Max-plus algebra in the numerical solution of Hamilton-Jacobi and Isaacs equations

Marianne Akian

(INRIA Saclay - Île-de-France and CMAP, École Polytechnique)
BIRS Workshop 11w5086
Advancing numerical methods for viscisity solutions and Applications Feb. 14-18, 2011
works with A. Lakhoua, S. Gaubert, A. Guterman, S. Detournay.

Dynamic programming equations of optimal control and zero-sum games problems

For instance if the Hamiltonian H is convex:

$$
H(x, p, X)=\sup _{\alpha \in \mathcal{A}}\left[p \cdot f(x, \alpha)+\frac{1}{2} \operatorname{tr}\left(\sigma(x, \alpha) \sigma^{T}(x, \alpha) X\right)+r(x, \alpha)\right]
$$

and under regularity conditions, v is the viscosity solution of

$$
-\frac{\partial v}{\partial t}+H\left(x, \frac{\partial v}{\partial x}, \frac{\partial^{2} v}{\partial x^{2}}\right)=0,(x, t) \in X \times[0, T), \quad v(x, T)=\phi(x), x \in X
$$

if and only if v is the value function of the finite horizon stochastic control problem:

$$
\begin{aligned}
v(x, t)= & \sup \mathbb{E}\left[\int_{t}^{T} r(\mathbf{x}(s), \mathbf{a}(s)) d s+\phi(\mathbf{x}(T)) \mid \mathbf{x}(t)=x\right] \\
& d \mathbf{x}(s)=f(\mathbf{x}(s), \mathbf{a}(s))+\sigma(\mathbf{x}(s), \mathbf{a}(s)) d W(s), \quad \mathbf{x}(s) \in X \\
& \mathbf{a} \text { strategy, } \mathbf{a}(s) \in \mathcal{A}
\end{aligned}
$$

Max-plus or tropical algebra

- It is the idempotent semiring $\mathbb{R}_{\max }:=(\mathbb{R} \cup\{-\infty\}, \oplus, \otimes)$, where $a \oplus b=\max (a, b)$ and $a \otimes b=a+b$. The neutral elements are $0=-\infty$ and $1=0$.
- It is the limit of the logarithmic deformation of \mathbb{R}_{+}semiring:

$$
\begin{aligned}
\max (a, b) & =\lim _{\varepsilon \rightarrow 0_{+}} \varepsilon \log \left(e^{a / \varepsilon}+e^{b / \varepsilon}\right) \\
a+b & =\varepsilon \log \left(e^{a / \varepsilon} e^{b / \varepsilon}\right)
\end{aligned}
$$

and the usual order of \mathbb{R} is a "natural" order on $\mathbb{R}_{\max }$, for which all elements are "positive" or "zero".

- The complete max-plus algebra $\overline{\mathbb{R}}_{\text {max }}$ is obtained by completing $\mathbb{R}_{\max }$ with the $+\infty$ element with the convention $+\infty+(-\infty)=-\infty$.
- One can define on $\mathbb{R}_{\max }$ or $\overline{\mathbb{R}}_{\text {max }}$ notions similar to those of usual algebra: matrices, scalar product, linear spaces, measures, integrals, cones,...

Part I: Max-plus discretizations

First order HJ equations, or dynamic programming equations of undiscounted deterministic optimal control problems are max-plus linear, that is the Lax-Oleinik semigroup $S^{t}: \phi \mapsto v(\cdot, T-t)$ is max-plus linear (Maslov, 87):

$$
S^{t}\left(\sup \left(\lambda_{1}+\phi_{1}, \lambda_{2}+\phi_{2}\right)\right)=\sup \left(\lambda_{1}+S^{t}\left(\phi_{1}\right), \lambda_{2}+S^{t}\left(\phi_{2}\right)\right),
$$

where $\lambda+\phi: x \mapsto \lambda+\phi(x)$.
Recall that the set of all functions $X \rightarrow \mathbb{R}_{\max }$ or $\overline{\mathbb{R}}_{\text {max }}$ is a max-plus semimodule (that is a linear space over $\mathbb{R}_{\text {max }}$), where

- the addition is the pointwise maximum, which is equivalent to the supremum,
- the multiplication by a scalar is the pointwise addition $\lambda \cdot \phi=\lambda+\phi$.

