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Outline
Physical examples

Dielectric gas discharge / nonlinear optics
Vertically shaken granular media / viscoelastic fluid
Magnetoconvection

Toy model: Swift–Hohenberg + nonlinear diffusion eqn
‘Slanted snaking’
Reduction to a nonlocal Ginzburg–Landau equation
Scaling laws

Construction of fully nonlinear solutions - to try to understand scaling laws
1. Patching
2. via the ‘Variational Approximation’

2D Catherine Penington

J.H.P. Dawes, The emergence of a coherent structure for coherent structures: localized states in nonlinear
systems. Phil. Trans. Roy. Soc. 368, 3519–3534 (2010)
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Slanted snaking - examples

Semiconductor filaments:

K.M. Mayer, J. Parisi and R.P. Huebner, Z. Phys. B 71, 171-178 (1988)
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Slanted snaking – examples

Dielectric gas discharge
H.-G. Purwins et al

Model equation
W.J. Firth et al

ut = [r − (1 + ∂2
x)2]u+ b2u

2 − u3 − γ〈u2〉u
E. Ammelt. PhD Thesis, University of Münster (1995)
W.J. Firth, L. Columbo, A.J. Scroggie, Proposed resolution of theory–experiment discrepancy in homoclinic snaking. Phys.
Rev. Lett. 99, 104503 (2007)

BIRS, July 2011 – p. 4/44



Granular Faraday Experiment

Granular ‘oscillons’
... are observed below periodic
patterns.

P.B. Umbanhowar, F. Melo and H.L. Swinney, Nature 382, 793 (1996)
J.H.P. Dawes & S. Lilley, SIAM J. Appl. Dyn. Syst. 9, 238–260 (2010)
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Viscoelastic Faraday Experiment

Regime diagram: Side views (over 2 driving periods)

oscillon pair triad

Oscillons are again observed BELOW hysteresis region for patterns

O. Lioubashevski, H. Arbell and J. Fineberg, Phys. Rev. Lett. 76, 3959–3962 (1996)
O. Lioubashevski, Y. Hamiel, A. Agnon, Z. Reches and J. Fineberg, Phys. Rev. Lett. 83, 3190–3193 (1999)

BIRS, July 2011 – p. 6/44



Thin layer Granular Faraday

Left: Experiment; Right: molecular dynamics simulation

7.5 10.0 12.5 15.0 17.5 20.0 22.5

0.0

0.5

1.0

1.5

2.0

2.5

r

L2

A. Götzendorfer, J. Kreft, C.A. Kruelle and I. Rehberg, Sublimation of a vibrated granular monolayer: coexistence of gas and
solid Phys. Rev. Lett. 95, 135704 (2005)

BIRS, July 2011 – p. 7/44



Magnetoconvection

Numerical simulations: Rayleigh–Bénard convection with a vertical magnetic field

R = 105, Q = 1600

σ = 0.1, ζ = 0.2

stress-free, T fixed (lower)

radiative b.c. (upper)

8 × 8 × 1 stratified layer

density contrast approx 11.

blue = strong field

purple = weak field

A.M. Rucklidge, N.O. Weiss, D.P. Brownjohn, P.C. Matthews & M.R.E. Proctor, J. Fluid Mech. 419, 283–323 (2000)
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Localised magnetoconvection

R = 20 000, Q = 14 000, ζ = 0.1, σ = 1.0, L = 6.0

Temperature (deviation) & velocity: |B|2:

Subcritical finite-amplitude magnetoconvection noted by several previous authors:

N.O. Weiss Proc. Roy. Soc. Lond. (1966) – flux expulsion

F.H. Busse, J. Fluid Mech. 71 193–206 (1975):

“...thus finite amplitude onset of steady convection becomes possible at
Rayleigh numbers considerably below the values predicted by linear theory.”

