Fast convergent finite difference solvers for the elliptic Monge-Ampère equation

Adam Oberman

Simon Fraser University

BIRS February 17, 2011

- [O.] 2008. Convergent scheme in two dim. Explicit solver.
- [Froese, Benamou, O.] 2010. Standard finite difference schemes in two dimensions. Two solvers (explicit/semi-implicit), both enforcing convexity.
- [Froese, O.] 2010 convergent scheme in arbitrary dim., proof of convergence of Newton's method
- [Froese, O.] 2010 more accurate hybrid scheme, Newton's method solver.

[Froese] Optimal Transportation solver

$$\det(D^2 u(x)) = f(x), \quad \text{for } x \text{ in } \Omega. \tag{MA}$$

$$u(x) = g(x), \text{ for } x \text{ on } \partial\Omega.$$
 (D)

det $(D^2 u)$, is the determinant of the Hessian of the function u. $\Omega \subset \mathbb{R}^d$ is a convex bounded subset with boundary $\partial \Omega$,

Visualization of solution and gradient map

Example

$$u(\mathbf{x}) = \exp\left(\frac{|\mathbf{x}|^2}{2}\right), \qquad f(\mathbf{x}) = (1+|\mathbf{x}|^2)\exp(|\mathbf{x}|^2).$$

Figure: The solution u(x). The image of mapping $y = \nabla u(x)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Application: Optimal Transportation Problem

Map from one domain onto another, with given volume distortion.

 $\det(D^2 u(x)) = f(x)$ $\nabla u(x) : A \to B$

Figure: The image of mapping $y = \nabla u(x)$ [Froese]

Application: mappings with controlled volume distortion

Generate mappings with controlled volume distortion.

$$\det(D^2u(x)) = egin{cases} 1, & ext{ in most of } \Omega\ ext{Large}, & ext{elsewhere} \end{cases}$$

Figure: The image of mapping $y = \nabla u(x)$

(Also bounds on volume distortion in a larger variational problem.)

Early work:

- Oliker [OP88], converges to the Aleksandrov solution in two dimensions. Very small problem size.
- Benamou and Brenier [BB00] fluid mechanical approach for the optimal transportation problem.

Recent work (representative):

- Publicized by Glowinski at ICIAM 07. Dean and Glowinski [DG08, DG06, Glo09].
- Feng and Neilan, [FN09a, FN09b] and Neilan, Brenner, et. al.
- Loeper [LR05], in the periodic case (see also Frisch [ZPF10])
- Haber and Haker for Benamou-Brenier method.

None of the other schemes have convergence proofs. Indeed, they all break down on singular solutions.

- A number of recent papers use other numerical methods, e.g. FEM to solve the equation.
- Proof of consistency and stability for smooth solutions [Neilan Brenner], [Bohmer]. Even in the smooth case, this is not a convergence proof.
- No other results for weak solutions.
- We provide evidence that non-monotone methods break down near singular solutions

Solvers slow down near non-smooth solutions

- A finite difference solver for the Monge-Ampère equation, which converges to viscosity solution (even for singular solutions).
- Proof of convergence for a monotone scheme
- Fast solver using modified Newton's method, $\mathcal{O}(M^{1.3})$
- A more accurate discretization away from singularities

Summary: fast, accurate solver for fully nonlinear equation, effort comparable to solving a linear PDE several (ten) times.

Linearization

Definition of weak solutions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Regularity theory

Convexity

Lemma

Let $u \in C^2$. The linearization of the Monge-Ampère operator is elliptic if D^2u is positive definite or, equivalently, if u is (strictly) convex.

Linearization of the Monge-Ampère operator, when $u \in C^2$:

 $\nabla_M \det(D^2 u)(v) = \operatorname{trace}\left((D^2 u)_{adj} D^2(v)\right).$

Example (two dimensions)

$$\nabla_M \det(D^2 u) v = u_{xx} v_{yy} + u_{yy} v_{xx} - 2u_{xy} v_{xy}$$

Regularity

The Monge-Ampère equation

$$\det(D^2 u(x)) = f(x), \quad \text{for } x \text{ in } \Omega. \tag{MA}$$

$$u(x) = g(x), \text{ for } x \text{ on } \partial\Omega.$$
 (D)

u is convex,

(C)

has a unique $C^{2,\alpha}$ solution, see [CNS84, Urb86, Caf90] [Gut01] under the following conditions.

The domain Ω is strictly convex with boundary $\partial \Omega \in C^{2,\alpha}$. The boundary values $g \in C^{2,\alpha}(\partial \Omega)$. The function $f \in C^{\alpha}(\Omega)$ is strictly positive.

- Regularity determines precisely when a monotone scheme is needed
- Other methods break down (100 × slower) when max f / min f > 40
- Our methods fast independent of f.