Max-plus analogue of linear PDEs

Usual algebra
Parabolic PDE: $-\frac{\partial v}{\partial t}+L v=0$
Heat equation $L v:=\Delta v$
Elliptic PDE: $L v=0$
Eigenproblem: $L v=\lambda v$

Max-plus algebra
Evolution HJ PDE: $-\frac{\partial v}{\partial t}+H\left(x, \frac{\partial v}{\partial x}\right)=0$
LQ problem: $H(x, p):=\frac{p^{2}}{2}$
Stationnary HJ: $H\left(x, \frac{\partial v}{\partial x}\right)=0$
Ergodic HJ: $-\lambda+H\left(x, \frac{\partial v}{\partial x}\right)=0$
with

$$
L v=\frac{1}{2} \sum_{i, j=1}^{n} a_{i j}(x) \frac{\partial^{2} v}{\partial x_{i} \partial x_{j}}+\sum_{i=1}^{n} g_{i}(x) \frac{\partial v}{\partial x_{i}}-\delta(x) v+c(x)
$$

Max-plus analogue of discretization schemes
Usual algebra \quad Max-plus algebra

Probabilist point of view:
Discretize the Brownian process
Variational point of view:
Weak solution of
$-\frac{1}{2} \Delta v=f$ on $\Omega, v=0$ on $\partial \Omega$
$v \in \mathcal{V}, \frac{1}{2} \int \nabla v \nabla \phi=\int f \phi \forall \phi \in \mathcal{V}$,
where $\mathcal{V}=H_{0}^{1}(\Omega)$.
FEM: replace V by finite dimensional subspaces

Discretize the max-plus Brownian process (A., Quadrat, Viot, 98).

Generalized solution of HJ (Kolokoltzov and Maslov, 88):
$v^{t} \in \mathcal{W},\left\langle v^{t+\delta}, \phi\right\rangle=\left\langle S^{\delta} v^{t}, \phi\right\rangle \forall \phi \in \mathcal{Z}$ \mathcal{W}, \mathcal{Z} are subsemimodules of $\mathbb{R}_{\max }^{X}$. Max-plus FEM: replace \mathcal{W} and \mathcal{Z} by finitely generated subsemimodules (A. Gaubert, Lakhoua, SICON 08).

Replace S^{δ} by a finite dimensional max-plus linear operator (Fleming and McEneaney, 00).
Finite difference point of view:
Error: use linearity and regularity, or monotonicity
impossible possible.

The max-plus finite element method

- The max-plus scalar product is given by:

$$
\langle u, v\rangle=\sup _{x \in X} u(x)+v(x) .
$$

- We fix the max-plus semimodules \mathcal{W} and \mathcal{Z} for solutions and test functions, together with some approximation of them by finitely genererated subsemimodules \mathcal{W}_{h} and \mathcal{Z}_{h} (here and in the sequel h refers to discretized objects):

$$
\begin{aligned}
& \mathcal{W}_{h}=\operatorname{span}\left\{w_{1}, \ldots, w_{p}\right\} \quad \text { finite elements } \\
& \mathcal{Z}_{h}=\operatorname{span}\left\{z_{1}, \ldots, z_{q}\right\} \quad \text { test functions }
\end{aligned}
$$

Examples of semimodule and their discretizations:

- \mathcal{W} is the space of I.s.c. convex functions and $w_{i}: x \mapsto \theta_{i} \cdot x$, $\theta_{i} \in \mathbb{R}^{n}$.

- \mathcal{W} is the space of l.s.c. c-semiconvex functions and $w_{i}: x \mapsto-\frac{c}{2}\left\|x-\hat{x}_{i}\right\|^{2}, x_{i} \in \mathbb{R}^{n}$.
- \mathcal{W} is the space of 1 -Lip functions and $w_{i}: x \mapsto-\left\|x-\hat{x}_{i}\right\|, x_{i} \in \mathbb{R}^{n}$.

