} X$.
- Four regimes:

1. $\alpha<0$

$$
\Rightarrow 4 q^{2 \beta} B_{\xi \xi} \sim q P^{2} B \text { and } \beta=1 / 2 . \text { Linear }
$$

2. $\alpha=0$ $\Rightarrow 4 B_{\xi \xi} \sim \frac{P^{2} B}{\left(1+c B^{2}\right)^{3 / 2}}$ and $\beta=1 / 2$. Difficult
3. $\alpha=\beta=1 / 5$ $\Rightarrow 4 B_{\xi \xi} \sim \frac{3}{4} B^{3} \sim \frac{P^{2}}{c^{3 / 2} B^{2}}$. Difficult
4. $\alpha>1 / 5$ $\Rightarrow \alpha=\beta$ and so $4 B_{\xi \xi} \sim \frac{3}{4} B^{3}$. Large amplitude

- Focus on regimes 1 and 4: 'outer' and 'inner'.


## Datcining

Construct even-symmetric solutions in $-L / 2 \leq X \leq L / 2$ :

- Outer solution $A_{\text {out }}(X)$ in $X^{*}<|X|<L / 2$ - regime 1 .
- Inner solution $A_{i n}(X)$ in $-X^{*}<X<X^{*}$ - regime 4.

Outer solution: $0=\mu A+4 A_{X X}-q P^{2} A$

$$
\begin{aligned}
A_{\text {out }}(X) & =\tilde{A}_{1} \cosh \left((X-L / 2) \sqrt{q P^{2}-\mu} / 2\right) \\
\Rightarrow A_{\text {out }}(X) & \approx \frac{A_{1}}{2} \exp \left(-X \sqrt{q P^{2}-\mu} / 2\right)
\end{aligned}
$$

1 unknown constant: $A_{1}$.

Inner solution: let $\lambda=q^{-2 \alpha} \mu, \xi=q^{-\alpha} X, B(\xi)=q^{-\alpha} A(X)$ for some $\alpha>1 / 5$. Then

$$
0=\lambda B+4 B_{\xi \xi}-\frac{3}{4} B^{3}
$$

## Patching

## Inner solution:

$$
0=\lambda B+4 B_{\xi \xi}-\frac{3}{4} B^{3}
$$

has the solution

$$
B(\xi)=B_{0} \operatorname{sn}(\eta \mid m)
$$

where

$$
\eta:=\xi\left(\frac{\lambda}{4}-\frac{3 B_{0}^{2}}{32}\right)^{1 / 2}+K(m) \quad m:=\frac{3 B_{0}^{2} / 32}{\lambda / 4-3 B_{0}^{2} / 32}
$$

and

$$
K(m)=\int_{0}^{\pi / 2} \frac{d \theta}{\left(1-m \sin ^{2} \theta\right)^{1 / 2}}
$$

$K(m)$ is a quarter-period of sn , i.e. $\operatorname{sn}(\eta+4 K \mid m)=\operatorname{sn}(\eta \mid m)$.

## Datcining

- In $0<X<X^{*}: A_{\text {in }}(X)=A_{0} \operatorname{sn}\left(\left.\left(\frac{\mu}{4}-\frac{3 A_{0}^{2}}{32}\right)^{1 / 2} X+K(m) \right\rvert\, m\right)$
- $\ln X^{*}<X<L / 2: A_{\text {out }}(X)=\frac{A_{1}}{2} \exp \left(-X \sqrt{q P^{2}-\mu} / 2\right)$
- There are 2 unknown constants: $A_{0}$ and $A_{1}$, plus the patch point $X^{*}$.
- Requires 3 equations:

$$
\begin{aligned}
a & =A_{\text {in }}\left(X^{*}\right) \\
a & =A_{\text {out }}\left(X^{*}\right) \\
A_{\text {in }}^{\prime}\left(X^{*}\right) & =A_{o u t}^{\prime}\left(X^{*}\right)
\end{aligned}
$$

where we fix the constant $a=0.1$ (fit parameter);

- In addition we have to solve for $P$ :

$$
\frac{1}{P}=\frac{2}{L}\left(\int_{0}^{X^{*}} \frac{1}{\sqrt{1+c A_{\text {in }}(X)^{2}}} d X+\int_{X^{*}}^{L / 2} \frac{1}{\sqrt{1+c A_{\text {out }}(X)^{2}}} d X\right)
$$

## Patching - results

- Locations of saddle-node bifurcations $\mu_{s n}(q)$ :



Domain sizes: $\quad L=10 \pi$, dots; $L=\pi$, squares;
$L=\pi / 2$, asterisks; $L=\pi / 4$, diamonds.

## Remarks:

- Blue line indicates $\mu \sim q^{1 / 2}$ scaling
- At fixed $L$, values of $0<m<1$ tend (slowly) to 1 as $q \rightarrow \infty$.