... and recent work by
D. Lo Jacono, A. Bergeon and E. Knobloch. Preprint. (2011)
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Localised magnetoconvection
Strongly nonlinear localised states (‘convectons’) persist for strong fields.

dT
dz

|top for increasing Q at fixed R:

S.M. Blanchflower, Phys. Lett. A 261, 74–81 (1999); PhD thesis, University of Cambridge (1999)

J.H.P. Dawes, Localised convection cells in the presence of a vertical magnetic field. J. Fluid Mech. 570, 385–406 (2007)
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Magnetoconvection

Boussinesq equations for 2D thermal convection, vertical magnetic field:

∂tω + J [ψ,ω] = −σR∂xθ − σζQ(J [A,∇2A] + ∂z∇2A) + σ∇2ω

∂tθ + J [ψ, θ] = ∇2θ + ∂xψ

∂tA+ J [ψ,A] = ∂zψ + ζ∇2A

Jacobian: J [f, g] ≡ ∂xf∂zg − ∂zf∂xg

θ(x, z, t) – perturbation to the conduction profile T = 1 − z

ψ(x, z, t) – streamfunction.

u = ∇× (ψ(x, z, t)ŷ), so ω = −∇2ψ

Magnetic field B = B0 + ∇× (A(x, z, t)ŷ) = (−∂zA, 0, 1 + ∂xA)

Nondimensionalised so that B0 = (0, 0, 1)
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Magnetoconvection

Take analytically simple boundary conditions:

Stress–free + fixed temperature + vertical field
ψ = ω = θ = ∂zA = 0 on z = 0, 1

Periodic in horizontal direction: 0 ≤ x ≤ L

Four dimensionless parameters:

thermal Prandtl number: σ = ν/κ

magnetic Prandtl number: ζ = η/κ

Rayleigh number: R = α̂g∆T d3

κν

Chandrasekhar number: Q = |B0|
2d2

µ0ρ0νη

S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability. OUP (1961)
M.R.E. Proctor and N.O. Weiss, Rep. Prog. Phys. 45, 1317–1379 (1982)
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Weakly nonlinear theory

Introduce long length and time scales X = εx, T = ε2t.

Matthews and Cox pointed out the need to include a large-scale mode
A0(X,T ) for the magnetic field:

ψ = εa(X,T )eikx sinπz + c.c.+O(ε2)

θ = εc1a(X,T )eikx sinπz + c.c.+O(ε2)

A = εc2a(X,T )eikx cosπz + εc2A0(X,T ) + c.c.+O(ε2)

At O(ε3) and O(ε4) we derive amplitude equations:

aT = µa+ aXX − a|a|2−aA0X

A0T = ζA0XX+π(|a|2)X

Coupling terms represent suppression by the magnetic field and flux
expulsion by the fluid flow
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Weakly nonlinear theory

Constant-amplitude, steady rolls:

a = const, A0X = 0

are unstable (at onset) to modula-
tional disturbances if:

ζ2k4(π2 + k2) < π2(2k2 − π2)(k2 + 3π2)

i.e. if ζ is sufficiently small, for fixed
Q.

P.C. Matthews and S.M. Cox, Nonlinearity 13, 1293–1320 (2000)
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Weakly nonlinear theory - restrictions

Convection amplitude is assumed small

Deviation from uniform field strength is assumed small

Solutions look much more ‘fully nonlinear’

Temperature (deviation) & velocity: |B|2:

Can we employ a different asymptotic limit to investigate more strongly
nonlinear solutions?
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Magnetoconvection: model problem

wt = [r − (1 + ∂2
x)2]w − w3 −QB2w (1)

Bt = ζBxx + c
ζ
(w2B)xx (2)

Symmetries:

w → −w (Boussinesq problem)

B → −B (direction of magnetic field)

Parameters:

r - reduced Rayleigh number r = R/Rc

Q - Chandrasekhar number ∝ |B0|2

〈B〉 = 1 after nondimensionalising

ζ - magnetic/thermal diffusivity ratio ζ = η/κ

Remark : Traditional weakly nonlinear analysis would be
w = εw1 + · · ·, B = 1 + ε2B2 + · · ·, X = εx, T = ε2t

P.C. Matthews & S.M. Cox Nonlinearity 13, 1293–1320 (2000)
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Magnetoconvection: model problem

Set ∂t ≡ 0. Integrate (2) twice:

ζP = B

(

ζ +
cw2

ζ

)

where P is a constant of integration.

Re-arrange and integrate over the domain [0, L]:
〈

P
1+cw2/ζ2

〉

= 〈B〉 def
= 1

Hence

1

P
=

〈

1

1 + cw2/ζ2

〉

So P [w] measures the higher concentration of the large-scale mode in the region
outside the localised pattern. Substituting, we obtain

0 = [r − (1 + ∂2
x)2]w − w3 − QP 2w

(1 + cw2/ζ2)2
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Nonlocal Ginzburg–Landau eqn

0 = [r − (1 + ∂2
xx)2]w − w3 − QP 2w

(1 + cw2/ζ2)2

Suppose ζ � 1

Introduce the long scales X = ζx, T = ζ2t.