The max-plus FEM (continued)

- The approximation v_{h}^{t} of the generalized solution v^{t} of HJ equation must satisfy

$$
v_{h}^{t} \in \mathcal{W}_{h}, \quad\left\langle v_{h}^{t+\delta}, \phi\right\rangle=\left\langle S^{\delta} v_{h}^{t}, \phi\right\rangle \forall \phi \in \mathcal{Z}_{h}, t=\delta, 2 \delta, \ldots,
$$

- This is equivalent to

$$
v_{h}^{t}=\sup _{1 \leq j \leq p} \lambda_{j}^{t}+w_{j}
$$

and

$$
\sup _{1 \leq j \leq p}\left(\lambda_{j}^{t+\delta}+\left\langle w_{j}, z_{i}\right\rangle\right)=\sup _{1 \leq j \leq p}\left(\lambda_{j}^{t}+\left\langle S^{\delta} w_{j}, z_{i}\right\rangle\right) \quad \forall 1 \leq i \leq q
$$

- This equation is of the form $M \lambda^{t+\delta}=K \lambda^{t}$, where M and K are analogues of the mass and stiffness matrices, respectively.
- To compute $\lambda^{t+\delta}$ as a function of λ^{t}, one need to solve a max-plus linear system of the form $M \mu=\nu$, which may not have a solution.
- But it has always a greatest subsolution $(M \mu \leq \nu), M^{\sharp} \nu$, where M^{\sharp} is a the adjoint of M, it is a min-plus linear operator:

$$
\left(M^{\sharp} \nu\right)_{j}=\min _{1 \leq i \leq q}-M_{i j}+\nu_{i} .
$$

- So we take for max-plus FEM iteration:

$$
\lambda^{t+\delta}=M^{\sharp} K \lambda^{t} .
$$

Summary of max-plus FEM:

- Approach v^{t} by $v_{h}^{t}:=\sup _{1 \leq j \leq p} \lambda_{j}^{t}+w_{j}$ where the λ_{j}^{0} are given, and

$$
\lambda_{j}^{t+\delta}=\min _{1 \leq i \leq q}\left(-\left\langle w_{j}, z_{i}\right\rangle+\max _{1 \leq k \leq p}\left(\left\langle S^{\delta} w_{k}, z_{i}\right\rangle+\lambda_{k}^{t}\right)\right), t=\delta, 2 \delta, \ldots, 1
$$

- This is a zero-sum two player (deterministic) game dynamic programming equation!
- The states and actions are in $[p]:\{1, \ldots, p\}$ and $[q]$, Min plays in states $j \in[p]$, choose a state $i \in[q]$ and receive $M_{i j}$ from Max, Max plays in states $i \in[q]$, chooses a state $k \in[p]$ and receive $K_{i k}$ from Min. $\lambda_{j}^{N \delta}$ is the value of the game after N turns (Min + Max) starting in state j.

A geometric rewritting of the max-plus FEM :

- The FEM iterations can also be written as:

$$
v_{h}^{t+\delta}=\Pi_{h \circ} S^{\delta}\left(v_{h}^{t}\right) \quad \text { and } \quad v_{h}^{0}=P_{\mathcal{W}_{h}} v^{0}
$$

where

$$
\begin{aligned}
\Pi_{h} & =P_{\mathcal{W}_{h} \circ} P^{-\mathcal{Z}_{h}} \\
P_{\mathcal{W}_{h}} v & =\max \left\{w \in \mathcal{W}_{h} \mid w \leq v\right\} \\
P^{-\mathcal{Z}_{h} v} & =\min \left\{w \in-\mathcal{Z}_{h} \mid w \geq v\right\}
\end{aligned}
$$

- These max-plus projectors were studied by Cohen, Gaubert, Quadrat, they are nonexpansive in the sup-norm.