## Derivation of $\mu_{s n} \sim q^{1 / 2}$

- As $q \rightarrow \infty, \mu_{\text {sn }}$ increases, hence so does the constant $A_{0}(=A(X=0)$.
- So $\operatorname{sn}(\cdot \mid m)$ must tend to zero, and so can be approximated by Taylor series.
- The patching conditions can be combined into the form

$$
\frac{A_{\text {in }}^{\prime}\left(X^{*}\right)}{A_{\text {in }}\left(X^{*}\right)}=\frac{A_{o u t}^{\prime}\left(X^{*}\right)}{A_{\text {out }}\left(X^{*}\right)}
$$

which is useful since the $\exp (\cdot)$ factors on the RHS cancel, leaving

$$
\frac{\left(\mu / 4-3 A_{0}^{2} / 32\right)^{1 / 2}}{K-\left(\mu / 4-3 A_{0}^{2} / 32\right)^{1 / 2} X^{*}}=-q^{1 / 2} \frac{P}{2}
$$

- Further simplification of the denominator of the LHS leads to

$$
a \sim\left(\frac{4 \lambda}{3}\right)^{1 / 2} q^{\alpha / 2} \frac{2}{P q^{1 / 2}}\left(\frac{\lambda}{8} q^{\alpha}\right)^{1 / 2}
$$

- which implies $\alpha=1 / 2$.


## Variational Approximation (VA)

## Idea:

- For equations whose steady solutions extremise a Lagrangian

$$
\mathcal{L}=\int_{0}^{\infty} F\left(w, w_{x}, w_{x x}, \ldots\right) d x
$$

choose a parameterised family for $w(x)$, say $w(x)=f\left(x ; a_{1}, \ldots, a_{k}\right)$.

- Then compute $\mathcal{L}$ by direct integration to give an 'effective Lagrangian' restricted to the family $f$ :

$$
\mathcal{L}_{\mathrm{eff}}\left(a_{1}, \ldots, a_{k}\right)=\int_{0}^{\infty} F\left(f, f_{x}, f_{x x}, \ldots\right) d x
$$

- Then, functions that extremise $\mathcal{L}$ can be approximately found by extremising $\mathcal{L}_{\text {eff }}$ with respect to the parameters $a_{1}, \ldots, a_{k}$.
- So we are left with the simpler problem of solving the $k$ (nonlinear algebraic) equations

$$
\frac{\partial \mathcal{L}_{\text {eff }}}{\partial a_{1}}=\frac{\partial \mathcal{L}_{\text {eff }}}{\partial a_{2}}=\cdots=\frac{\partial \mathcal{L}_{\text {eff }}}{\partial a_{k}}=0 .
$$

H. Susanto \& P.C. Matthews PRE 83 035201(R) (2011); Chong, Pelinovsky, Malomed ..

## VA for modulation equation

The nonlocal Ginzburg-Landau equation

$$
0=\mu A+4 A_{X X}-\frac{3}{4} A^{3}-\frac{q P^{2} A}{\left(1+c A^{2}\right)^{3 / 2}}
$$

has the (surprisingly simple) Lagrangian

$$
\mathcal{L}=\int_{0}^{L}\left(-\frac{\mu}{2} A^{2}+2\left(A_{X}\right)^{2}+\frac{3}{16} A^{4}\right) d X+\frac{q L}{c} P
$$

where, as before,

$$
\frac{1}{P}=\frac{1}{L} \int_{0}^{L} \frac{1}{\sqrt{1+c A^{2}}} d X
$$

Choose a very simple family of solutions to extremise over - step functions:

$$
A(X)=\left\{\begin{array}{l}
a \text { in } 0<X<\ell \\
0 \text { in } \ell<X<L
\end{array}\right.
$$

2 parameters: $a, \ell$.

## VA calculations

We obtain:

$$
\mathcal{L}_{\mathrm{eff}}=-\frac{\mu}{2} a^{2} \ell+\frac{3 a^{4}}{16} \ell+\frac{q L^{2}}{c} \frac{\sqrt{1+c a^{2}}}{\ell+(L-\ell) \sqrt{1+c a^{2}}}
$$

- Now compute $\partial \mathcal{L}_{\text {eff }} / \partial a$ and $\partial \mathcal{L}_{\text {eff }} / \partial \ell$, and solve.
- ... at least, solve in the limit of large amplitude, $a \gg 1$.


## The limit of large $a$ :

- First compute $P$ :

$$
P=\frac{L \sqrt{c} a}{\ell+(L-\ell) \sqrt{c} a}
$$

- Two cases:
- if $L-\ell=O(1)$ then $P \sim L /(L-\ell)=O(1)$
- if $L-\ell=u / a \ll 1$ where $u \sim 1$ then $P \sim a L \sqrt{c} /(\ell+u \sqrt{c})=O(a) \gg 1$


## VA calculations

Case 1: $a \gg 1, L-\ell=O(1)$.