Definition

Let $u \in C(\Omega)$ be convex and $f \ge 0$ be continuous. The function u is a viscosity subsolution (supersolution) of the Monge-Ampère equation in Ω if whenever convex $\phi \in C^2(\Omega)$ and $x_0 \in \Omega$ are such that $(u - \phi)(x) \le (\ge)(u - \phi)(x_0)$ for all x in a neighbourhood of x_0 , then we must have

$$\det(D^2\phi(x_0)) \ge (\le)f(x_0).$$

The function *u* is a *viscosity solution* if it is both a viscosity subsolution and supersolution.

Convexity:

$$\lambda_1(D^2u) \geq 0,$$

where $\lambda_1[D^2 u]$ is the smallest eigenvalue of the Hessian of u. The convexity constraint can be absorbed into the PDE operator

$$\det^+(M) = \prod_{j=1}^d \lambda_j^+ \tag{1}$$

where M is a symmetric matrix, with eigenvalues, $\lambda_1 \leq \ldots, \leq \lambda_n$ and

$$x^+ = \max(x, 0).$$

Summary:

- Standard finite difference scheme
- Wide stencil schemes (in general)
- Local variational characterization of the operator
- Convergence theorem
- Hybrid discretization: more accuracy in regular regions. (lose convergence proof)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (Barles-Souganidis convergence)

The solutions of a consistent, monotone finite difference scheme converge uniformly to the unique viscosity solution of (MA).

Idea: $F^{\epsilon} \rightarrow F$ (consistency)

 $F^{\epsilon}[u^{e}] = f$ (approximate solutions).

Want: $u^{\epsilon} \rightarrow u$ (convergence).

Require: stability in L^{∞} via the comparison principle.

Remark: Most numerical schemes give stability in a weaker norm, which does not allow to pass to limit in nonlinear PDE.

Remark: require wide stencils to obtain a monotone discretization.

Variational characterization of the determinant

Lemma (Variational characterization of the determinant)

Let A be a $d \times d$ symmetric positive definite matrix with eigenvalues λ_i and let V be the set of all orthonormal bases of \mathbb{R}^d :

$$V = \{(\nu_1, \ldots, \nu_d) \mid \nu_j \in \mathbb{R}^d, \nu_i \perp \nu_j \text{ if } i \neq j, \|\nu_j\|_2 = 1\}.$$

Then the determinant of A is equivalent to

$$\prod_{j=1}^d \lambda_j = \min_{(\nu_1, \dots, \nu_d) \in V} \prod_{j=1}^d \nu_j^T A \nu_j.$$

Wide stencils

The finite difference operator in grid direction ν ,

$$\mathcal{D}_{\nu\nu} u_i = rac{1}{|
u| h^2} \left(u(x_i +
u h) + u(x_i -
u h) - 2u(x_i)
ight).$$

Additional term in the consistency error coming from the angular resolution $d\theta$ of the stencil.

(a) In the interior.

(b) Near the boundary.

Figure: Wide stencils on a two dimensional grid, The stence of the stencils of a two dimensional grid, The stence of the stence

For a C^2 function u:

$$\det^+(D^2\phi) = \min_{\{\nu_1...\nu_d\}\in V} \prod_{j=1}^d \left(\frac{\partial^2\phi}{\partial\nu_j^2}\right)^+.$$

On a finite difference grid, ${\cal G}$ grid directions,

$$MA^{M}[u] \equiv \min_{\{\nu_{1}...\nu_{d}\}\in\mathcal{G}} \prod_{j=1}^{d} \left(\mathcal{D}_{\nu_{j}\nu_{j}}u\right)^{+} \qquad (MA)^{M}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Overview of solution methods.

Simplest,

$$u^{n+1} = u^n + dt(MA[u^n] - f).$$

Converges if the monotone discretization is used.

Does not converge if standard finite differences are used: *no* selection principle for convex solution

Slow due to CFL condition

$$dt=\mathcal{O}(h^2).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

This was the approach used in [Obe08].

Use identity for the Laplacian in two dimensions,

$$|\Delta u| = \sqrt{(\Delta u)^2} = \sqrt{u_{xx}^2 + u_{yy}^2 + 2u_{xx}u_{yy}}.$$
 (2)

So if u solves the Monge-Ampère equation, then

$$|\Delta u| = \sqrt{u_{xx}^2 + u_{yy}^2 + 2u_{xy}^2 + 2f} = \sqrt{|D^2 u|^2 + 2f}$$

Semi-implicit scheme

$$\Delta u^{n+1} = \sqrt{2f + |D^2 u^n|^2}$$
 (3)

Challenging in singular case - like N.M for $(x^+)^2$ near 0. To solve the discretized equation

$$MA^H[u] = f$$

The corrector v^n solves the linear system

$$\left(\nabla_u M A^H[u^n]\right) v^n = M A^H[u^n] - f.$$

Theorem

Convergence of Newton's method in continuous case under regularity assumptions (extension of [LR05]) and in the discrete case for the monotone scheme.