Example of projector $\Pi_{h}=P_{\mathcal{W}_{h}} P^{-\mathcal{Z}_{h}}$

We choose $P 2$ finite elements and $P 1$ test functions

Example of projector $\Pi_{h}=P_{W_{h}} \circ R^{-z_{h}}$

Example of projector $\Pi_{h}=P_{\mathcal{N}_{n} \circ}{ }^{\circ} P^{-z_{n}}$

$$
P^{-Z_{h}}(v)
$$

Example of projector $\Pi_{h}=P_{\mathcal{W}_{n}}{ }^{\circ} P^{-z_{n}}$

$$
P^{-Z_{h}}(v)
$$

Example of projector $\Pi_{h}=P_{\mathcal{W}_{n}}{ }^{\circ} P^{-z_{n}}$

$$
P^{-Z_{n}}(v)
$$

- As in the usual FEM, the error can be estimated from projection errors:

$$
\begin{aligned}
\left\|v_{h}^{T}-v^{T}\right\|_{\infty} & \leq\left(1+\frac{T}{\delta}\right) \text { Projection error } \\
\text { Projection error } & =\sup _{t=0, \delta, \ldots, T}\left\|P_{\mathcal{W}_{h} \circ} P^{-\mathcal{Z}_{h}} v^{t}-v^{t}\right\|_{\infty} \\
& \leq \sup _{t=0, \delta, \ldots, T}\left(\left\|P^{-\mathcal{Z}_{h}} v^{t}-v^{t}\right\|_{\infty}+\left\|P_{\mathcal{W}_{h}} v^{t}-v^{t}\right\|_{\infty}\right) .
\end{aligned}
$$

- By convexity techniques, we obtain

$$
\text { Projection error } \leq C(\Delta x)^{k} / \delta
$$

with $k=1$ or 2 depending on the "degree" of the finite elements and on the regularity of the solution v^{t}, and Δx equal to the "diameter" of the space discretization (Voronoi cells or Delaunay triangulation).

- The max-plus approximation theory seems limited to $k=2$?

However, this was an ideal FEM method. One need to compute:

$$
\begin{aligned}
& M_{i j}=\left\langle w_{j}, z_{i}\right\rangle=\sup _{x \in X} w_{j}(x)+z_{i}(x) \\
& K_{i k}=\left\langle z_{i}, S^{\delta} w_{k}\right\rangle=\sup _{x \in X, u(\cdot)} \quad z_{i}(x)+\int_{0}^{\delta} \ell(\mathbf{x}(s), \mathbf{u}(s)) d s+w_{k}(x)
\end{aligned}
$$

- For good choices of w_{j} and $z_{i}, M_{i j}$ can be computed analytically.
- Computing $K_{i k}$ is a usual optimal control problem, but horizon δ may be small, and the final and terminal rewards w_{j} and z_{i} may be chosen to be nice, so that $K_{i k}$ may be well approximated.
- Then

$$
\left.\left\|v_{h}^{T}-v^{\top}\right\|_{\infty} \leq\left(1+\frac{T}{\delta}\right) \text { (Projection error }+ \text { Approximation error }\right)
$$

- For instance, using r-order one-step approximations of $S^{\delta} w_{i}(x)$, Approximation error $=O\left(\delta^{r+1}\right)$.
- So the total max-plus FEM error is in the order of

$$
(\Delta x)^{k} / \delta+\delta^{r}
$$

with $r \geq 1$, and $k=1$ or 2 .

Remarks

- These error estimates are similar to those of some semi-lagrangian schemes.
- They need some regularity of $/$ and f and do not work for Dirichlet limit conditions, or variational inequalities (stopping time problems).
- Hence it is not clear that they are less diffusive than usual finite difference methods.
- δ need to be small and $\Delta x \simeq \delta^{\frac{r+1}{k}}$.
- The matrices are full, then the complexity $\left(O\left(\epsilon^{-(1+2 n)}\right)\right.$ when $k=2$ and $r=1$) is too large to be able to handle problems with dimension >2.
- It is comparable with the complexity of the finite difference method, if we consider the usual estimation of this method that is in $O\left(\delta^{1 / 2}\right)$.

Perspectives

- Take higher order methods to approximate K or $S^{\delta} w_{i}$, for instance a direct or Pontryagin method with step $\Delta t \ll \delta$ and order r.
- Then the error is in the order of

$$
(\Delta t)^{r}+(\Delta x)^{k} / \delta,
$$

as soon as δ is small enough (but of order 1) to ensure that convexity propagate and that the global optimum of the control problem related to the computation of $K_{i j}$ is accessible by Pontryagin method.