- We find that $\mu=O\left(a^{2}\right)$, so, expanding in powers of $a$, we obtain

$$
\mu=\frac{3 a^{2}}{4}+\frac{3}{16 \sqrt{c}} a+O(1), ~
$$

and so

$$
q=\left(\frac{L-\ell}{L}\right)^{2} \frac{3 c}{16} a^{4}+\cdots \sim\left(\frac{L-\ell}{L}\right)^{2} \frac{c}{3} \mu^{2}
$$

- Lower limit (i.e. saddle-node) of this is then at $\ell=0$.
- This prediction for the location of $s n_{1}$ is broadly in agreement with numerics in the case $c=0.25$ :

$$
\begin{aligned}
\text { numerics : } & & q \sim 0.0927 \mu^{1.987} \\
\text { theory : } & & q \sim 0.0833 \mu^{2}
\end{aligned}
$$

## VA results for $s n_{1}$

$$
c=0.25, L=10 \pi:
$$




- Recall that patching method has a free parameter.
- VA using a step function performs as well as using a smooth ansatz in the form

$$
A(X)=\frac{a}{\sqrt{1+\exp (b(|X|-\ell))}}
$$

## VA calculations

Case 2: $a \gg 1, L-\ell=\frac{u}{a} \ll 1$.

- As in case $1, \mu=O\left(a^{2}\right)$, so, expanding in powers of $a$, we obtain

$$
\mu=\frac{3 a^{2}}{4}+\frac{3}{16 \sqrt{c}} a+O(1)
$$

but now

$$
q=\left(\frac{L+u \sqrt{c}}{L}\right)^{2} \frac{3}{16} a^{2}+\cdots \sim\left(\frac{L+u \sqrt{c}}{L}\right)^{2} \frac{\mu}{4}
$$

- Upper limit (i.e. saddle-node) of this is then at $u=0$, and is independent of $c$ (at leading order).
- This prediction for the location of $s n_{3}$ is broadly in agreement with numerics in the case $c=0.25$ :

$$
\begin{aligned}
& \text { numerics : } \\
& \text { theory : } \\
& \sim \sim 0.298 \mu^{0.986} \\
& \sim 0.25 \mu
\end{aligned}
$$

## Axisymmetric solutions

Steady, axisymmetric solutions to the system

$$
\begin{aligned}
w_{t} & =r w-\left(1+\nabla^{2}\right)^{2} w-w^{3}-Q B^{2} w \\
B_{t} & =\varepsilon \nabla^{2} B+\frac{c}{\varepsilon} \nabla^{2}\left(w^{2} B\right)
\end{aligned}
$$

in $\mathbb{R}^{n}$ satisfy the nonlocal ODE

$$
\begin{aligned}
w_{r r r r}= & (\mu-1) w-2 w_{r r}-\frac{2(n-1)}{r} w_{r}+\frac{(n-1)(n-3)}{r^{3}} w_{r} \\
& -\frac{(n-1)(n-3)}{r^{2}} w_{r r}-\frac{2(n-1)}{r} w_{r r r}-w^{3}-\frac{Q P^{2} w}{\left(1+c w^{2} / \varepsilon^{2}\right)^{2}}
\end{aligned}
$$

which contains the integral contribution

$$
P^{-1}=\left\langle\left(1+c w^{2} / \varepsilon^{2}\right)^{-1}\right\rangle \quad \text { where } \quad\langle f\rangle:=\frac{n}{L^{n}} \int_{0}^{L} f(r) r^{n-1} d r
$$

## 2D - Spot AB









## 2D - Spot AB

Existence region (limits of snaking curve) opens out with same scalings as in 1D:


- Upper line: $\varepsilon \sim Q^{-1 / 2}$; lower line: $\varepsilon \sim Q^{-3 / 4}$.


## 2D - varying $c$

- The scaling law for $s n_{1}$ from the 1D nonlocal GL equation predicts

$$
\varepsilon \sim\left(\frac{c r^{2}}{3}\right)^{1 / 2} Q^{-1 / 2}
$$

- This appears to hold in 2D as well, for both the $Q$ and $c$ dependencies.
- $c=10$ (upper) and $c=0.1$ (lower).

- $r=1$ (i.e. not 'large')


## Summary

- Nonlocal terms arise naturally from conservation laws.
- Such terms strongly distort standard snaking into slanted snaking.
- This distortion means localised states exist over a wider region of parameter space - and perhaps are physically more robust
- Reduction to nonlocal GL equation and construction of approximate solutions helps reveal the origin of scaling laws, and hence prediction of (wider) parameter regime over which localised states exist.
- Region of existence is reduced, but not in fact by much, as domain size $L$ decreases.
- Parameter $c$ affects prefactors but not exponents in scaling laws.
- ... and the 1D scaling laws appear to carry over into 2D (for spots).

