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Outline

A class of Hamilton-Jacobi equations

Derived from Fokker-Planck equations

Develop propagating fronts with signal-dependent speed

In particular, Hamilton-Jacobi equations arising from:

Relativistic Heat Fokker-Planck equation (Flux limited)

Relativistic Porous Media Fokker-Planck equation (Flux un-limited)

Relativistic Speed limited Fokker-Planck equation

Numerical scheme and examples
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Introduction

General Fokker-Plank equation

ut = div
(

g(u, |∇u|)∇u
)

g(u,p) a non-negative scalar function of u and |∇u|.

Models many physical phenomena related to transport processes

If g = g(u), represents a classical Fokker-Planck equation, (Transport
in Statistical Mechanics)

If g = g(|∇u|), represents an anomalous diffusion equation,
(Geometric Flows).

If g is a positive constant ν > 0 then represents the classical heat
equation.

If g = g(u, |∇u|) is a non-negative bounded function then represents a
flux limited diffusion equation .

If g = g(u, |∇u|) a non-negative function ...
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Convective term of Fokker-Planck equations

Expanding the divergence of the Fokker-Planck equation we obtain

ut = gu(u, |∇u|)|∇u|2 + gu(u, |∇u|)∆u+
gp(u, |∇u|)

|∇u|
L(∇u)

where

L(∇u) =
(∂u

∂x

)2
+

∂2u

∂x2
+ 2

∂u

∂x

∂u

∂y

∂2u

∂x∂y
+
(∂u

∂y

)2 ∂2u

∂y2

We will study the convective term: the Hamiltonian

gu(u, |∇u|)|∇u|2
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Convective term of Fokker-Planck equations

In particular we focus on

g(u, |∇u|) = f(u)
r

√

u2 + r2|∇u|2
r =

ν

c

The associated Fokker-Planck equations:

f(u) = cu → Relativistic Heat Fokker-Planckequations (Flux limited )

f(u) = cu
2

2
→ Relativistic porous media Fokker-Planck equation (Flux

un-limited)
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Relativistic Heat Equation (RHE)

With f(u) = cu, the Fokker-Planck equation becomes the

Relativistic Heat Equation

ut = ν div

(

u∇u
√

u2 + ( νc )
2|∇u|2

)

Main contributions: P. Rosenau (1992), Y. Brenier (2003), F. Andreu, V.
Caselles, JM Mazon et al (2005-2007), A. Marquina (2010)

Motivation: Heat Equation
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Classical Heat Equation

The classical heat equation ut = ν∆u can be written in divergence form as:

ut + div (u~v) = 0

where the velocity field ~v is defined as

~v = −ν
∇u

u
, ν > 0

proportional to ∇u (possibly unbounded)!

PROPERTIES:

Velocity of heat transfer is not limited

Diffusion propagates with infinite speed !!

→ More realistic heat equation ??
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Relativistic Heat Equation (RHE)

A way to control speed propagation:

Limiting the flow velocity field by making it “relativistic" so the
maximum velocity allowed is the speed of light c > 0

Rosenau (1992) proposes to weight the velocity field in the heat flux as

ν
∇u

u
=

−~v
√

1−
|~v|2

c2

(

weightening with the dimensionless Lorentz factor W = 1
√

1− |~v|2

c2

)

The equation becomes,
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Relativistic Heat Equation (RHE)

ut = ν div

(

u∇u
√

u2 + ( νc )
2|∇u|2

)

PROPERTIES:

the solution is able to develop rarefaction waves, kinks and shocks

shocks can not propagate faster than the speed of light c.

Propagation occurs at constant speed
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Relativistic Heat Equation (RHE)

The one-dimensional RHE can be expressed as

ut = ν

(

uux
√

u2 + r2u2x

)

x

, t > 0, u ≥ 0

where ν > 0 and r = ν
c .

ut = c
(

rux
√

u2 + r2u2x

)3

ux + ν
(

u
√

u2 + r2u2x

)3

uxx

The convective part is a Hamilton-Jacobi term that depends on u and ux
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A non-conservative approach (1-D case)

We consider (what we call) the Relativistic Hamilton-Jacobi heat equation

ut = c
(

rux
√

u2 + r2u2x

)3

ux

Around jump discontinuities or “large gradients" where |ux| >> u, the ratio
u

r|ux|
<< 1 is small.

Defining sgn(ux) =
ux

|ux|
we re-write and obtain

ut = c
sgn(ux)

(√

( u
rux

)2 + 1
)3

ux
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A non-conservative approach (1-D case)

Using the Taylor expansion of (1 + y)−
3

2 = 1− 3
2
y + 15

8
y2 +O(y3)

(convergent for |y| < 1) for y = u
rux

we have

ut = c sgn(ux)
(

1−
3

2
(

u

rux
)2 +

15

8
(

u

rux
)4 − · · ·

)

ux

Then, assuming u
r|ux|

<< 1 the equation approaches to

ut ≈ c sgn(ux)ux

Relativistic Hamilton-Jacobi heat equation:

resembles linear advection equation around jump discontinuities

propagates at constant speed c > 0 according to the direction
prescribed by the sign of ux.