- The complexity would then be in $O\left(\epsilon^{-(1+n)}\right)$ when $r=1$ and $k=2$, thus comparable to that of the finite difference method, if the error of this method were in $O(\Delta t)$.
- But it should be able to handle less regular value functions, and also less regular lagrangians and drifts, so Dirichlet boundary conditions or variational inequalities.
- It has some similarity with the point of view of McEneaney combining Riccati solutions with max-plus linearity.
- However, the problem of Curse of dimensionality is still there.

Part II: Tropical convex sets

$C \subset \mathbb{R}_{\text {max }}^{n}$ is a tropical convex set if
$f, g \in C \Longrightarrow[f, g]:=\left\{(\lambda+f) \vee(\mu+g) \mid \lambda, \mu \in \mathbb{R}_{\max }, \lambda \vee \mu=0\right\} \in C$

Tropical convex cones \Leftrightarrow subsemimodules over $\mathbb{R}_{\max }$.

Theorem

Every closed tropical convex cone of $\mathbb{R}_{\text {max }}^{n}$ is the intersection of tropical half-spaces, which means:

$$
C=\left\{u \in \mathbb{R}_{\max }^{n} \mid A u \leq B u\right\}
$$

with $A, B \in \mathbb{R}_{\max }^{I \times[n]}$, and I possibly infinite.
This comes from the max-plus separation theorem, see for instance Zimmermann 77, Cohen, Gaubert, Quadrat 01 and LAA04.

Tropical polyhedral cones are the intersection of finitely many tropical half-spaces ($I=[m]$), or equivalently, the convex hull of finitely many rays.
See the works of Gaubert, Katz, Butkovič, Sergeev, Schneider, Allamigeon,....
See also the tropical geometry point of view Sturmfels, Develin, Joswig, Yu,....

Recall: $A u \leq B u \Leftrightarrow u \leq f(u)$ with $f(u)=A^{\sharp} B u$,

$$
(f(u))_{j}=\inf _{i \in I}\left(-A_{i j}+\max _{k \in[n]}\left(B_{i k}+u_{k}\right)\right) .
$$

f is a min-max function (Olsder 91) when I is finite. In that case, $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ when the columns of A and the rows of B are not $\equiv-\infty$.

But the following are equivalent for $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$:

1. f can be written as $f(u)=A^{\sharp} B u$ with $A, B \in \mathbb{R}_{\max }^{l \times[n]}$;
2. f is the dynamic programming operator of a zero-sum two player deterministic game:

$$
[f(u)]_{j}=\inf _{i \in I} \max _{k \in[n]}\left(r_{j i k}+u_{k}\right)
$$

3. f is order preserving $(u \leq y \Rightarrow f(u) \leq f(y))$ and additively homogeneous $(f(\lambda+u)=\lambda+f(u))$.
4. f is the dynamic programming operator of a zero-sum two player stochastic game:

$$
[f(u)]_{j}=\inf _{\alpha \in \mathcal{A}} \sup _{\beta \in \mathcal{B}}\left(r_{j}^{\alpha, \beta}+\sum_{k \in[n]}\left(P_{j k}^{\alpha, \beta} u_{k}\right)\right)
$$

Then $C:=\left\{u \in(\mathbb{R} \cup\{-\infty\})^{n} \mid u \leq f(u)\right\}$ is a tropical convex cone. See Kolokoltsov; Gunawardena, Sparrow; Rubinov, Singer for $3 \Rightarrow 2$ or 4, take $I=\mathbb{R}^{n}$ and $r_{j y k}=f(y)_{j}-y_{k}$.

Proposition ((A., Gaubert, Guterman 09), uses (Nussbaum, LAA 86))

Let f be a continuous, order preserving and additively homogeneous self-map of $(\mathbb{R} \cup\{-\infty\})^{n}$, then the following limit exists and is independent of the choice of u :

$$
\bar{\chi}(f):=\lim _{N \rightarrow \infty} \max _{j \in[n]} f_{j}^{N}(u) / N
$$

and equals the following numbers:

$$
\begin{aligned}
& \rho(f):=\max \left\{\lambda \in \mathbb{R}_{\max } \mid \exists u \in \mathbb{R}_{\max }^{n} \backslash\{-\infty\}, f(u)=\lambda+u\right\}, \\
& \operatorname{cw}(f):=\inf \left\{\mu \in \mathbb{R} \mid \exists w \in \mathbb{R}^{n}, f(w) \leq \mu+w\right\}, \\
& \operatorname{cw}^{\prime}(f):=\sup \left\{\lambda \in \mathbb{R}_{\max } \mid \exists u \in \mathbb{R}_{\max }^{n} \backslash\{-\infty\}, f(u) \geq \lambda+u\right\} .
\end{aligned}
$$