Rescale: Q = ζ2q and r = ζ2µ.

Expand: w(x, t) = ζA(X,T ) sinx+O(ζ2), assuming A(X,T ) real.

Interpret spatial average as over both x ∈ [0, 2π] and X:

1
P

=
〈 〈

1
1+A2 sin2 x

〉

x

〉

X
=

〈

1√
1+A2

〉

X

Extract solvability condition by multiplying by sinx and integrating over x:

0 = µA+ 4AXX − 3

4
A3 − qP 2A

(1 + cA2)3/2
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Nonlocal Ginzburg–Landau reduction
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Nonlocal Ginzburg–Landau reduction
q = 10, c = 0.25, εL = 10π.
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Maxwell point → ‘Maxwell curve’
Nonlocal Ginzburg–Landau equation (3) has a first integral:

E =
µ

2
A2 + 2A2

X − 3

16
A4 +

qP 2

c

1√
1 + cA2

Condition E|A=0 = E|A=A0
, assuming that nontrivial state occupies a fraction

`c/L of the domain, yields an analytic prediction for the ‘Maxwell curve’:

144c2A6
0 + (207 − 384cµ)cA4

0 + (72 − 432cµ+ 256c2µ2)A2
0 + 96µ(2cµ− 1) = 0
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Nonlocal Ginzburg–Landau reduction

Bifurcation curves in the (µ, q) plane:
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Return to (w, B) equations

wt = [r − (1 + ∂2
xx)2]w − w3 −QB2w (1)

Bt = ζBxx + c
ζ
(w2B)xx (2)
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J.H.P. Dawes, Localised pattern formation with a large-scale mode: slanted snaking. SIAM J. App. Dyn. Syst. 7, 186–206
(2008)
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Slanted snaking - details
Full magnetoconvection equations:

Toy model:
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Scaling laws for(w, B) equations
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Solid lines contain the most subcritical part of snake. Dashed line = limit of subcriticality of periodic
pattern.

For sn1 (lower limit of snake): ε ∼ Q−1/2 which agrees with nonlocal GL equation.

Next twist above sn1 scales as ε ∼ Q−3/4 - this scaling is not obvious.
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Fully nonlinear solutions
Nonlocal G-L equation:

0 = µA+ 4AXX − 3

4
A3 − qP 2A

(1 + cA2)3/2
where

1

P
=

1

L

∫ L

0

1√
1 + cA2

dX
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Suggestive rescalings

Centre:
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Parameters: c = 0.25, L = 10π.
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Asymptotic regimes

0 = µA+ 4AXX − 3

4
A3 − qP 2A

(1 + cA2)3/2

Consider the general rescaling A(X) = qαB(ξ) ξ = qβX.

Four regimes:

1. α < 0 ⇒ 4q2βBξξ ∼ qP 2B and β = 1/2. Linear

2. α = 0 ⇒ 4Bξξ ∼ P2B

(1+cB2)3/2
and β = 1/2. Difficult

3. α = β = 1/5 ⇒ 4Bξξ ∼ 3
4
B3 ∼ P2

c3/2B2
. Difficult

4. α > 1/5 ⇒ α = β and so 4Bξξ ∼ 3
4
B3. Large amplitude

Focus on regimes 1 and 4: ‘outer’ and ‘inner’.
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Patching
Construct even-symmetric solutions in −L/2 ≤ X ≤ L/2:

Outer solution Aout(X) in X∗ < |X| < L/2 – regime 1.

Inner solution Ain(X) in −X∗ < X < X∗ – regime 4.

Outer solution: 0 = µA+ 4AXX − qP 2A

Aout(X) = Ã1 cosh((X − L/2)
√

qP 2 − µ/2)

⇒ Aout(X) ≈ A1

2
exp

(

−X
√

qP 2 − µ/2
)

1 unknown constant: A1.

Inner solution: let λ = q−2αµ, ξ = q−αX, B(ξ) = q−αA(X) for some α > 1/5.
Then

0 = λB + 4Bξξ −
3

4
B3
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Patching
Inner solution:

0 = λB + 4Bξξ −
3

4
B3

has the solution

B(ξ) = B0 sn (η |m)

where

η := ξ

(

λ

4
− 3B2

0

32

)1/2

+K(m) m :=
3B2

0/32

λ/4 − 3B2
0/32

and

K(m) =

∫ π/2

0

dθ

(1 −m sin2 θ)1/2
.