- example where standard scheme fails
- visualization of sample solutions with different regularity.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Singularity in gradient

Solution is surface of ball, with vertical tangent at one point of domain.

Example (unbounded gradient near the boundary point (1,1))

$$u(\mathbf{x}) = -\sqrt{2 - |\mathbf{x}|^2}, \qquad f(\mathbf{x}) = 2\left(2 - |\mathbf{x}|^2\right)^{-2}.$$
 (4)

◆□> ◆□> ◆三> ◆三> ● ○ ○ ○

Failure of Newton's method for natural finite differences

Solution in $[0,1]^2 \label{eq:solution}$

$$u(\mathbf{x}) = -\sqrt{2 - |\mathbf{x}|^2}, \qquad f(\mathbf{x}) = 2(2 - |\mathbf{x}|^2)^{-2}$$

(a) Solution after two iterations

(b) Gradient map after two iterations

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Figure: The solution oscillates and becomes non-convex.

Mildly singular solution

Example (C^1)

$$u(\mathbf{x}) = \frac{1}{2} \left((|\mathbf{x} - \mathbf{x}_0| - 0.2)^+ \right)^2, \quad f(\mathbf{x}) = \left(1 - \frac{0.2}{|\mathbf{x} - \mathbf{x}_0|} \right)^+.$$
 (5)

Most singular solution

Example (cone, non-differentiable)

$$u(\mathbf{x}) = \sqrt{|\mathbf{x} - \mathbf{x}_0|}, \qquad f = \mu = \pi \,\delta_{\mathbf{x}_0} \tag{6}$$

Approximate measure μ by its average over ball of radius h/2,

$$f^{h} = egin{cases} 4/h^2 & ext{ for } |\mathbf{x} - \mathbf{x}_0| \leq h/2, \\ 0 & ext{ otherwise.} \end{cases}$$

Summary:

- tables of solution times: Newton method is fast. Other methods: speed may depend on regularity of solution
- tables of accuracy: Hybrid scheme is most accurate. On nonsmooth solutions, monotone scheme is more accurate that standard scheme, despite lower formal accuracy.

Compare: Gauss-Seidel, Semi-Implicit (Poisson), Newton.

	Regularity of Solution		
Method	$C^{2,lpha}$	$\mathcal{C}^{1,lpha}$ (5) and (4)	$C^{0,1}$ (6)
Gauss-Seidel	Moderate	Moderate	Moderate
	$(\sim \mathcal{O}(M^{1.8}))$	$(\sim \mathcal{O}(M^{1.9}))$	$(\sim \mathcal{O}(M^2))$
Poisson	Fast	Fast-Slow	Slow
	$(\sim \mathcal{O}(M^{1.4}))$	$(\sim \mathcal{O}(M^{1.4})$ –blow-up)	$(\sim \mathcal{O}(M^2)$ –blow-up)
Newton	Fast	Fast	Fast
	$(\sim \mathcal{O}(M^{1.3}))$	$(\sim \mathcal{O}(M^{1.3}))$	$(\sim \mathcal{O}(M^{1.3}))$

Table: The Newton solver is fastest in terms of absolute and order of magnitude solution time in each case.

(ロ)、(型)、(E)、(E)、 E) の(の)

Computation time

C ² Example				
Ν	Newton Its.	Newton (sec)	Poisson (sec)	Gauss-Seidel (sec)
31	3	0.2	0.7	2.2
127	5	2.9	9.6	236.7
361	6	131.4	162.6	
		C^1 Ex	ample	
	NI . I.			C C (1) (1)
N	Newton Its.	Newton (sec)	Poisson (sec)	Gauss-Seidel (sec)
31	4	0.4	1.1	0.8
127	11	5.7	256.8	145.5
361	20	200.0	<u> </u>	
C ^{0,1} (Lipschitz) Example				
Ν	Newton Its.	Newton (sec)	Poisson (sec)	Gauss-Seidel (sec)
31	9	0.5	5.3	0.8
127	32	14.1	1758.2	373.9
361	29	280.2	—	—

<□ > < @ > < E > < E > E のQ @

Accuracy: Max Error

		C ² Example	
Ν	Standard	Monotone	Hybrid
31	$7.14 imes10^{-5}$	$89.09 imes10^{-5}$	$24.45 imes10^{-5}$
361	$0.05 imes10^{-5}$	$44.00 imes 10^{-5}$	$0.46 imes10^{-5}$
		C ⁺ Example	
Ν	Standard	Monotone	Hybrid
31	$2.6 imes10^{-4}$	$17.5 imes10^{-4}$	$12.2 imes 10^{-4}$
361		$7.0 imes10^{-4}$	$0.7 imes10^{-4}$