Moreover, there is at least one coordinate $j \in[n]$ such that $\chi_{j}(f):=\lim _{N \rightarrow \infty} f_{j}^{N}(u) / N$ exists and is equal to $\bar{\chi}(f)$.
$\chi_{j}(f)$ is the mean payoff of the game starting in state j. See also Vincent 97, Gunawardena, Keane 95, Gaubert, Gunawardena 04.

Theorem Let

$$
C=\left\{u \in \mathbb{R}_{\max }^{n} \mid A u \leq B u\right\}
$$

$\exists u \in C \backslash\{-\infty\}$ iff Max has at least one winning position in the mean payoff game with dynamic programming operator $f(u)=A^{\sharp} B u$, i.e., $\exists j \in[n], \chi_{j}(f) \geq 0$.

$$
A=\left(\begin{array}{cc}
2 & -\infty \\
8 & -\infty \\
-\infty & 0
\end{array}\right) \quad B=\left(\begin{array}{cc}
1 & -\infty \\
-3 & -12 \\
-9 & 5
\end{array}\right)
$$

players receive the weight of the arc

$$
\begin{aligned}
2+u_{1} & \leq 1+u_{1} \\
8+u_{1} & \leq \max \left(-3+u_{1},-12+u_{2}\right) \\
u_{2} & \leq \max \left(-9+u_{1}, 5+u_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
2+u_{1} & \leq 1+u_{1} \\
8+u_{1} & \leq \max \left(-3+u_{1},-12+u_{2}\right) \\
u_{2} & \leq \max \left(-9+u_{1}, 5+u_{2}\right)
\end{aligned}
$$

$\chi(f)=(-1,5), u=(-\infty, 0)$ solution

Theorem ((A., Gaubert, Guterman 09))

Whether an (affine) tropical polyhedron

$$
\left\{u \in \mathbb{R}_{\max }^{n} \mid \max \left(\max _{j \in[n]}\left(A_{i j}+u_{j}\right), c_{i}\right) \leq \max \left(\max _{j \in[n]}\left(B_{i j}+u_{j}\right), d_{i}\right), i \in[m]\right\}
$$

is non-empty reduces to whether a specific state of a mean payoff game is winning.
The proof relies on Kohlberg's theorem (80) on the existence of invariant half-lines $f(u+t \eta)=u+(t+1) \eta$ for t large.

Corollary

Each of the following problems:

1. Is an (affine) tropical polyhedron empty?
2. Is a prescribed initial state in a mean payoff game winning?
can be transformed in linear time to the other one.

- Hence, algorithms (value iteration, policy iteration) and complexity results for mean-payoff games can be used in tropical convexity.
- Conversely one can compute $\chi(f)$ by dichotomy solving emptyness problems for convex polyhedra, so tropical linear programs.
- Can we find new algorithms for mean payoff games using this correspondance?
- Can we find polynomial algorithms for all these problems?

Part III: Policy iterations for stationnary zero-sum games

Consider the stationnary Isaacs equation:

$$
-\rho+H\left(x, \frac{\partial v}{\partial x}, \frac{\partial^{2} v}{\partial x^{2}}\right)=0, x \in X
$$

where we look for the mean payoff ρ and the bias function v. Using a monotone discretization, one obtains the additive spectral problem:

$$
\rho+u=f(u), u \in \mathbb{R}^{N},
$$

where f is the dynamic programming operator of a zero-sum two player undiscounted stochastic game.

We want to construct a fast algorithm that works even when the Markov matrices associated to fixed strategies may not be irreducible and for a large $N \Longrightarrow$ policy iterations with algebraic multigrid methods.