K(m) is a quarter-period of sn, i.e. sn(η + 4K|m) = sn(η|m).
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Patching

In 0 < X < X∗: Ain(X) = A0 sn

(

(

µ
4
− 3A2

0

32

)1/2

X +K(m)

∣

∣

∣

∣

m

)

In X∗ < X < L/2: Aout(X) = A1

2
exp

(

−X
√

qP 2 − µ/2
)

There are 2 unknown constants: A0 and A1, plus the patch point X∗.

Requires 3 equations:

a = Ain(X∗)

a = Aout(X
∗)

A′
in(X∗) = A′

out(X
∗)

where we fix the constant a = 0.1 (fit parameter);

In addition we have to solve for P :

1

P
=

2

L

(

∫ X∗

0

1
√

1 + cAin(X)2
dX +

∫ L/2

X∗

1
√

1 + cAout(X)2
dX

)
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Patching - results
Locations of saddle-node bifurcations µsn(q):
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Remarks:

Blue line indicates µ ∼ q1/2 scaling

At fixed L, values of 0 < m < 1 tend (slowly) to 1 as q → ∞.
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Derivation of µsn ∼ q1/2

As q → ∞, µsn increases, hence so does the constant A0(= A(X = 0).

So sn(·|m) must tend to zero, and so can be approximated by Taylor series.

The patching conditions can be combined into the form

A′
in(X∗)

Ain(X∗)
=

A′
out(X

∗)

Aout(X∗)
,

which is useful since the exp(·) factors on the RHS cancel, leaving

(µ/4 − 3A2
0/32)1/2

K − (µ/4 − 3A2
0/32)1/2X∗

= −q1/2P

2
.

Further simplification of the denominator of the LHS leads to

a ∼
(

4λ

3

)1/2

qα/2 2

Pq1/2

(

λ

8
qα

)1/2

.

which implies α = 1/2.
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Variational Approximation (VA)
Idea:

For equations whose steady solutions extremise a Lagrangian

L =

∫ ∞

0

F (w,wx, wxx, . . .) dx

choose a parameterised family for w(x), say w(x) = f(x; a1, . . . , ak).
Then compute L by direct integration to give an ‘effective Lagrangian’
restricted to the family f :

Leff(a1, . . . , ak) =

∫ ∞

0

F (f, fx, fxx, . . .) dx

Then, functions that extremise L can be approximately found by extremising
Leff with respect to the parameters a1, . . . , ak.

So we are left with the simpler problem of solving the k (nonlinear algebraic)
equations

∂Leff

∂a1
=
∂Leff

∂a2
= · · · =

∂Leff

∂ak
= 0.

H. Susanto & P.C. Matthews PRE 83 035201(R) (2011); Chong, Pelinovsky, Malomed ...
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VA for modulation equation
The nonlocal Ginzburg–Landau equation

0 = µA+ 4AXX − 3

4
A3 − qP 2A

(1 + cA2)3/2

has the (surprisingly simple) Lagrangian

L =

∫ L

0

(

−µ
2
A2 + 2(AX)2 +

3

16
A4

)

dX +
qL

c
P

where, as before,
1

P
=

1

L

∫ L

0

1√
1 + cA2

dX

Choose a very simple family of solutions to extremise over – step functions:

A(X) =

{

a in 0 < X < `

0 in ` < X < L

2 parameters: a, `.
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VA calculations

We obtain:

Leff = −µ
2
a2`+

3a4

16
`+

qL2

c

√
1 + ca2

`+ (L− `)
√

1 + ca2

Now compute ∂Leff/∂a and ∂Leff/∂`, and solve.

... at least, solve in the limit of large amplitude, a� 1.

The limit of large a:

First compute P :

P =
L
√
ca

`+ (L− `)
√
ca

Two cases:
if L− ` = O(1) then P ∼ L/(L− `) = O(1)

if L− ` = u/a� 1 where u ∼ 1 then P ∼ aL
√
c/(`+ u

√
c) = O(a) � 1
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VA calculations

Case 1: a� 1, L− ` = O(1).

We find that µ = O(a2), so, expanding in powers of a, we obtain

µ =
3a2

4
+

3

16
√
c
a+O(1)

and so

q =

(

L− `

L

)2
3c

16
a4 + · · · ∼

(

L− `

L

)2
c

3
µ2

Lower limit (i.e. saddle-node) of this is then at ` = 0.