Example with blow-up

Ν	Standard	Monotone	Hybrid
31	$17.15 imes10^{-3}$	$1.74 imes10^{-3}$	$1.74 imes10^{-3}$
361	$5.41 imes10^{-3}$	$0.33 imes10^{-3}$	$0.04 imes10^{-3}$

$C^{0,1}$ (Lipschitz) Example					
Ν	Standard	Monotone	Hybrid		
31	$10 imes10^{-3}$	$3 imes 10^{-3}$	$3 imes 10^{-3}$		
361	—	$4 imes 10^{-3}$	$4 imes 10^{-3}$		
			- 《曰》《圖》《臣》《臣》	- E	9

Three dimensional Results

C^2 Example					
Ν	Max Error	Iterations	CPU Time (s)		
7	0.0151	2	0.04		
31	0.0111	5	86.63		

C ¹ Example				
Ν	Max Error	Iterations	CPU Time (s)	
7	0.0034	1	0.02	
31	0.0005	1	17.12	

Example with Blow-up				
Ν	Max Error	Iterations	CPU Time (s)	
7	$9.6 imes10^{-3}$	1	0.03	
31	$2.9 imes10^{-3}$	8	138.74	

Table: Maximum error and computation time for the hybrid Newton's method on three representative examples.

Numerical methods for Monge-Ampère

- Even under conditions where solution is regular a naive scheme will not work, unless the convexity condition is enforced locally
- For singular solutions, the equation becomes degenerate, and iterative solvers can break down
- Using a monotone scheme resolves these problems.
- For increased accuracy, can use a hybrid scheme in regular regions of the solution.
- Monotonicity discretizations also prevent singularities in the gradient map, which is useful for applications.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

End

Jean-David Benamou and Yann Brenier.

A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. *Numer. Math.*, 84(3):375–393, 2000.

Luis A. Caffarelli.

Interior $W^{2,p}$ estimates for solutions of the Monge-Ampère equation. Ann. of Math. (2), 131(1):135–150, 1990.

L. Caffarelli, L. Nirenberg, and J. Spruck.

The Dirichlet problem for nonlinear second-order elliptic equations. I. Monge-Ampère equation. *Comm. Pure Appl. Math.*, 37(3):369–402, 1984.

E. J. Dean and R. Glowinski.

An augmented Lagrangian approach to the numerical solution of the Dirichlet problem for the elliptic Monge-Ampère equation in two dimensions.

Electron. Trans. Numer. Anal., 22:71-96 (electronic), 2006.

Edward J. Dean and Roland Glowinski.

On the numerical solution of the elliptic Monge-Ampère equation in dimension two: a least-squares approach.

In Partial differential equations, volume 16 of Comput. Methods Appl. Sci., pages 43-63. Springer, Dordrecht, 2008.

Xiaobing Feng and Michael Neilan.

Mixed finite element methods for the fully nonlinear Monge-Ampère equation based on the vanishing moment method.

SIAM J. Numer. Anal., 47(2):1226-1250, 2009.

Xiaobing Feng and Michael Neilan.

Vanishing moment method and moment solutions for fully nonlinear second order partial differential equations.

J. Sci. Comput., 38(1):74-98, 2009.

Numerical methods for fully nonlinear elliptic equations.

In Rolf Jeltsch and Gerhard Wanner, editors, 6th International Congress on Industrial and Applied Mathematics, ICIAM 07, Invited Lectures, pages 155–192, 2009.

Cristian E. Gutiérrez.

The Monge-Ampère equation.

Progress in Nonlinear Differential Equations and their Applications, 44. Birkhäuser Boston Inc., Boston, MA, 2001.

Grégoire Loeper and Francesca Rapetti.

Numerical solution of the Monge-Ampére equation by a Newton's algorithm. *C. R. Math. Acad. Sci. Paris.* 340(4):319–324, 2005.

Adam M. Oberman.

Wide stencil finite difference schemes for the elliptic Monge-Ampère equation and functions of the eigenvalues of the Hessian.

Discrete Contin. Dyn. Syst. Ser. B, 10(1):221-238, 2008.

V. I. Oliker and L. D. Prussner.

On the numerical solution of the equation $(\partial^2 z/\partial x^2)(\partial^2 z/\partial y^2) - (\partial^2 z/\partial x \partial y)^2 = f$ and its discretizations, I. Numer. Math., 54(3):271–293, 1988.

John I. E. Urbas.

The generalized Dirichlet problem for equations of Monge-Ampère type. Ann. Inst. H. Poincaré Anal. Non Linéaire, 3(3):209–228, 1986.

V. Zheligovsky, O. Podvigina, and U. Frisch.

The monge-ampère equation: Various forms and numerical solution. J. Comput. Phys., 229(13):5043–5061, 2010.