Policy iterations for optimal control problems

- For a discounted infinite horizon problem, one need to solve:

$$
u=f(u), \quad \text { where }[f(u)]_{j}=\sup _{\alpha \in \mathcal{A}} f(u ; j, \alpha):=r_{j}^{\alpha}+\sum_{k \in[N]}\left(P_{j k}^{\alpha} u_{k}\right)
$$

Here, for each strategy $\bar{\alpha}:[N] \rightarrow \mathcal{A}$, the matrix $\left(P_{i j}^{\bar{\alpha}}(\mathrm{j})\right)_{j k}$ is strictly submarkovian.

- The policy iteration (Howard 60): starts with $\bar{\alpha}_{0}$, and iterates:
- v^{n+1} is the value with fixed strategy $\bar{\alpha}_{n}$:

$$
v_{j}^{n+1}=f\left(v^{n+1} ; j, \bar{\alpha}_{n}(j)\right), j \in[N] .
$$

- find $\bar{\alpha}_{n+1}$ optimal for v^{n+1} :

$$
\bar{\alpha}_{n+1}(j) \in \operatorname{Argmax}_{\alpha \in \mathcal{A}} f\left(v^{n+1} ; j, \alpha\right) .
$$

- It generalizes Newton algorithm
- v^{n} is nonincreasing.
- If \mathcal{A} is finite, it converges in finite time to the solution.

Policy iterations for games

Now

$$
[f(u)]_{j}=\sup _{\alpha \in \mathcal{A}} f(u ; j, \alpha):=\inf _{\beta \in \mathcal{B}}\left(r_{j}^{\alpha, \beta}+\sum_{k \in[n]}\left(P_{j k}^{\alpha, \beta} u_{k}\right)\right)
$$

and $u \rightarrow f(u ; j, \alpha)$ is non linear.

- Assume the non linear system

$$
v=f^{\bar{\alpha}}(v), \quad \text { with } f^{\bar{\alpha}}(v)_{j}:=f(v ; j, \bar{\alpha}(j)), j \in[N]
$$

has a unique solution for any strategy $\bar{\alpha}$ of Max, then solving it with Policy Iteration, one obtains the policy iteration of (Hoffman and Karp 66, indeed introduced in the ergodic case).

- Assume they have a possibly non unique solution, then the nested and the global policy iterations may cycle. To avoid this, one need to use a method similar to that of (Denardo\& Fox 68) in the one-player ergodic case.

Accurate policy iterations for games

In the previous case:

- It suffices to fix the values of $\bar{\alpha}_{n}(j)$ as much as possible (that is when they are already optimal)
- and to choose for v^{n+1} the nondecreasing limit:

$$
v^{n+1}=\lim _{k \rightarrow \infty}\left(f^{\bar{\alpha}_{n}}\right)^{k}\left(v^{n}\right)
$$

- This limit is the unique solution of the restricted system:

$$
v_{j}=\left(v^{n}\right)_{j}, j \in C, \quad v_{j}=\left(f^{\bar{\alpha}_{n}}(v)\right)_{j}, j \notin C
$$

where C is the set of critical nodes of the concave map $f^{\bar{\alpha}_{n}}$ defined as in (Akian, Gaubert 2003). This system can be solved again by a policy iteration for one-player.

- When the game is deterministic, $f^{\bar{\alpha}_{n}}$ is min-plus linear, and the set of critical nodes is the usual one defined in max-plus spectral theory. It is the analogue of the Aubry or Mather sets. See in that case (Cochet, Gaubert, Gunawardena 99).
- See (Cochet-Terrasson, Gaubert 2006) for general mean-payoff games.

Numerical results of Policy iteration for mean-payoff stochastic games with algebraic multigrid methods (A.,

Detournay)

Solve the stationnary Isaacs equation:

$$
-\rho+\varepsilon \Delta v+\max _{\alpha \in \mathcal{A}}(\alpha \cdot \nabla v)+\min _{\beta \in \mathcal{B}}(\beta \cdot \nabla v)+\|x\|_{2}^{2}=0 \text { on }(-1 / 2,1 / 2)^{2}
$$

with Neuman boundary conditions.
Take

$$
\mathcal{A}:=B_{\infty}(0,1)
$$

and

$$
\mathcal{B}:=\{(0,0),(\pm 1, \pm 2),(\pm 2, \pm 1)\}
$$

or

$$
\mathcal{B}:=\{(0,0),(1,2),(2,1)\}
$$

Case $\mathcal{B}:=\{(0,0),(\pm 1, \pm 2),(\pm 2, \pm 1)\}$

α

Case $\mathcal{B}:=\{(0,0),(1,2),(2,1)\}$

$$
3.23056 \mathrm{e}-06
$$

Variational inequalities problem (VI)