This prediction for the location of sn1 is broadly in agreement with numerics
in the case c = 0.25:

numerics : q ∼ 0.0927µ1.987

theory : q ∼ 0.0833µ2
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VA results for sn1

c = 0.25, L = 10π:
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 VA − smooth fn
 VA − step fn
 numerics
 t − lin inst µ=q
 patching

Recall that patching method has a free parameter.

VA using a step function performs as well as using a smooth ansatz in the
form

A(X) =
a

√

1 + exp(b(|X| − `))
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VA calculations

Case 2: a� 1, L− ` = u
a
� 1.

As in case 1, µ = O(a2), so, expanding in powers of a, we obtain

µ =
3a2

4
+

3

16
√
c
a+O(1)

but now

q =

(

L+ u
√
c

L

)2
3

16
a2 + · · · ∼

(

L+ u
√
c

L

)2
µ

4

Upper limit (i.e. saddle-node) of this is then at u = 0, and is independent of c
(at leading order).

This prediction for the location of sn3 is broadly in agreement with numerics
in the case c = 0.25:

numerics : q ∼ 0.298µ0.986

theory : q ∼ 0.25µ
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Axisymmetric solutions

Steady, axisymmetric solutions to the system

wt = rw − (1 + ∇2)2w − w3 −QB2w

Bt = ε∇2B +
c

ε
∇2(w2B)

in R
n satisfy the nonlocal ODE

wrrrr = (µ− 1)w − 2wrr − 2(n− 1)

r
wr +

(n− 1)(n− 3)

r3
wr

− (n− 1)(n− 3)

r2
wrr − 2(n− 1)

r
wrrr − w3 − QP 2w

(1 + cw2/ε2)2

which contains the integral contribution

P−1 = 〈(1 + cw2/ε2)−1〉 where 〈f〉 :=
n

Ln

∫ L

0

f(r)rn−1 dr
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2D – Spot AB
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2D – Spot AB

Existence region (limits of snaking curve) opens out with same scalings as in 1D:

10
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ε

Upper line: ε ∼ Q−1/2; lower line: ε ∼ Q−3/4.
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2D - varying c

The scaling law for sn1 from the
1D nonlocal GL equation predicts

ε ∼
(

cr2

3

)1/2

Q−1/2

This appears to hold in 2D as
well, for both the Q and c
dependencies.

c = 10 (upper) and c = 0.1
(lower).

r = 1 (i.e. not ‘large’)
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Summary

Nonlocal terms arise naturally from conservation laws.

Such terms strongly distort standard snaking into slanted snaking.

This distortion means localised states exist over a wider region of parameter
space - and perhaps are physically more robust

Reduction to nonlocal GL equation and construction of approximate solutions
helps reveal the origin of scaling laws, and hence prediction of (wider)
parameter regime over which localised states exist.

Region of existence is reduced, but not in fact by much, as domain size L
decreases.

Parameter c affects prefactors but not exponents in scaling laws.

... and the 1D scaling laws appear to carry over into 2D (for spots).

BIRS, July 2011 – p. 44/44


	Outline
	Slanted snaking - examples
	Slanted snaking -- examples
	Granular Faraday Experiment
	Viscoelastic Faraday Experiment
	Thin layer Granular Faraday
	Magnetoconvection
	Localised magnetoconvection
	Localised magnetoconvection
	Magnetoconvection
	Magnetoconvection
	Weakly nonlinear theory
	Weakly nonlinear theory
	Weakly nonlinear theory - restrictions
	Magnetoconvection: model problem
	Magnetoconvection: model problem
	Nonlocal Ginzburg--Landau eqn
	Nonlocal Ginzburg--Landau reduction
	Nonlocal Ginzburg--Landau reduction
	Maxwell point $
a $ `Maxwell curve'
	Nonlocal Ginzburg--Landau reduction
	Return to $(w,B)$
equations
		extit {Slanted} snaking - details
	Scaling laws for $(w,B)$
equations
	Fully nonlinear solutions
	Suggestive rescalings
	Asymptotic regimes
	Patching
	Patching
	Patching
	Patching - results
	Derivation of $mu _{sn} sim q^{1/2}$
	Variational Approximation (VA)
	VA for modulation equation
	VA calculations
	VA calculations
	VA results for $sn_1$
	VA calculations
	Axisymmetric solutions
	2D -- Spot AB
	2D -- Spot AB
	2D - varying $c$
	Summary