→ is a convective term responsible of the development of waves, kinks
and shocks in the solution where shocks will not propagate faster than
the speed of light c.
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Numerical method

ut +H(u, ux, uy) = 0 where H(u, p, q) := −G(u,
√

p2 + q2)(p2 + q
2)

Finite differences numerical scheme

u
n+1

jk = u
n
jk −∆t h̃

(

u
n
jk,

∆x
−unjk

∆x
,
∆x

+unjk

∆x
,
∆y

−unjk

∆y
,
∆x

+unjk

∆y

)

where h̃ is Lipschitz and consistent numerical Hamiltonian:

consistency: h̃(u, p, p, q, q) = H(u, p, q)

Notation : ∆x
−u

n
jk = u

n
jk − u

n
j−1,k ∆x

+u
n
jk = u

n
j+1k − u

n
j,k

∆y
−unjk = unjk − unj,k−1 ∆y

+
unjk = unj,k+1 − unj,k
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Numerical method

Local Lax-Friedrichs Hamiltonian

h̃
LLF (u, p−, p

+
, q

−
, q

+) = H(u,
p− + p+

2
,
q− + q+

2
)−

α1

2
(p−−p

+)−
α2

2
(q+−q

−)

where
α1 = max |Hp(u, p, q)|, α2 = max |Hq(u, p, q)|

Hp =
∂H

∂p
Hq =

∂H

∂q

The maxima are taken on the local intervals:

p ∈ I(p−, p+); q ∈ I(q−, q+), I(a, b) = [min(a, b),max(a, b)]

overall u in the domain.
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Numerical Implementation

High order implementation of the numerical scheme

In space: computing fifth order approximations of the arguments of the
Hamiltonian

Weighted PowerENO5

In time: explicit integration

Strong Stability Preserving Runge-Kutta method
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Two square waves initial data

Two square waves initial data

u0(x) =











0.6 − 1
2
≤ x ≤ 1

4

0.8 1
4
≤ x ≤ 1

2

0 elsewhere

x ∈ [−1, 1]

t = 0.2 t = 0.4

500 points
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Two square waves initial data

Relativistic Heat equation

Fokker-Planck Hamilton-Jacobi
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Relativistic Porous-media equation

With f(u) = cu
2

2
, the Fokker-Planck equation becomes the

Relativistic Porous-media equation

ut = div

(

νum∇u

m
√

u2 + r2|∇u|2

)

ν > 0, m > 1

We consider the case m = 2

then, the convective hyperbolic term, what we call
the “relativistic porous-media Hamilton-Jacobi equation”

ut = cu
r|∇u|2

√

u2 + r2|∇u|2

[

2−
u2

u2 + r2|∇u|2

]
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Porous-media like Hamilton-Jacobi equation

In one-dimension can be expressed as

ut = cu
r|ux|

2

√

u2 + r2|ux|2

[

2−
u2

u2 + r2|ux|2

]
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Double step initial data

Double step initial data

u0(x) =



















2.5 |x| ≤ 1

1.5 −2 ≤ x < −1

1.5 1 ≤ x ≤ 2

0.5 elsewhere

x ∈ [−3, 3]

t = 0.3

500 points
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Double step initial data

Relativistic Heat equation

Fokker-Planck Hamilton-Jacobi
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Double step initial data

Relativistic Porous media equation

Fokker-Planck Hamilton-Jacobi
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Continuous initial data

u0(x) =

{

0 |x| ≥ 1

20max(1− x2, 0) |x| < 1

x ∈ [−3, 3]

t = 0.3

500 points
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Continuous initial data

Relativistic Porous media equation

Fokker-Planck Hamilton-Jacobi
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Speed limited Fokker-Planck equation

In one-dimension the Fokker-Planck is expressed as

ut =
r u2x

√

u2 + r2u2x

(

f
′(u)−

uf(u)

u2 + r2u2x

)

+ f(u)
r u2

(u2 + r2u2x)3/2
uxx

The 1D convective part written as a HJ equation is:

ut =
r u2x

√

u2 + r2u2x

(

f
′(u)−

uf(u)

u2 + r2u2x

)

– p.25/??



Continuous initial data

Relativistic Porous media equation

Fokker-Planck Hamilton-Jacobi
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Continuous initial data

Relativistic Speed limited equation

Fokker-Planck Hamilton-Jacobi
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Thank you!
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