Optimal stopping time for first player

$$
\left\{\begin{array}{l}
\max \left[\Delta v-0.5\|\nabla v\|_{2}^{2}+f, \phi-v\right]=0 \text { in } \Omega \\
v=\phi \text { on } \partial \Omega
\end{array}\right.
$$

Max chooses between play or stop ($\sharp \mathcal{A}=2$) and receives ϕ when he stops
Min leads to $\|\nabla v\|_{2}^{2}$
with solution on $\Omega=[0,1] \times[0,1]$ given
by

VI with 129×129 points grid

$$
\text { iterations = } 100
$$

VI with 129×129 points grid

$$
\text { iterations = } 200
$$

VI with 129×129 points grid

$$
\text { iterations = } 300
$$

VI with 129×129 points grid

$$
\text { iterations = } 400
$$

VI with 129×129 points grid

$$
\text { iterations = } 500
$$

VI with 129×129 points grid

$$
\text { iterations = } 600
$$

VI with 129×129 points grid

iteration 700! in ≈ 8148 seconds slow convergence

Policy iterations bounded by $\sharp\{$ possible policies $\}$
\rightarrow can be exponential in N
like Newton \rightarrow improve with good initial guess? \rightarrow FMG

Full Multilevel $A M G \pi$

define the problem on each coarse grid Ω^{H}
, Interpolation of strategies and value
AMG Policy Iterations
interpolation of value v and strategies α, β stopping criterion for $\mathrm{AMG} \pi\|r\|_{L^{2}}<c H^{2}$ (with $c=0.1$)

Full multilevel $\mathrm{AMG} \pi$

$\Omega=[0,1] \times[0,1], 1025$ nodes in each direction
Ω^{H} coarse grids (number of nodes in each direction)
$n=$ current iteration from Max, $k=$ number of iterations from Min

Ω^{H}	n	k	$\\|r\\|_{\infty}$	$\\|r\\|_{L_{2}}$	$\\|e\\|_{\infty}$	$\\|e\\|_{L_{2}}$	cpu time s
3	1	1	$2.17 e-1$	$2.17 e-1$	$1.53 e-1$	$1.53 e-1$	$\ll 1$
3	2	1	$1.14 e-2$	$1.14 e-2$	$3.30 e-2$	$3.30 e-2$	$\ll 1$
5	1	2	$2.17 e-4$	$8.26 e-5$	$3.02 e-2$	$1.71 e-2$	$\ll 1$
9	1	2	$4.99 e-3$	$1.06 e-3$	$1.65 e-2$	$7.99 e-3$	$\ll 1$
9	2	1	$2.68 e-3$	$5.41 e-4$	$1.66 e-2$	$8.15 e-3$	$\ll 1$
9	3	1	$2.72 e-4$	$5.49 e-5$	$1.68 e-2$	$8.30 e-3$	$\ll 1$
513	1	1	$2.57 e-7$	$4.04 e-9$	$3.15 e-4$	$1.33 e-4$	2.62
1025	1	1	$1.31 e-7$	$1.90 e-9$	$1.57 e-4$	$6.63 e-5$	$1.17 e+1$
1025	2	1	$6.77 e-8$	$5.83 e-10$	$1.57 e-4$	$6.62 e-5$	$2.11 e+1$

Again max-plus algebra:

- Full multilevel scheme can make policy iteration faster and efficient!
- Can we generalize it for stochastic games with finite state space?
- Mean of game operators leads to an exponential number of actions at lower levels, so need to reduce the number of elements in a max-plus linear combination, this is a max-plus projection.
- Recall: policy iteration for games is exponential (O. Friedmann 09), and finding a polynomial time algorithm for zero-sum game is an open problem.

